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Abstract

pde2path is a tool for numerical calculation of solutions of partial
differential equations. Bifurcation diagrams are created by numeri-
cal continuation which clarify the behaviour of solutions depending
on a continuation parameter. Shooting type continuation can lead
to errors, e.g. not all branches are detected or misbehaviour of the
branches. To avoid these problems, a recently proposed bifurcation
analysis technique, called Deflated Continuation, can be utilized. The
resulting deflated problem is constructed via the application of a de-
flation operator to the residual and solved by an iterative process
applied to the transformed problem to find other possible solutions
for each fixed value of the continuation parameter. After analyzing
different deflation operators theoretically, an example implementation
in pde2path for the Allen-Cahn equation is presented.
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1 Introduction

First we give a short introduction into the continuation MATLAB package
pde2path and how the common way of continuation works. Later we show
how to improve this method via deflated continuation and apply it exem-
plary on the Allen-Cahn equation. Therefore, we introduce the theoretical
background of this equation also in this chapter.

1.1 pde2path

pde2path is a package for continuation of solutions of partial differential
equations in MATLAB and is based on the 00PDE toolbox [10]. It treats
PDE systems of the form

Ou=V(c®Vu)+b®Vu—au+ f (1)

where u = u(z) € RY, 2 € Q C R?, Q some bounded domain, parameter
A€ R, ¢ € RVNx22 ¢ RVXNX2 g ¢ RN and f € RY can depend
on z, u, Vu and parameters (especially on \). The focus is on stationary
equations

—G(u; A) = V(c@Vu)—l—b@Vu—au—l—f;O. (2)
Also generalized Neumann boundary conditions of the form
n-(c®Vu)+qu=g (3)

are supported, where n is the outer normal and ¢ € RV*V and g € RY can
depend on x, u and parameters [13].

The general idea of pde2path is finding all solutions of equation by nu-
merical continuation. The parameter \ is called the continuation parameter
and we want to find solutions depending on .

The continuation function cont in pde2path is based on a predictor-corrector-
method to solve the equation ([2)) numerically with respect to different values
of the continuation parameter. The predictor-step starts from an already
known solution (ug, Ag) and ends up on a manifold with a certain property,
e.g. constant stepsize in A (more details in [5],[3]). The corrector-step follows,
usually done by newton’s method with damping to find a solution (uy, A1)
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on this manifold. After checking for bifurcation points via bisection between
(uo, Ao) and (u1, A1) and plotting the new continuation point (u1, A1) in a di-
agram, the predictor step starts again. In this way a branch of a bifurcation
diagram is produced. If a bifurcation point is found during the continuation,
i.e. there arises a new solution to our considered problem, a new solution
branch will be found. We use the function swibra to switch to this new
branch. By calling cont again, this new solution branch can be followed.
This is how a bifurcation diagram is produced in pde2path [2].

For the basic idea of continuation and bifurcation, the algorithms and a more
detailed explanation of equation (12)) we refer to [3] and the references therein.
Additionally for more information about the updated version pde2path 2.0
and the improvements we refer to [13].

1.2 Allen-Cahn equation

We consider the one-dimensional Allen-Cahn equation
O = Ot + u(X — u?) (4)

with continuation parameter A\ € R on a symmetric domain with x € Q) =
[—L, L] and homogeneous Neumann boundary conditions

This reaction-diffusion equation was first introduced by Allen and Cahn in [1]
to describe the motion of anti-phase boundaries, a planar crystallographic
defect in crystalline solids. This defect occurs in ordered alloys and the
concentration of one of the two metallic components of the alloy is represented
by u. The Neumann boundary conditions ensure that there is no mass loss
across the boundary walls. Today the Allen-Cahn equation, often considered
as time-dependent Ginzburg-Landau equation, is commonly used in moving
interface problems in material science and fluid dynamics in a phase-field
approach (see e.g. |7]), furthermore the equation is often considered because
of its energy stability [11].

The trivial solution (%) = 0 is a stationary solution of equation , and by
linearization we can analytically compute the bifurcation points (see [2])

. 2 .
7 T
A= (‘;—L) with eigenfunctions v;(z) = cos <;—Lx) j=0,1,2,....
The bifurcation points of the Laplacian are negative, but as already men-
tioned in section [1.1 we focus in pde2path on solutions of —G(u,\) = 0,
such that we actually compute the bifurcation points of the negative Lapla-
cian.



2 Deflated Continuation

With the help of deflated continuation we want to improve the current algo-
rithms in pde2path for producing bifurcation diagrams. In the following we
will analyze this type of continuation in more detail.

