Title of module
Recombinant proteins

Term/semester
Summer term / 2

VAK-Number
Will be assigned centrally

Credit points
6 ECTS

Compulsory/ elective course
Elective course

Teaching methods

<table>
<thead>
<tr>
<th>Method</th>
<th>SWS</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Lab course</td>
<td>4.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Self studies
protocols 50 h

Module representative
Prof. Sørge Kelm

Instructor
Prof. Sørge Kelm (Biochemistry)

Examiner
Prof. Sørge Kelm

Objectives
The objectives of this course are to provide
- a basic understanding of concepts in the design of constructs for recombinant proteins
- develop the practical skills of plasmid construction, recombination of DNA, mutagenesis.

Content of teaching
Plasmid construction with software tools, application of molecular biology tools, like PCR, restriction digest, analytical electrophoresis, primer design

Theoretical part of the course will be covered in:
- Plasmid construction with software tools
- application of molecular biology tools, like PCR, restriction digest, analytical electrophoresis, primer design
- transformation and expression of proteins in bacterial and eukaryotic systems

Every student will persue her/his own project to create and prepare a new plasmid encoding for a new recombinant protein. The following techniques will be applied in the practical part of the course:
- plasmid recombination using general molecular biology methods like PCR, restriction digest, ligation
- transformation of bacteria, colony PCR
- analytical and preparative agarose electrophoresis.

Learning results
- Ability to comprehensively understand the design of recombinant proteins.
- Capacity to perform the methods used in the course.
- Competence to develop a strategy and experiments addressing questions in the generation of plasmids encoding recombinant proteins.
- Competence to trouble shoot experimental approaches of recombination of plasmid DNA.
- Ability to document experiments and their results in a lab notebook.

Control of the learning progress
Lab protocols

Grading
protocol (100%)

Frequency
Each summer term

Use in other study courses
Open to students of other M.Sc. courses in biology and chemistry

Requirements
Basic biochemistry in theory and practice

November 2013