Skip to main content

Course Catalog

Study Program SoSe 2020

Space Engineering, M.Sc.

Show courses: all | in english | for older adults

Informational Courses

Course numberTitle of eventLecturer
04-M30-IC-WelcomeWelcome of new students in the Master's programme "Space Engineering".

Lecture (Teaching)

see also 04-BV-M-SOSE

Prof. Dr. Rodion Groll
04-SBSU-ENG-SOSEEntfällt! Sicherheitsschulung mit Brandschutzübung (in English)
Cancelled! Fire Drill

Blockveranstaltung (Teaching)

Pflichtveranstaltung für neue Studierende der Studienfächer mit laborpraktischen Inhalten die Sicherheitsschulung (in englischer Sprache) mit praktischer Feuerlöschübung stattfinden.
The safety training (in English) with practical fire-fighting exercises will take place as a compulsory event for new students of the study programmes with practical laboratory contents.

Teilnahme ist verpflichtend!
Participation is mandatory!

Dr. Maxie Hesse

Compulsory Modules

36 CP

Space Flight Theory

9 CP
Course numberTitle of eventLecturer
04-M30-CP-SFT-2Mission Design (in English)

Lecture (Teaching)
ECTS: 1,5

Dates:
weekly (starts in week: 1) Wed. 10:00 - 12:00 (2 Credit hours)
Martin Drobczyk
Dipl.-Ing. Falk Nohka

Space Environment and Testing

9 CP
Course numberTitle of eventLecturer
04-M30-CP-SET-1Space Environment and S/C Qualification (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Fri. 14:00 - 16:00 (2 Credit hours)

Place: DLR

Hansjörg Dittus
04-M30-CP-SET-3Product Assurance and Space Technology (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Wed. 08:00 - 10:00 (2 Credit hours)

Additional dates:
Wed. 12.08.20 08:30 - 12:00 GW1-HS H0070
Prof. Dr. Claus Braxmaier
Dr.-Ing. Jens Große

Satellite Systems

9 CP
Course numberTitle of eventLecturer
04-M30-CP-SAS-2Structural Design and Analysis (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Fri. 10:00 - 12:00 (2 Credit hours)

Place: DLR

Prof. Dr.-Ing. Andreas Rittweger
04-M30-CP-SAS-3Space Systems Engineering/Concurrent Engineering (in English)

Blockveranstaltung (Teaching)
ECTS: 3

Additional dates:
Wed. 16.09.20 17:00 - 18:00 DLR Design-Labor CEF
Mon. 21.09.20 14:00 - 17:30 DLR Design-Labor CEF
Tue. 22.09.20 - Fri. 25.09.20 (Tue., Wed., Thu., Fri.) 09:30 - 17:30 DLR Design-Labor CEF

Block Event; Place: DLR Design-Labor CEF; Information-appointment on 2020-09-I6 at 5 pm s.t. at CEF, DLR Building

Dr. Oliver Romberg

Subsystems

9 CP
Course numberTitle of eventLecturer
04-M30-CP-SUB-1Orbital Systems (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Mon. 14:00 - 16:00 (2 Credit hours)

Place: DLR

Dr. Peter Rickmers
Dr. Waldemar Bauer
04-M30-CP-SUB-2Space Propulsion Systems 1 (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Fri. 12:00 - 14:00 (2 Credit hours)

Place: DLR

Dr. Peter Rickmers

Elective Modules

12 CP
Course numberTitle of eventLecturer
03-ME-702.03Specification of Embedded Systems (in English)

Kurs (Teaching)
ECTS: 6

Dates:
weekly (starts in week: 1) Mon. 08:00 - 10:00
weekly (starts in week: 1) Tue. 14:00 - 16:00

Profil: SQ

Prof. Dr. Jan Peleska
04-M30-CEM-FLL-2Scientific Payloads (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Tue. 12:00 - 14:00 (2 Credit hours)
Dr. Sven Herrmann
04-M30-CEM-NFM-1Applied Numerical Fluid Mechanics (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Thu. 16:00 - 18:00 (2 Credit hours)
PD Dr. Yan Jin (Lecures, exercises)
04-M30-CEM-SFI-1On Board Data Handling (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Thu. 10:00 - 12:00 (2 Credit hours)

Room: DLR Main-Building (Geb. 1), Raum 1.22

Dr. rer. nat. Frank Dannemann
04-M30-CEM-SHD-2Fluid Handling in Spacecrafts (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Wed. 14:00 - 16:00 (2 Credit hours)
Prof. Dr.-Ing. habil. Michael Dreyer
04-M30-CEM-SPM-2Research and Exploration Missions (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 1) Tue. 08:00 - 10:00 (2 Credit hours)
Prof. Dr. Claus Lämmerzahl
Dr. Marco Scharringhausen, Dipl.-Math.
04-M30-EM-HSEHHuman Space Exploration & Habitation (in English)

Lecture (Teaching)
ECTS: 3

Dates:
weekly (starts in week: 2) Thu. 14:00 - 16:00

Place: DLR, Robert-Hooke-str. 7, 28359 Bremen.