2.1 Motivation

Consider a problem G with solution v € R" parameterized by a parameter
AeR
G(u,\) =0. (5)

The number of solutions of may vary for different A\. Analyzing the
variation of a solution u with A is the subject of bifurcation theory [9)].

If a point u™ is identified as a solution to , usually with iterative algo-
rithms like Newton’s method, such that G(u™™, \;) = 0, the implicit function
theorem will ensure, under suitable conditions on (G, the existence of open
neighbourhoods around u(!) and \; and a unique differentiable function ¢
such that G(u, A) = 0 implicitly defines a function u = g(\) in this neigh-
bourhoods. So we are able to define solution curves which consists of points
(u, \) with G(u, \) = 0. With numerical continuation these solution curves
are traced out [9].

As already explained in section [I.I this numerical continuation is usually
done via predictor-corrector-methods like Newton’s method, which is shown

in figure [I}

A A A
Figure 1: Numerical continuation by predictor-corrector-methods [§]: Con-

tinuation with an initial guess on a solution arc, loading known bifurcation
points and again continuation.

But this type of numerical continuation does not work accurate for all prob-
lems. Only solutions which are continuously connected with the known initial
solution will be found by using predictor-corrector-methods (see figure , left)
[8]. Another issue would occur if the solution branches are very close to each



other. The corrector step could lead to unwanted branch switching by con-
verging to a solution which is not on the considered branch. This would
produce confusing and incorrect bifurcation diagrams (see figure .

The technique called Deflated Continuation solves these problems by adding
a Deflation operator to the considered problem.

Figure 2: Bifurcation diagram of Allen-Cahn equation on 2 = [—40, 40] with
homogeneous Neumann boundary conditions by numerical continuation in
pde2path. The bifurcation points and the branches are close to each other
because of the large domain, this can lead to undesired branch switching. The
outermost branch should consist only the spatially homogeneous solutions
(more detailed explanation in section , but first the continuation finds
another branch and later it switches to the homogeneous one (thicker line).

2.2 Deflation operator

The number of solutions of for a fixed parameter value A is unknown and
can be arbitrarily large. The current numerical continuation would only find
one solution in one continuation step. To find another solution for the same
A, a suitable bifurcation point and many continuation steps are necessary,



because applying Newton’s method again to the considered problem will only
find the same solution. The possibility to find all solutions for a fixed A in one
continuation step would lead to the ability to build the bifurcation diagram
with growing A, i.e. “from left to right”. In this way both disconnected
branches will be found (see figure [3) and also branches close to each other
will not blended.

The general idea of deflated continuation is now to transform the equation
(5) such that only the already known solution u(!) is no longer a solution of
the transformed equation. Now an iterative algorithm like Newton’s method
applied to this transformed equation, starting from an initial guess unequal
uM, should not converge to the known solution u™™ but to another solution
of if it exists. Using this, we are able to find all solutions of the problem
for a fixed A € R. This transformation is realized by adding a deflation
operator to the residual [9].

/
\\

A A A
Figure 3: left: Problem with unconnected branches, middle/right: Solving
problem by finding all solutions for a fixed A [§].

Definition (Deflation Operator [9])

Let V', X, Z be Banach spaces, U C V open. Be G : U — X a differentiable
operator and for all u € U, u € U\ {uM} be W(wy;u) : X — Z an
invertible linear operator. Then W is called Deflation Operator of G, if
for G(u™) = 0 and G'(u™") non singular it holds:

lim inf || (u; u™)G (ug)||z > 0,

i—00

for every sequence {u;} C U\ {uM} converging to u".
We define the shifted and exponentiated-normed deflation operator

1
W (u;ul),p, @) == <W + a) T (6)

lu—u

where T is the identity operator, u") the already known solution to (5] with
G'(u™) non singular, « € R >0 and p € N > 1 [9].
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For a sufficient condition of identifying deflation operators and consequent
the proof that (6)) is a deflation operator, see [9].

Now applying Newton’s method to the operator W (u; u), p, a)G(u, \) will
not converge to the already known solution w?), but to all other roots of G
(depending on the initial guess u(o)). In the following we want to analyze the
parameters o and p and the correlation to the initial guess.

2.3 The exponent p

Like in @ defined, the exponent p needs to be greater than or equal one,
because otherwise the already known root is still a root (with respect to the
multiplicity of roots), and the considered p-norm would not exist.

