Publikationen

  • Marmolejo-Ramos, F., Barrera-Causil, C., Kuang, S., Fazlali, Z., Wegener, D., Kneib, T., ... & Martinez-Florez, G. (2022). Generalised exponential-Gaussian distribution: a method for neural reaction time analysis. Cognitive Neurodynamics, 1-17.
  • Morais Gancz, J., El Jundi, N., Strippelmann, E., Koch, M., & Wegener, D. (2022). An Open-Source, Fully Customizable 5-Choice Serial Reaction Time Task Toolbox for Automated Behavioral Training of Rodents. J. Vis. Exp179, e63385.
  • Ernst, U. A., Chen, X., Bohnenkamp, L., Galashan, F. O., & Wegener, D. (2021). Dynamic divisive normalization circuits explain and predict change detection in monkey area MT. PLOS Computational Biology17(11), e1009595.
  • Wegener, D., Oh, D. Q. P. (胡箪棋), Lukaß, H., Böer, M., & Kreiter, A. K. (2021). Blood analysis of laboratory Macaca mulatta used for neuroscience research: Investigation of long-term and cumulative effects of implants, fluid control, and laboratory procedures. eNeuro8(5), 1-17.
  • Fischer, B., Wegener, D. (2021). Monkey V1 epidural field potentials provide detailed information about stimulus location, size, shape, and color. Communications Biology, 4(690), 1-13.
  • Lisitsyn, D., Grothe, I., Kreiter, A. K., & Ernst, U. A. (2020). Visual stimulus content in V4 is conveyed by gamma-rhythmic information packages. Journal of Neuroscience, 40(50), 9650-9662.
  • Drebitz, E., Rausch, L. P., & Kreiter, A. K. (2020). A novel approach for removing micro-stimulation artifacts and reconstruction of broad-band neuronal signals. Journal of Neuroscience Methods, 332, 108549.
  • Fischer, B., Schander, A., Kreiter, A. K., Lang, W., & Wegener, D. (2019). Visual epidural field potentials possess high functional specificity in single trials. Journal of neurophysiology, 122(4), 1634-1648
  • Drebitz, E., Schledde, B., Kreiter, A. K., & Wegener, D. (2019). Optimizing the yield of multi-unit activity by including the entire spiking activity. Frontiers in neuroscience, 13, 83.
  • Drebitz, E., Haag, M., Grothe, I., Mandon, S., & Kreiter, A. K. (2018). Attention configures synchronization within local neuronal networks for processing of the behaviorally relevant stimulus. Frontiers in neural circuits, 12, 71.
  • Grothe, I., Rotermund, D., Neitzel, S. D., Mandon, S., Ernst, U. A., Kreiter, A. K., & Pawelzik, K. R. (2018). Attention selectively gates afferent signal transmission to area V4. Journal of Neuroscience, 38(14), 3441-3452.
  • Fischer, B., & Wegener, D. (2018). Emphasizing the “positive” in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks. Journal of neurophysiology, 120(1), 115-128.
  • Schledde, B., Galashan, F. O., Przybyla, M., Kreiter, A. K., & Wegener, D. (2017). Task-specific, dimension-based attentional shaping of motion processing in monkey area MT. Journal of neurophysiology, 118(3), 1542-1555.
  • Schander, A., Teßmann, T., Strokov, S., Stemmann, H., Kreiter, A. K., & Lang, W. (2016, August). In-vitro evaluation of the long-term stability of PEDOT: PSS coated microelectrodes for chronic recording and electrical stimulation of neurons. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 6174-6177). IEEE.
  • Rotermund, D., Pistor, J., Hoeffmann, J., Schellenberg, T., Boll, D., Tolstosheeva, E., ... & Schneider, M. (2017). Implications for a Wireless, External Device System to Study Electrocorticography. Sensors, 17(4), 761.
  • Schander, A., Stemmann, H., Tolstosheeva, E., Roese, R., Biefeld, V., Kempen, L., ... & Lang, W. (2016). Design and fabrication of novel multi-channel floating neural probes for intracortical chronic recording. Sensors and Actuators A: Physical, 247, 125-135.
  • Schander, A., Tolstosheeva, E., Biefeld, V., Kempen, L., Stemmann, H., Kreiter, A., & Lang, W. (2015, June). Design and fabrication of multi-contact flexible silicon probes for intracortical floating implantation. In 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 1739-1742). IEEE.
  • Gledhill, D., Grimsen, C., Fahle, M., & Wegener, D. (2015). Human feature-based attention consists of two distinct spatiotemporal processes. Journal of Vision, 15(8), 8-8.
  • Tolstosheeva, E., Gordillo-González, V., Biefeld, V., Kempen, L., Mandon, S., Kreiter, A. K., & Lang, W. (2015). A multi-channel, flex-rigid ECoG microelectrode array for visual cortical interfacing. Sensors, 15(1), 832-854.
