META-2025-ALL-IF | 27th International Informatica Feminale (in English) Sommeruniversität für Frauen in der Informatik /Summer University for Women in Computing ECTS: 1-3 (je Kurs/for every course) 60 Lehrveranstaltungen in Deutsch und Englisch für Bachelor- und Masterstudentinnen aller Fächer. Als General Studies sowie teilweise als Fachstudium im Sommersemester (…) 60 Lehrveranstaltungen in Deutsch und Englisch für Bachelor- und Masterstudentinnen aller Fächer. Als General Studies sowie teilweise als Fachstudium im Sommersemester 2025 sowie im Wintersemester 2025/26 anerkannt. Alle Einzelangaben, Zeiten und Anmeldungen jederzeit nur über die Website https://www.informatica-feminale.de. 60 courses in German and English for women Bachelor and Master students from all fields of study. Courses are part of General Studies, some are accepted in Informatics; in the summer semester 2025 as well as in winter semester 2025/26. Further information, schedules and registration only on the website https://www.informatica-feminale.de. You can find course dates and further information in Stud.IP. | Veronika Oechtering Henrike Illig |
03-IMVA-3DMFT | 3D Modelling with FabLab Technologies (in English) You can find course dates and further information in Stud.IP. | Dr. Bernhard Robben Michael Lund |
03-IBVP-AKR | Actionable Knowledge Representation (in English) Die Veranstaltung findet im TAB in Raum 0.30 statt. https://lvb.informatik.uni-bremen.de/ibv/03-ibvp-akr.pdf
This course deals with the idea of bringing knowledge into applications to support users in daily life. It therefore covers topics on how knowledge can be represented to be machine-understandable, how knowledge can be acquired from different sources (including Web scraping) and how such different knowledge chunks can be linked. It will further discuss how to reason about knowledge and how different agents like websites, AR applications or robots can use knowledge to support users in their daily life. All exercises will be available in platform-independent jupyter notebooks based on python and have low software requirements. You can find course dates and further information in Stud.IP. | Robert Porzel Michaela Kümpel |
03-IBAT-ALG | Advanced Algorithms (in English) Algorithms are a fundamental part of computer science. An algorithm is an abstract description of a procedure for solving a problem. Understanding how to (…) Algorithms are a fundamental part of computer science. An algorithm is an abstract description of a procedure for solving a problem. Understanding how to design efficient algorithms is an essential skill for developing complex programs, models, and applications.
This course assumes basic knowledge of algorithm design principles and algorithm analysis. Building on these foundatinos, we explore faster and more sophisticated algorithms for well-known problems such as
- network flows, and
- maximum matchings in bipartite graphs.
Beyond these, we study more general problems and develop algorithms to solve them, including:
- minimum-cost flows,
- maximum matchings in general graphs, and
- stable matchings.
Additionally, we introduce new concepts that model a broad class of fundamental problems and explore fast meta-algorithms for them. These topics include:
- linear programming and the ellipsoid method, and
- matroids, the Greedy algorithm, and matroid intersection.
The goals of this course are to provide a broad overview of fundamental problems in algorithmics and combinatorial optimization. Moreover, participants will develop a strong toolkit for designing and analyzing efficient algorithms, well beyond the standard undergraduate level in algorithm theory.
You can find course dates and further information in Stud.IP. | Prof. Dr. Nicole Megow Dr. Felix Christian Hommelsheim Dr. Alexander Lindermayr |
03-IMVP-ACA | Advanced Computer Architecture (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler Dr. Kamalika Datta |
03-IMAP-ACG | Advanced Computer Graphics (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Gabriel Zachmann |
03-IMVA-ACSS | Applied Computer Science in Sports (in English) Schwerpunkt: IMVA-AI, IMVA-DMI https://lvb.informatik.uni-bremen.de/imva/03-imva-acss.pdf The aim of this course is to create an understanding of the major aspects of sports applications. The course is split into two parts: the first half has a classic lecture/tutorial style, whereas the second half will focus on the creation of individual sports applications.