To analyze the influence of the exponent p, we can assume first a = 0 and
consider the following simplified scalar example f(z) = x(1 — x?) with the
known root (Y = 0. This results in the deflated function

F(z) = ﬁx(l — %)

which is plotted in figure [4] for different values of p. Observations of charac-
teristics in this scalar deflation can be transferred to the general case.

Figure 4: Deflated function F' for p = 1,2,10 and a@ = 0. Gray dashed line
represents initial function f(z) = z(1 — z?).



Choosing a higher exponent p leads to faster growing of the term

1
lu = ut|

near u(!). By choosing an initial guess near u!), there will be slow conver-
gence of Newton’s method, because of the almost vertical tangent. So by
choosing p high, the initial guess has to be away from the deflated root u(!
to achieve efficiently convergence behaviour.

Furthermore, two important values for p can be observed. If the value of p is
less than the multiplicity of the deflated root, there will be only a removable
singularity in the deflated root, so the deflation will not be successful. Also
important is the smallest value of p from which it holds

lim W (u;uV, p,a)G(u,\) =0,

[[ufl =00
because this can lead to small residuals and false convergence of Newton’s
method. If the norm of the initial guess is too high, the residual could be
already small enough for incorrectly reporting numerical convergence.
Also it can be observed in figure |4 that for higher p the scalar deflated
function is not monotone anymore; new extrema occur. Newton’s method
starting in such points would fail, because of the singular derivative.
To find an optimal p for the considered problem in , until now we don’t
have a guidance for the choice, we recommend on numerical experimentation.
For special functions there may be an optimal p computed, but this is not
for the general case.

2.4 The shift parameter o

Like in @ defined, the shift parameter o needs to be greater or equal zero,
because otherwise we would produce an unwanted additional root at u with
m + a = 0 by applying the deflation operator to any problem.

In the simplified scalar example above the influence and the need for this
shift o can be clearly seen. Consider again f(x) = x(1 — 2?) with the known

root Y = 0 and the resulting deflated function with p = 10

Flz) = (|x1|10 - a> (1 —a?),

shown in figure [f] for different values of «.
Applying Newton’s method to the deflated problem with a = 0, the algorithm
finds that the function value of the deflated function can be arbitrarily near



Figure 5: Deflated function F' for p = 10 and o« = 0,0.1, 1. Gray dashed line
represents initial function f(z) = z(1 — z?).

to zero if z is going to be very small or very large, i.e. * — =400, so the
algorithm will report erroneously successful convergence. For o # 0 there
is no convergence to zero for |x| — oo, the problem of false convergence is
solved.

The additional term oZ in the deflation operator in @ shifts the deflated
function away from zero for ||u—u||, — oo, because if [|u—u® ||? is growing
faster than ||G(u, \)| for u far away from u™) it holds

G(u, \)

lu = w3

W (u, ™, p, )G (u, \) = + aG(u, \) ~ aG(u, \)

The problem mentioned in section [2.3] about false convergence of Newton’s
method for p too high is solved by this shift parameter « [E[]

For @ = 1 the deflation operator is nearly the identity away from the de-
flated root, which can also presented in figure 5] This leads to suggest an
default value o = 1, but in [Eﬂ it is discussed that numerical experience at
an explicit example yields to benefits for choosing other values for . The
conclusion there is that we are unable to give a guidance for the choice of the
shift parameter such that this is the best choice for general problems, again
numerical experimentation is recommended ﬂg[]

It is also observable in figure |5| that through the choice of o # 0 the extreme
points disappear. This fact can be utilized to avoid new extrema by change



of the parameter p. Therefore, suitable combinations of « and p are needed
for individual problems.

2.5 More solutions

The deflation operator in @ can also be utilized to find further solutions in
addition to a known one. But the goal is to find all solutions for a fixed A
to construct the whole bifurcation diagram.

If the solutions v, ..., u Y are already found, an additional n-th solution
(if it exists) can also be found by the use of ()

1
W(w;u®, . u™ Y pa) = (H +a>I.

= O

This idea was already used in 1963 by J. H. Wilkonson to find roots of
polynomials (see [4]) and picked up by P. E. Farrell in 2015 (see [9]).

With this kind of deflation operator we do not have to choose the value of
p necessarily greater than the multiplicity of the deflated solution like men-
tioned in section (because in general we do not know this multiplicity).
We can find the same solution again and deflate it until a real singularity
results. As an example, consider f(x) = 2% and the known solution z(!) = 0.
By choosing p = 1 lower than the multiplicity of the known solution, () = 0
is deflated with a removable singularity. Now Newton’s method can find
£ =0, and and after deflating this root too, * = 0 can also be found. No
other roots of f exist, all roots were found by the deflation technique, even
if p was chosen smaller than the multiplicity.