  • Traschütz, A., Kreiter, A. K., & Wegener, D. (2015). Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance. Journal of neurophysiology, 113(3), 890-903.
  • Wegener, D., Galashan, F. O., Aurich, M. K., & Kreiter, A. K. (2014). Attentional spreading to task-irrelevant object features: experimental support and a 3-step model of attention for object-based selection and feature-based processing modulation. Frontiers in human neuroscience, 8, 414.
  • Galashan, D., Fehr, T., Kreiter, A. K., & Herrmann, M. (2014). Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation. BMC neuroscience, 15(1), 85.
  • Kreiter, A. (2014). Science at the sharp end of oppressive politics. Nature, 506(7487), 133-133.
  • Galashan, F. O., Saßen, H. C., Kreiter, A. K., & Wegener, D. (2013). Monkey area MT latencies to speed changes depend on attention and correlate with behavioral reaction times. Neuron, 78(4), 740-750.
  • Rotermund, D., Ernst, U. A., Mandon, S., Taylor, K., Smiyukha, Y., Kreiter, A. K., & Pawelzik, K. R. (2013). Toward high performance, weakly invasive brain computer interfaces using selective visual attention. Journal of Neuroscience, 33(14), 6001-6011.
  • Traschütz, A., Zinke, W., & Wegener, D. (2012). Speed change detection in foveal and peripheral vision. Vision Research, 72, 1-13.
  • Grothe, I., Neitzel, S. D., Mandon, S., & Kreiter, A. K. (2012). Switching neuronal inputs by differential modulations of gamma-band phase-coherence. Journal of Neuroscience, 32(46), 16172-16180.
  • Ernst, U. A., Mandon, S., Schinkel–Bielefeld, N., Neitzel, S. D., Kreiter, A. K., & Pawelzik, K. R. (2012). Optimality of human contour integration. PLoS Computational Biology, 8(5).
  • Tolstosheeva, E., Gordillo-González, V., Hertzberg, T., Kempen, L., Michels, I., Kreiter, A., & Lang, W. (2011, August). A novel flex-rigid and soft-release ECoG array. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2973-2976). IEEE.
  • Galashan, F. O., Rempel, H. C., Meyer, A., Gruber-Dujardin, E., Kreiter, A. K., & Wegener, D. (2011). A new type of recording chamber with an easy-to-exchange microdrive array for chronic recordings in macaque monkeys. Journal of neurophysiology, 105(6), 3092-3105.
  • Rotermund, D., Taylor, K., Ernst, U. A., Kreiter, A. K., & Pawelzik, K. R. (2009). Attention improves object representation in visual cortical field potentials. Journal of Neuroscience, 29(32), 10120-10130.
  • Moeller, S., Nallasamy, N., Tsao, D. Y., & Freiwald, W. A. (2009). Functional connectivity of the macaque brain across stimulus and arousal states. Journal of Neuroscience, 29(18), 5897-5909 .
  • Wegener, D., Ehn, F., Aurich, M. K., Galashan, F. O., & Kreiter, A. K. (2008). Feature-based attention and the suppression of non-relevant object features. Vision Research, 48(27), 2696-2707.
  • Tsao, D. Y., Moeller, S., & Freiwald, W. A. (2008). Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Sciences, 105(49), 19514-19519.
  • Tsao, D. Y., Schweers, N., Moeller, S., & Freiwald, W. A. (2008). Patches of face-selective cortex in the macaque frontal lobe. Nature neuroscience, 11(8), 877.
  • Moeller, S., Freiwald, W. A., & Tsao, D. Y. (2008). Patches with links: a unified system for processing faces in the macaque temporal lobe. Science, 320(5881), 1355-1359.
  • Freiwald, W. A. (2007). Attention to objects made of features. Trends in cognitive sciences, 11(11), 453-454.
  • Wannig, A., Rodríguez, V., & Freiwald, W. A. (2007). Attention to surfaces modulates motion processing in extrastriate area MT. Neuron, 54(4), 639-651.
  • Kreiter, A. K. (2006). How do we model attention-dependent signal routing?. Neural networks, 19(9), 1443-1444.
  • Wegener, D., Galashan, F. O., Markowski, D. N., & Kreiter, A. K. (2006). Selective visual attention ensures constancy of sensory representations: Testing the influence of perceptual load and spatial competition. Vision Research, 46(21), 3563-3574.
  • Conway, B. R., & Tsao, D. Y. (2006). Color architecture in alert macaque cortex revealed by FMRI. Cerebral Cortex, 16(11), 1604-1613.
  • Tsao, D. Y., & Freiwald, W. A. (2006). What's so special about the average face?. Trends in cognitive sciences, 10(9), 391-393.
  • Tsao, D. Y., Freiwald, W. A., Tootell, R. B., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 311(5761), 670-674.