The lectures will explain the necessary fundamentals, such as sensor technology, user feedback, and the conduction of empirical studies, along with a number of inspiring examples.
In the project part, own prototypes for sports applications are developed in small groups. The exact application as well as the technical implementation approach can be chosen freely. The final graded outcome of the course will be a small sports application about which a presentation has to be held and a documentation in a scientific paper style has to be written.
The course will be held in English.
Schwerpunkt: AI, DMI You can find course dates and further information in Stud.IP. | Robert Porzel Dr. Tim Laue Bastian Dänekas |
03-IMAT-APX | Approximation Algorithms (in English) Profil: SQ, KIKR. Schwerpunkt: IMA-SQ, IMVT-AI, IMVT-VMC weitere Studiengänge: M-M-Alg-Num, M-T https://lvb.informatik.uni-bremen.de/imat/03-imat-apx.pdf
A large number of problems arising in practical scenarios like communication, transportation, planning, logistics etc. can be modeled as combinatorial optimization problems. In most cases, these problems are computationally intractable and one often resorts to heuristics that provide sufficiently good solutions in reasonable amount of runtime. However, in most cases, such heuristics do not provide a worst case guarantee on the performance in comparison to the optimum solution. In this course, we shall study algorithms for combinatorial optimization problems which can provide strong mathematical guarantees on performance. The course aims at developing a toolkit for solving such problems. The lectures will consist of designing polynomial-time algorithms and proving rigorous bounds on their worst case performances. We review many classical results in the field of approximation algorithms, highlighting different techniques commonly used for the design of such algorithms. Among others, we will treat the following topics: • Greedy algorithms and Local Search • Rounding Data and Dynamic Programming • Deterministic Rounding of Linear Programs (LPs) • Random Sampling and Randomized Rounding of LPs • Primal-Dual Methods • Hardness of Approximation • Problem Solving under Uncertainty You can find course dates and further information in Stud.IP. | Prof. Dr. Nicole Megow Dr. Alexander Lindermayr |
03-IMS-APMSK | Selected Problems of Multisensory Cognition (in English) You can find course dates and further information in Stud.IP. | Kerstin Schill Christop W. Zetzsche-Schill |
03-IMAT-BL | You can find course dates and further information in Stud.IP. | Prof. Dr. Sebastian Siebertz |
03-IMVP-BMUSZE | Bio-inspired Pattern Recognition and Scene Analysis You can find course dates and further information in Stud.IP. | Christop W. Zetzsche-Schill Konrad Gadzicki |
03-IBAA-BUB | Biosignals and User Interfaces You can find course dates and further information in Stud.IP. | Tanja Schultz Dr.-Ing. Hui Liu M. Sc Asmus Eike Eilks |
03-IBFW-BBDC | Bremen Big Data Challenge https://lvb.informatik.uni-bremen.de/igs/03-ibfw-bbdc.pdf Inhalt: Das Seminar beschäftigt sich mit der Big-Data-Aufgabe der diesjährigen Bremen Big Data Challenge (BBDC). Die Teilnehmer:innen des Seminars stellen ihre Lösung der Aufgabe in einer Ausarbeitung im Umfang von sechs Seiten und in einer Präsentation vor den anderen Teilnehmer:innen vor. Weitere Details zur Challenge: https://bbdc.csl.uni-bremen.de Ziele: Die Teilnehmer:innen erarbeiten, unterstützt durch eine:n Betreuer:inn, selbständig eine Lösung für die aktuelle Bremen Big Data Challenge. Sie lernen und vertiefen dabei ihre Kenntnisse der Datenanalyse