Bioorganic Chemistry

<table>
<thead>
<tr>
<th>Title of the module</th>
<th>Bioorganic Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term/semester</td>
<td>Winter term / semester 1</td>
</tr>
<tr>
<td>VAK-Number</td>
<td>02-317-7-406</td>
</tr>
<tr>
<td>Credit points</td>
<td>9</td>
</tr>
<tr>
<td>Compulsory/ elective course</td>
<td>Elective compulsory course (Wahlpflichtkurs)</td>
</tr>
</tbody>
</table>

Teaching methods

<table>
<thead>
<tr>
<th>Method</th>
<th>SWS</th>
<th>Factor</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practica</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Self study

- Preparation of the topics of the seminars: 86 hours
- Establishing an experimental method: 30 hours
- Learning for the exam: 70 hours

Instructor

Ralf Dringen, Ingo Grunwald

Examener

Ralf Dringen, Ingo Grunwald

Objectives

The course aims to substantially improve the basic knowledge on the chemical principles underlying the cell metabolism. The gaining of theoretical knowledge in seminars will be accompanied by experimental training. The students will gain expertise in the establishment of reliable and robust (bio)chemical assay systems for the analysis/quantification of chemical substances. In addition, students will be trained in the preparation of understandable protocols that can be used by others to successfully address an analytical problem. Furthermore, the students will improve their communication, presentation as well as team and lab working skills.

Content of teaching

Multiple aspects of bioorganic chemistry will be the content of the seminars. Topics addressed in the seminars include for example:

- Energetics of chemical reactions
- Functional groups and bonds
- Redox reactions
- Mechanisms involved in enzymatic catalysis
- Chemistry of basic metabolic pathways
- (Bio)chemical assays
- Laboratory safety

In teams, students will establish (bio)chemical assay systems to solve analytical problems. The protocol for the methods established by one team will be used by the other students to analyse and/or quantify the content of biomolecules in unknown samples.

Educational objectives

The following skills of the students will be improved by this course:

- Knowledge on the chemistry that underlies cell metabolism
- Recognition of repetitive chemical principles in metabolism
- Teamwork and presentations
- Ability to present and discuss complex scientific topics at the white board
- Knowledge how to establish an assay system from the literature
- Experience in preparing a useful protocol description for an analytical method
- Experience in supervising fellow students during their work with the established assays

Evaluation of learning progress

Intensive discussions with white board presentations, unannounced written test, discussion by the students of the protocol of the established assays, self-evaluation of the progress

Assessment

Final oral exam (100%)

Frequency

Each winter term

Usage in other degree programmes

No

Pre requisite

Attendance and successful contributions in seminars, preparation times and lab hours

March 2012