Daniel Schubert
Paul Zabel

Master Project

12 CP
Course numberTitle of eventLecturer
04-M30-MP-1851Computational tools for fluids in spacecrafts

Projektplenum (Teaching)
ECTS: 12
Prof. Dr.-Ing. habil. Michael Dreyer
04-M30-MP-1951GARNETT - Test rig for satellite reaction wheel motor unit (in English)
GARNETT – Testrahmengestell für ein Satellitenreaktionsradmotor

Projektplenum (Teaching)
ECTS: 12

Reaction wheels are used as actuators for satellite attitude control. One of the main elements of the reaction wheels are the electric motors. These must be characterized prior to integration into reaction wheels and converted to a digital model. As part of this module, a measuring stand shall be designed and developed, as well as the modeling of the motor in MATLAB / Simulink. A practical realization of the test is desirable.

Reaktionsräder werden für die auf Satellitenlageregelung als Aktuatoren verwendet. Einer der Hauptelemente der Reaktionsräder sind die Motoren. Diese müssen vor dem Einbau in die Reaktionsräder charakterisiert werden und in ein digitales Modell überführt werden. Im Rahmen dieses Modulprojektes soll für diese Vermessung ein Messstand konzipiert und entwickelt werden, sowie die Modellierung des Motors in MATLAB/Simulink realisiert werden. Eine praktische Realisierung des Versuchstands ist wünschenswert.

Prof. Dr. Claus Braxmaier
Prof. Dr. Rodion Groll
04-M30-MP-1952TERENCE - Test rig for passive magnetic bearing (in English)
TERENCE – Testrahmengestell für passive magnetische Lager

Projektplenum (Teaching)
ECTS: 12

Dates:
fortnightly (starts in week: 2) Mon. 12:00 - 14:00 External location: Online-Meeting Online-Meeting

Magnetic bearings are used in machine tools, energy storage or satellite reaction wheels, as they are contactless and have no friction. Two permanent magnet rings facing each other and repelling each other are one of the simplest forms of magnetic bearings. Such permanent magnet bearings are referred to as passive magnetic bearings. It should be noted, however, that these passive bearings produce disturbing forces in the radial direction. These disturbance forces are to be measured and investigated by means of a test setup. As part of this module project, this test stand is to be designed and the necessary measuring sensors selected. The creation of necessary manufacturing drawings and the concept for the measurement data acquisition are also part of the project. A realization of the concept is worthwhile.

Magnetische Lager werden in Werkzeugmaschinen, Energiespeichern oder Satellitenreaktionrädern verwendet, da sie kontaktlos sind und so keine Reibung haben. Zwei Permantmagnetringe, die gegenüberliegen und sich gegenseitig abstoßen, sind eine der einfachsten Formen von Magnetlagern. Solche Permanentmagnetlager werden als passive Magnetlager bezeichnet. Es ist aber zu beachten, dass diese passiven Lager in radialer Richtung Störkräfte erzeugen. Diese Störkräfte sollen anhand eines Versuchsaufbaus vermessen und untersucht werden. Im Rahmen dieses Modulprojektes soll dieser Versuchsstand entworfen werden und die notwenige Messsensorik ausgewählt werden. Die Erstellung notwendiger Fertigungszeichnungen und des Konzepts für die Messdatenerfassung sind ebenfalls Bestandteil des Projektes. Eine Realisierung des Konzepts ist erstrebenswert.

Prof. Dr. Claus Braxmaier
Nils Goossens, M. Sc
04-M30-MP-1953Design of copper coils for additive manufacturing (in English)

Projektplenum (Teaching)
ECTS: 12/15

Background
Copper coils are used in a variety of space applications such as actuators, sensors, but also in the production of space components. Coil dimensions, core sizes and winding numbers are usually customized to meet the specific requirements with respect to mass, size and power supply. This vast coil variation requires time consuming manual production or a large number of tooling. Additive manufacturing is a promising process to be able to master those demands because it offers the ability to quickly adjust to the market demand as well as to produce customized and optimized winding shapes. As part of this master project, a suitable case study for the demonstration of copper additive manufacturing for electromagnetic coils for space applications is to be identified. The selected use case is to be designed and analyzed.
This project is conducted in cooperation with the industry partner ZARM Technik AG.

We search for students with:
- basic knowledge in design in CAD software
- basic knowledge in Finite Element Analysis
- basic knowledge in magnetics

We offer:
- expertise in additive manufacturing
- the opportunity to write the master project in home office
- online meetings on a regular basis

Prof. Dr. Claus Braxmaier
Dipl.-Ing. Holger Oelze
04-M30-MP-1954Rapid Demonstrator Realization of the satellite Thermal Control System Heat Exchanger Model for Simulation Validation (in English)

Projektplenum (Teaching)
ECTS: 12

A fast realization of a demonstrator set-up to validate Computer Fluid Dynamics (CFD) heat exchanger simulations for the ferrofluid TCS is the project goal.