und des Maschinellen Lernens anhand eines praktischen Beispiels. Die Studierenden lernen präzise ihr Vorgehen und Ergebnisse in einem wissenschaftlichen Format zusammenzufassen und zu präsentieren. Ablauf: Der Kickoff Termin ist der 9.4., 13:15-14:45, Cartesium Raum 0.01, hier werden Scheinbedingungen und Fragen geklärt und ein/e Betreuer:in festgelegt. Ein weiterer Termin für Fragen findet am 7.5., 13:15-14:45 (ebenfalls in Raum 0.01) statt. Der Abschlusstermin wird in Absprache mit den Teilnehmenden bestimmt. Hier stellen die Studierenden ihre Lösungsansätze in einer kurzen Posterpräsentation vor. Sprache: Die primäre Sprache ist Deutsch. Englische Ausarbeitung und Vorträge sind ebenfalls möglich und erwünscht. Modulkürzel: Der Kurs ist im Handbuch und in Studip mit folgendem Kürzel gelistet: 03-BE-711.98d Anrechnungen im Bachelor und Master möglich. You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze |
03-IMVT-CGEOM | Computational Geometry (in English) Profil: KIKR, DMI. Schwerpunkt: IMVT-AI, IMVT-DMI, IMVT-VMC https://lvb.informatik.uni-bremen.de/imvt/03-imvt-cgeom.pdf Die Veranstaltung beginnt am 10.04.2025. This course looks at a number of algorithms and data structures from computational geometry with a view on their application to computer graphics. You should feel comfortable with geometric-mathematical thinking as well as algorithmic thinking. We will not need, however, complex mathematics. Die Homepage zur Vorlesung befindet sich immer unter http://cgvr.cs.uni-bremen.de -> Teaching You can find course dates and further information in Stud.IP. | Prof. Dr. Gabriel Zachmann |
03-IMVA-DSS | Decision Support Systems (in English) You can find course dates and further information in Stud.IP. | Dr. Marc Wyszynski Prof. Dr. Dr. Björn Niehaves Sebastian Weber Jan Westermann |
03-IMAP-D3BV | Deep Learning and 3D Computer Vision You can find course dates and further information in Stud.IP. | Udo Frese |
03-IMAP-DIS | Design of Information Systems (in English) You can find course dates and further information in Stud.IP. | Martin Gogolla |
03-IMAA-IMS | Introduction to intelligent marine systems Profil: KIKR Schwerpunkt: IMVA-AI https://lvb.informatik.uni-bremen.de/imaa/03-imaa-ims.pdf Die Vorlesung „Einführung in Intelligent Marine Systeme“ setzt sich aus drei Hauptelementen zusammen: 1. Vermittlung der Grundlagen die beim Entwurf und der Entwicklung mariner Systeme, vornehmlich Unterwasser-Systeme, zu berücksichtigen sind. Dazu gehören neben der Vorstellung der verschiedenen Systemkonzepte wie z.B. Remotely Operated Vehicles (ROV) und Autonomous Underwater Vehicles (AUV) und der Sensorik auch Methoden der Navigation, Kommunikation, Antrieb, Energieversorgung und Steuerung. 2. Gastvorträge von Entwicklern, Anwendern und potenzieller Nutzer mit Besuch des des MARUM.
Gastvorträge (bestätigt):
Kraken Robotik GmbH
ROSEN Technology and Research Center GmbH
3. Ein, mit den TeilnehmerInnen, zusammen entwickeltes und ausgearbeitetes Systemkonzept, welches auf die verschiedenen meerestechnisch spezifischen Gesichtspunkte (siehe 1.) eingeht. (Präsentation, Peer-evaluation)
Ziele der Vorlesung: • Grundlegendes Verständnis der marinen Umwelt im Kontext technischer Systeme • Verständnis der spezifischen Herausforderungen mariner Systeme gegenüber terrestrischen Systemlösungen • Übersicht über den gegenwärtigen Stand der Technik bei mobilen und stationären Systemen • Übersicht der verschiedenen Sensormodalitäten, die gegenwärtig eingesetzt werden • Fähigkeit ein einfaches Systemkonzeptunter Berücksichtigung der maritimen Randbedingungen zusammenzustellen.