2.6 Optimality

One main question is if there exists an optimal deflation operator (i.e. optimal
p and «) and an initial guess, depending on the choice of the parameters p and
«, such that Newton’s method will converge fast, with respect to a minimal
number of iteration steps?

Like in sections[2.3|and [2.4]already mentioned, there exists no universal choice
for the parameters p and « which is optimal, numerical experimentation is
recommended. Also there is no problem independent possibility to choose
an optimal initial guess u(”), but for a concrete problem G(u, \) the initial
guess could be computed if o and p are given.

As an example, take the one dimensional Allen-Cahn equation in and
focus on stationary and spatially constant solutions such that the related
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problem is given by
G(u,\) = u(A—u?) = 0. (7)

In theory, the occurring bifurcation is called a supercritical pitchfork bifurca-
tion, where a transition from one to three real equilibria happens by changing
the parameter \. For negative A there is only one (linearly) stable equilib-
rium at u = 0, for positive A there exists an unstable equilibrium at u = 0
and two stable equilibria at v = £v/\. For more details about bifurcation
theory see e.g. [6].

For A < 0 with uV) = 0 we already know all solutions for our problem
, so we analyze the case A > 0. Now we want to find new solutions by
applying Newton’s method with an initial guess ©(©) to the deflated problem
F(u;u™, p,a, N) = W(u;u, p, a)G(u, \).

Newton’s method (without damping) is defined as

F(u™;u™ p a, \)
F'(um;uM, p,a, \)

un—i—l —

nGNO. (8)

The goal is now to find an optimal initial guess u" such that Newton’s method
needs a minimal number of iteration step until convergence.

In the following we want to analyze and compare the cases p = 2, 3,4 with
u) = 0 by finding an optimal initial guess u® in (§). Choosing u’ too
small leads to very high gradients in the first iterations of Newton’s method
because of the singularity at zero and following from this to a small stepsize,
this leads to slow convergence. Choosing u" too big we might be too far
away from the other roots and Newton’s method will not converge within a
reasonable number of iterations.

Because of symmetry, we can assume to choose u° positive to find the positive
solution v/, all results can be transferred to negative u° to find the negative
solution —v/\.

The considered function F € C*(0,v/A] is monotonically decreasing and
convex on the interval (0,v/)], so newton’s method converges for all u® €
(0, v/A] monotonically from the left [12]. This means, within a Newton step,
we can not reach an u® > /A, hence we can not take a step “too big”. To
find the optimal initial guess we want to find such u° which leads to the
largest value of |Ju! — u®|| after the first iteration step.

Because we are only interested in the interval (0, \/X], possible convergence
to zero for ||u|| — oo must not be heeded, we can choose o = 0 (even if this
is not the assured optimal choice). From we get that u° leads to biggest
stepsize in the first iteration step if

u’ = argmax (—

u

Fluiu® p.a, )
F'(u; u™M | p, o, N)
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In the presented exemplary case, the results are given in table [I]

P ‘ U stepsize ‘resulting ul
210.486v/A | 0.3V A | 0.786v/\
310577V A | 0.193V/X | 0.770v/\
41 0.628V/X\ | 0.146v/\ | 0.774v/\

i |

Table 1: Results for optimal initial guess u° for different values of p and for
a = 0.

For higher values of p, the initial guess has to be closer to the root v/\ we
seek for, but the resulting next iterated is not necessary closer. It can be
recognized that choosing higher p worsens the stepsize of the first iteration
step. This leads to the conclusion that p = 2 could be the optimal choice in
this case. Furthermore, it should also be noted here (cf. that increasing
the parameter p leads to a “blow-up” of the singularity u(!), which at the
same time corresponds to an increase in the choice of u°.

3 Implementation in pde2path

The implementation of the one-dimensional Allen-Cahn equation on the
domain Q = [—4,4] and with homogeneous Neumann boundary conditions
in pde2path leads to the following bifurcation diagram which is illustrated in
ﬁgure@by “normal” numerical continuation (for a documentation of the orig-
inal implementation of this problem see |2]). The branches starting from the
bifurcation points include solutions similar to their associated eigenfunctions,
e.g. the first branch includes only spatially constant solutions. Because of
the symmetry in the considered problem, one solution in bifurcation diagram
belongs to two solutions in the equation.

Now the implementation of deflation in pde2path with the goal to built the
bifurcation diagram by deflated continuation is discussed. For the moment
this implementation is very straightforward and not finished yet.

