META-2025-ALL-IF | 27th International Informatica Feminale (in English) Sommeruniversität für Frauen in der Informatik /Summer University for Women in Computing ECTS: 1-3 (je Kurs/for every course) 60 Lehrveranstaltungen in Deutsch und Englisch für Bachelor- und Masterstudentinnen aller Fächer. Als General Studies sowie teilweise als Fachstudium im Sommersemester (…) 60 Lehrveranstaltungen in Deutsch und Englisch für Bachelor- und Masterstudentinnen aller Fächer. Als General Studies sowie teilweise als Fachstudium im Sommersemester 2025 sowie im Wintersemester 2025/26 anerkannt. Alle Einzelangaben, Zeiten und Anmeldungen jederzeit nur über die Website https://www.informatica-feminale.de. 60 courses in German and English for women Bachelor and Master students from all fields of study. Courses are part of General Studies, some are accepted in Informatics; in the summer semester 2025 as well as in winter semester 2025/26. Further information, schedules and registration only on the website https://www.informatica-feminale.de. You can find course dates and further information in Stud.IP. | Veronika Oechtering Henrike Illig |
03-IBAT-ALG | Advanced Algorithms (in English) Algorithms are a fundamental part of computer science. An algorithm is an abstract description of a procedure for solving a problem. Understanding how to (…) Algorithms are a fundamental part of computer science. An algorithm is an abstract description of a procedure for solving a problem. Understanding how to design efficient algorithms is an essential skill for developing complex programs, models, and applications.
This course assumes basic knowledge of algorithm design principles and algorithm analysis. Building on these foundatinos, we explore faster and more sophisticated algorithms for well-known problems such as
- network flows, and
- maximum matchings in bipartite graphs.
Beyond these, we study more general problems and develop algorithms to solve them, including:
- minimum-cost flows,
- maximum matchings in general graphs, and
- stable matchings.
Additionally, we introduce new concepts that model a broad class of fundamental problems and explore fast meta-algorithms for them. These topics include:
- linear programming and the ellipsoid method, and
- matroids, the Greedy algorithm, and matroid intersection.
The goals of this course are to provide a broad overview of fundamental problems in algorithmics and combinatorial optimization. Moreover, participants will develop a strong toolkit for designing and analyzing efficient algorithms, well beyond the standard undergraduate level in algorithm theory.
You can find course dates and further information in Stud.IP. | Prof. Dr. Nicole Megow Dr. Felix Christian Hommelsheim Dr. Alexander Lindermayr |
03-IBAA-BUB | Biosignals and User Interfaces You can find course dates and further information in Stud.IP. | Tanja Schultz Dr.-Ing. Hui Liu M. Sc Asmus Eike Eilks |
03-IBAA-GOVTEC | https://lvb.informatik.uni-bremen.de/ibaa/03-ibaa-govtec.pdf Die digitale Transformation des öffentlichen Sektors wird mit einer Fülle an unterschiedlichen Technologien vorangetrieben, die es ermöglichen, Prozesse zu automatisieren, die Effizienz zu steigern und die Interaktion mit Bürger*innen zu verbessern. Im Rahmen des Moduls Government Technology haben die Studierenden die Möglichkeit, solche Technologien anhand von Praxisbeispielen kennenzulernen und zu vertiefen. Hierbei werden auch die Chancen und Risiken der verschiedenen Technologien beleuchtet, um ein umfassendes Verständnis für deren Einsatz im öffentlichen Sektor zu erlangen. Dabei spielen Themen wie Künstliche Intelligenz, Blockchain, Robotic Process Automation und Mixed Reality eine wichtige Rolle. Im Rahmen des Moduls Government Technology haben die Studierenden nicht nur die Möglichkeit, theoretische Konzepte kennenzulernen, sondern auch anhand von realen Beispielen zu vertiefen. Hierbei werden konkrete Anwendungen und Projekte aus dem öffentlichen Sektor vorgestellt, die bereits mit den genannten Technologien umgesetzt wurden. Dabei lernen die Studierenden nicht nur die technischen Aspekte kennen, sondern auch die Herausforderungen, die bei der Einführung und Nutzung solcher Technologien im öffentlichen Sektor auftreten können. You can find course dates and further information in Stud.IP. | Prof. Dr. Dr. Björn Niehaves Luca Tom Bauer Jan Westermann Steffen Frederik Janas Fock |
03-IBGA-AI | Introduction to Ethical, Legal and Social Aspects of Computing Die Tutorien beginnen in der 2. Semesterwoche Die Tutorien beginnen in der 2. Semesterwoche You can find course dates and further information in Stud.IP. | Prof. Dr. Andreas Breiter Paola Lopez |
03-IBAP-KI | Foundations of Artificial Intelligence You can find course dates and further information in Stud.IP. | Michael Beetz |
03-DMB-MI-1-MI2 | You can find course dates and further information in Stud.IP. | Udo Frese |
03-IBAP-MLd | Fundamentals of Machine Learning You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze Zhao Ren |
03-IBAP-MLe | Fundamentals of Machine Learning (in English) You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze Zhao Ren |
03-IBAA-ITM | You can find course dates and further information in Stud.IP. | Prof. Dr. Andreas Breiter |
03-IBAT-LO | You can find course dates and further information in Stud.IP. | Christoph Lüth Dr. Serge Autexier |
03-IBAP-MRCA | Modern Robot Control Architectures (in English) Schwerpunkt: AI https://lvb.informatik.uni-bremen.de/ibap/03-ibap-mrca.pdf
Robotics is a complex field that emerged at the intersection of multiple disciplines such as physics, mathematics and computer science. New advances in hardware and software design and progress in artificial intelligence enable robotics research to pursue higher goals and achieve increased autonomy in various environments. For instance, robots can operate in disaster zones for search and rescue operations, can be employed in rehabilitation and healthcare, space and underwater exploration, etc. Given the complexity of such scenarios, it is essential to develop robust robotic systems with a high degree of autonomy, able to assist humans in difficult and tedious tasks.