Therefore, commercial of the shelf components of water cooling systems for high end personal computers shall be used to design a test rig. Additional requirements shall be defined after a discussion with CFD simulation expert. Then a market analysis shall be conducted which leads to trade-off study of the water cooling components. In an expert review board the compliance of the component selection shall be discussed. Afterwards selected components shall be ordered and assembled. A preliminary system test shall be conducted to validate the defined requirements. In the end, the conducted analysis shall be summarized, lesson learned shall be listed and an outlook for further development shall be given.

In addition, basic project management shall be practiced. Therefore, at the beginning of the project a project plan shall be created which shall include a work-break-down structure, work package descriptions, a precedence diagram and a schedule. The work plan as well as some preliminary requirements shall be presented in a kick-off presentation. For the midterm presentation the project plan shall be checked and if necessary be adjusted. At the final presentation project management conclusion in addition to the technical conclusion shall be presented.

Prof. Dr. Marc Avila
04-M30-MP-1955Development of an AI-based program for the analysis and prognosis of bonded electrical connections

Projektplenum (Teaching)
ECTS: 12

Background

A new type of electrical bonding technology is being used in a development project. Here the signal line is connected to a sensor using an electrically conductive adhesive. Because this process is carried out by hand, each bond is unique. This uniqueness has the consequence that each adhesive has its own characteristics, which affect the electrical conductivity of the adhesive. During an ongoing test campaign, which simulates the behaviour of the bond during an orbital mission of several years (> 5,000 thermal cycles), it was also noticed that the conductivity of the adhesive changes over the simulated mission duration.

Task

The project goal is the implementation of an evaluation software for the measurement data of bonded electrical connections. This evaluation software is to be trained on the basis of an artificial intelligence with the previous measured values. The aim is to verify future electrical bonds on the basis of a few 100 cycles and to predict changes in conductivity.

First of all, requirements for the AI should be defined, which will later be verified by testing, analysis and review-of-design. At the end, the analyses carried out will be summarised, the findings listed and an outlook for further development given.

In addition, basic project management should be practiced. For this reason, a project plan is created at the beginning of the project, which contains a work breakdown structure, work package descriptions, a network diagram and a schedule. The work plan as well as some preliminary requirements will be presented in a kick-off presentation. For the mid-term presentation, the project plan must be reviewed and adjusted if necessary. At the final presentation, in addition to the technical conclusion, a summary of the project management will be presented.

Prof. Dr. Marc Avila
04-M30-MP-1956Evaluation of materials for the radiation shield of the MaMBA habitat based on simulations using FLUKA
Evaluation von Materialien für den Strahlenschutz des MaMBA-Habitats auf Grundlage von Simulationen mit FLUKA

Projektplenum (Teaching)
Christiane Heinicke
04-SE-LP-1905Inbetriebnahme einer Nutzlast für studentische Experimente mit kalten Atomen
Commissioning of a Payload for Student Experiments with Cold Atoms

Projektplenum (Teaching)
ECTS: 11/12/17/18 je nach Modul

Workload: 11/12/17/18 je nach Modul -- Arbeitsumfang wir dementsprechend angepasst
Spezialisierungsrichtungen: Eingebettete Systeme und Systemsoftware, Produktionstechnik, Raumfahrtsystemtechnik
(mehr Informationen unter Dateien)

Am ZARM existiert bereits eine entsprechende Nutzlast (Hardware) zur Messung von Beschleunigungen mit kalten Atomen. Im Rahmen dieses Projektes müssen folgende Schritte durchlaufen werden:
- Finalisieren der Integration der Nutzlast, kleinere Adaptionen am bestehenden Aufbau (soweit nötig)
- Definition der Anforderungen an die Ansteuerung/Software der Nutzlast
- Erstellen einer Steuerung / Steuersoftware zur Kontrolle der Nutzlast und zum Abspielen von Sequenzen (z.B. zeitliche Abläufe / Ansteuerungen von Magnet- und Lichtfeldern) in Labview oder Ähnlichem
- Erstellen einer (Bild)Auswertungssoftware
- Erste Messungen im Labor, KFZ und/oder in einer Zentrifuge

At ZARM a payload for measuring accelerations using cold atoms was already integrated. During this project you will use this hardware to:
- Finalize the integration of the payload, apply minor changes to the setup if required
- Define requirements towards the control (software) of the payload
- Create a suitable control software for the payload in order to play sequences of e.g. switching on/off light (laser) or magnetic fields using Labview or similar tools
- Create an algorithm to interpret the measured data
Demonstrate first measurements in the lab and/or in a moving vehicle or a centrifuge

Prof. Dr. Claus Braxmaier
Dr.-Ing. Jens Große