The information about the considered problem are implemented in the files
sG and sGjac (the operator G and its jacobian). By saving the already known
solutions and their number which should be deflated as p.deflate.uold and
p.sw.deflate respectively, the deflation can be implemented in sG.m and
sGjac.m as a weight function multiplied with the original residual. This
weight is calculated depending on p.sw.deflate.

After numerical continuation of the trivial zero solution in pde2path as usual
(p.sw.deflate=0), testing the first deflation was done by the following rou-
tine. A point on the trivial solution arc with a value of A > 0 was loaded
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Figure 6: Bifurcation diagram for the one-dimensional Allen-Cahn equation
on Q = [—4,4] with homogeneous Neumann boundary conditions generated
via pde2path.

and saved as solution to be deflated in p.deflate.uold. Then the trivial
solution got perturbed by an eigenfunction v;, deflation was switched on by
p.sw.deflate=1 (deflation of one known solution), the perturbed solution
was used as initial guess and finally Newton’s method results (hopefully!) in
another solution — on the branch corresponding to the used eigenfunction —
for the same value of . To find more solutions (see section [2.5]), the pro-
cedure is analogous, the found solution has to be saved also and the initial
guess is the trivial solution perturbed with a multiple of the eigenfunction.

4 Numerical results (Allen-Cahn)

Depending on the value of A in the loaded point, there exist a different
number of solutions (cf. section [1.2). Of course with deflation we want to
find all possible solutions, and preferably with a minimal number of iterations
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of the Newton’s method.

Exemplary we load a solution on the trivial solution arc with A = 0.9949
(see figure [6] for an illustration). By computing the bifurcation points from
section we get three previous bifurcation points for A equal to 0, 0.154,
and 0.617, so six solutions (except the trivial one) are expected (we know
this from the course of the solution branches in the bifurcation diagram
in figure [6). Table [2] shows the number of solutions found via deflation,
the multiplication factor of the experienced optimal perturbation with the
eigenfunctions v; (v; belongs to the j-th solution arc from the outside to the
inside) and the numbers of iterations for every found solution for different
choices of p and . To compare the numbers of iterations correctly, Newton’s
method without damping is used.

# solutions | p | « | perturbation -[v3, 19, 14] | # iterations
3 1|0 |[L4-1.424 3272
6 1{01][14-1424-2428-28]|[334433]
6 1|1 |[14-1424-2428-28] | [334433]
3 2| 0 | [1.4-1.424] 32 2]
6 2 101 ([14-1424-2428-28]|[334433]
6 211 |[14-1424-2428-28] | [33443 3]
1 10| 0 |[1.4] 3]
6 10 0.1 [ [1.4-1424-2428-28]|[334433]
6 10 1 [[14-1424-2428-28]|[334433]

Table 2: Numerical results of deflation for A = 0.9949

It is obvious that the choice of a = 0 is not recommendable because in
this cases never all solutions were found. Also the interval of multiplication
factors for perturbation which leads to convergence is not big in this cases
(only +0.4 around the optimal value), in contrast to the cases a # 0, where
the interval of multiplication factors which leads to convergence is unlimited,
only a choice too close to zero will lead to convergence to the trivial solution
again. Apart from that, we did not recognize any differences between the
cases for different p but a # 0.

5 Outlook

After theoretical analysis of the characteristics of deflation operators and
defining our specific operator, the implementation of Deflation for the Allen-
Cahn equation followed. For fixed A we are able to find all solutions with the
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help of this Deflation operator.

Besides some questions have remained open. First, we would like to know
if other iteration schemes may lead to better convergence rates? Also we
implemented the problem not only for |- ||} as norm in the deflation operator
but also for (||-]|2)? and got similar results. Will other norms lead to different
results? Moreover, in sections [2.3| and in the scalar example is mentioned
that for different p and « extreme points arise, where Newton’s method would
fail. Is there a correlation between the choice of p and « and this extreme
points?

As already mentioned, the implementation is also not finished yet. The goal
is to construct a whole bifurcation diagram by deflated continuation. As
described in section [3| we only implemented the deflation in one point. The
next step would be the automation of this process for constructing the whole
bifurcation diagram. Additionally, we would prefer the implementation in the
predictor-step of Newton’s method as an universal solution. Also the optimal
perturbation of the discussed problem was only approximately computed
with numerical experimentation. This could also be automated. And finally,
until now we only implemented the deflation operator to the Allen-Cahn
equation, the implementation for other problems is still open.
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