This course aims to provide the fundamentals of modern robot control approaches that enable robots to operate in the environment autonomously. The course introduces a basic understanding of robotics, along with tools and methods to control mobile robotic platforms and manipulators. Firstly, the course presents the basics of modeling robotic systems in terms of geometry, kinematics, and dynamics. Next, real robotic systems are considered with their different types of sensors and actuators. Furthermore, system identification as a means to adapt the robot model to the reality is treated. Finally, the course provides methods and approaches to control robots from a deliberative and reactive point of view. Students will put this knowledge into practice during tutorials and exercise sheets using Python implementation and robot simulations.
Contents
- Introduction to Robotics and AI: long term robot autonomy, artificial intelligence, deliberative vs. reactive control, robotic applications.
- Robot Geometry and Transformations: robot transformations in the 3D space, exponential and logarithmic maps, forward and inverse geometric models.
- Kinematics: definition of twists and wrenches for rigid bodies, geometric Jacobian formulation, forward and inverse kinematics.
- Dynamics: an introduction to Lagrangian and Newtonian mechanics, robot dynamics formulation, recursive Newton-Euler algorithm.
- Sensing and Actuation Modalities: types of sensors and actuators, sensor fusion, actuator control.
- System Identification: methods to identify geometry, kinematic and dyanmic parameters of a robot.
- Localization: direct and probabilistic methods for robot localization, odometry, global localization, particle filter.
- Path Planning: path vs. trajectory generation, graph-based methods for path planning (e.g. Djikstra, A*).
- Dynamic Control: PD gravity compensation control, computed torque control, admittance vs impedance control.
Learning Outcomes
At the end of the course, the student is expected to be able to:
- Have a basic understanding about autonomous robots and AI.
- Compute the coordinate transformations for rigid bodies commonly used in robotics.
- Apply the robot forward and inverse kinematics.
- Describe a robotic system based on its kinematic and dynamic properties.
- Implement and understand the low-level actuator control methods.
- Describe the sensor and actuator modalities used in robotics, and explain their relevance for robot control.
- Apply system identification methods to improve robot models and adapt them to reality.
- Use probabilistic methods for robot localization.
- Generate a path for a mobile robot or manipulator using motion planning methods.
- Apply dynamical control methods on robotic systems such that they are robust against disturbances.
- Assess the strengths and limitations of different control methods presented in the course.
- Identify open challenges in robotics research and current trends in state-of-the-art.
- Communicate confidently using the terminology in the field of robotics.
- Cooperate and work in teams in order to solve tasks.
Examination
During the semester, students are required to complete 6 worksheets in groups of 4. To pass the course, students must achieve a minimum of 50% on both the worksheets and the written exam. The final grade is 40% based on worksheets and 60% on the written exam.
You can find course dates and further information in Stud.IP. | Frank Kirchner M. Sc. Mihaela Popescu M. Sc Jonas Haack |
03-IBAT-PN | You can find course dates and further information in Stud.IP. | Dr. Sabine Kuske |
03-IBAP-RN | You can find course dates and further information in Stud.IP. | Ute Bormann |
03-IBGP-SWP (reSWP) | Nur für Wiederholer:innen. Das Kick-Off Meeting findet online statt. Mit Zusatzleistung als SWP 2 (03-BA-901.02) nach alter PO anrechenbar. Für WInf-Studierende, die (…) Nur für Wiederholer:innen. Das Kick-Off Meeting findet online statt. Mit Zusatzleistung als SWP 2 (03-BA-901.02) nach alter PO anrechenbar. Für WInf-Studierende, die SWP2 wiederholen müssen: Zusammen mit 3 weiteren CP in Freie Wahl als Ersatz für SWP2. You can find course dates and further information in Stud.IP. | Karsten Hölscher |
03-IBAP-SWT | You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Koschke |
03-DMB-MI-23-TGI | Technical Basics for Informatics Nicht für Vollfach-Informatik-Studierende anrechenbar. Nicht für Vollfach-Informatik-Studierende anrechenbar. You can find course dates and further information in Stud.IP. | Stefanie Gerdes |
03-IBAP-ÜB | You can find course dates and further information in Stud.IP. | Thomas Röfer |