  • Taylor, K., Mandon, S., Freiwald, W. A., & Kreiter, A. K. (2005). Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cerebral Cortex, 15(9), 1424-1437.
  • Stemmann, H., Freiwald, W. A., Wannig, A., Schulzke, E. L., & Eurich, C. W. (2005). Encoding of dynamic visual stimuli by primate area MT neurons. Neurocomputing, 65, 135-142.
  • Mandon, S., & Kreiter, A. K. (2005). Rapid contour integration in macaque monkeys. Vision research, 45(3), 291-300.
  • Wegener, D., Freiwald, W. A., & Kreiter, A. K. (2004). The influence of sustained selective attention on stimulus selectivity in macaque visual area MT. Journal of Neuroscience, 24(27), 6106-6114.
  • Ernst, U. A., Mandon, S., Pawelzik, K. R., & Kreiter, A. K. (2004). How ideal do macaque monkeys integrate contours?. Neurocomputing, 58, 971-977.
  • Tallon-Baudry, C., Mandon, S., Freiwald, W. A., & Kreiter, A. K. (2004). Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cerebral cortex, 14(7), 713-720.
  • Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., & Tootell, R. B. (2003). Faces and objects in macaque cerebral cortex. Nature neuroscience, 6(9), 989-995.
  • Rodrıguez, V., Valdes-Sosa, M., & Freiwald, W. (2002). Dividing attention between form and motion during transparent surface perception. Cognitive Brain Research, 13(2), 187-193.
  • Freiwald, W. A., Stemmann, H., Wannig, A., Kreiter, A. K., Hofmann, U. G., Hills, M. D., ... & Wilke, S. D. (2002). Stimulus representation in rat primary visual cortex: multi-electrode recordings with micro-machined silicon probes and estimation theory. Neurocomputing, 44, 407-416.
  • Freiwald, W. A., Kreiter, A. K., & Singer, W. (2001). Synchronization and assembly formation in the visual cortex. In Progress in brain research (Vol. 130, pp. 111-140). Elsevier.
  • Kreiter, A. K. (2001). Functional implications of temporal structure in primate cortical information processing. Zoology, 104(3-4), 241-255.
  • Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural computation, 12(11), 2621-2653.
  • Tallon-Baudry, C., Kreiter, A., & Bertrand, O. (1999). Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans. Visual neuroscience, 16(3), 449-459.
  • Freiwald, W. A., Valdes, P., Bosch, J., Biscay, R., Jimenez, J. C., Rodriguez, L. M., ... & Singer, W. (1999). Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. Journal of neuroscience methods, 94(1), 105-119.
  • Gerstner, W., Kreiter, A. K., Markram, H., & Herz, A. V. (1997). Neural codes: firing rates and beyond. Proceedings of the National Academy of Sciences, 94(24), 12740-12741.
  • Pilz, P. K. D., Ostwald, J., Kreiter, A., & Schnitzler, H. U. (1997). Effect of the middle ear reflex on sound transmission to the inner ear of rat. Hearing research, 105(1-2), 171-182.
  • Singer, W., Engel, A. K., Kreiter, A. K., Munk, M. H., Neuenschwander, S., & Roelfsema, P. R. (1997). Neuronal assemblies: necessity, signature and detectability. Trends in cognitive sciences, 1(7), 252-261.
  • Kreiter, A. K., & Singer, W. (1996). Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. Journal of neuroscience, 16(7), 2381-2396.
  • Müller, M. M., Bosch, J., Elbert, T., Kreiter, A., Sosa, M. V., Sosa, P. V., & Rockstroh, B. (1996). Visually induced gamma-band responses in human electroencephalographic activity—a link to animal studies. Experimental brain research, 112(1), 96-102
  • Singer, W., Kreiter, A. K., Engel, A. K., Fries, P., Roelfsema, P. R., & Volgushev, M. (1996). Precise timing of neuronal discharges within and across cortical areas: implications for synaptic transmission. Journal of Physiology-Paris, 90(3-4), 221-222.
  • Freiwald, W. A., Kreiter, A. K., & Singer, W. (1995). Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. Neuroreport, 6(17), 2348-2352.
  • Kreiter, A. K., & Singer, W. (1992). Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. European Journal of Neuroscience, 4(4), 369-375.
  • Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B., & Singer, W. (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends in neurosciences, 15(6), 218-226.
  • Engel, A. K., König, P., & Schillen, T. B. (1992). Why does the cortex oscillate?. Current biology, 2(6), 332-334.
  • Engel, A. K., König, P., Kreiter, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 1177-1179.
  • Engel, A. K., Kreiter, A. K., König, P., & Singer, W. (1991). Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proceedings of the National Academy of Sciences, 88(14), 6048-6052.
  • Kreiter, A. K., Aertsen, A. M., & Gerstein, G. L. (1989). A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings. Journal of neuroscience methods, 30(1), 59-69.