Prüfungsform: Individuelles Fachgespräch oder mündliche Prüfung Peer evaluierte Präsentation (ausgeführt in Kleingruppen: 2-3 Personen) You can find course dates and further information in Stud.IP. | Prof. Dr. Ralf Bachmayer Dr. Christian Meurer Dr. Daniel Gregorek |
03-IMVA-EI | Embodied Interaction (in English) You can find course dates and further information in Stud.IP. | Robert Porzel Prof. Dr. Rainer Malaka |
03-IMAA-EC | Entertainment Computing (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Malaka Rachel Ringe Leon Tristan Dratzidis Nima Zargham |
03-IBFW-EIUG | Ergänzung Informatik und Gesellschaft Nur für Studierende, die IUG belegt haben, und nach Absprache mit dem Dozenten. Zeiten und Räume wie IUG Nur für Studierende, die IUG belegt haben, und nach Absprache mit dem Dozenten. Zeiten und Räume wie IUG You can find course dates and further information in Stud.IP. | Ralf Eric Streibl |
03-IMS-FTITR | Advanced Legal Issues of Digital Media and ICT Regulierung von Künstlicher Intelligenz Profil: SQ, DMI https://lvb.informatik.uni-bremen.de/ims/03-ims-ftitr.pdf Das Seminar findet online über ZOOM statt. Im Rahmen des Seminars können 3 ECTS-Punkte erzielt werden. Dazu ist eine mündliche Präsentation - per Videokonferenz - zu einem abgestimmten Thema in einem Umfang von 20 Minuten zu erbringen sowie ein schriftliches einseitiges Handout/Abstract zu erstellen (diese sollte per E-Mail an die Lehrende geschickt werden). Zudem ist es möglich im Rahmen des Seminars 6 ECTS-Punkte zu erzielen. Dazu ist eine mündliche Präsentation - per Videokonferenz - zu einem abgestimmten Thema in einem Umfang von 20 Minuten zu erbringen sowie eine schriftliche Ausarbeitung des Themas in einem Umfang von 10 Seiten bis zum 08.07.2025 zu erstellen (die Ausarbeitung soll per E-Mail an die Lehrende versendet werden). You can find course dates and further information in Stud.IP. | Prof. Dr. Iris Kirchner-Freis, LL.M.Eur. |
03-IMVP-GME | Brain-Pattern-Recognition You can find course dates and further information in Stud.IP. | Felix Putze |
03-IBAA-GOVTEC | https://lvb.informatik.uni-bremen.de/ibaa/03-ibaa-govtec.pdf Die digitale Transformation des öffentlichen Sektors wird mit einer Fülle an unterschiedlichen Technologien vorangetrieben, die es ermöglichen, Prozesse zu automatisieren, die Effizienz zu steigern und die Interaktion mit Bürger*innen zu verbessern. Im Rahmen des Moduls Government Technology haben die Studierenden die Möglichkeit, solche Technologien anhand von Praxisbeispielen kennenzulernen und zu vertiefen. Hierbei werden auch die Chancen und Risiken der verschiedenen Technologien beleuchtet, um ein umfassendes Verständnis für deren Einsatz im öffentlichen Sektor zu erlangen. Dabei spielen Themen wie Künstliche Intelligenz, Blockchain, Robotic Process Automation und Mixed Reality eine wichtige Rolle. Im Rahmen des Moduls Government Technology haben die Studierenden nicht nur die Möglichkeit, theoretische Konzepte kennenzulernen, sondern auch anhand von realen Beispielen zu vertiefen. Hierbei werden konkrete Anwendungen und Projekte aus dem öffentlichen Sektor vorgestellt, die bereits mit den genannten Technologien umgesetzt wurden. Dabei lernen die Studierenden nicht nur die technischen Aspekte kennen, sondern auch die Herausforderungen, die bei der Einführung und Nutzung solcher Technologien im öffentlichen Sektor auftreten können. You can find course dates and further information in Stud.IP. | Prof. Dr. Dr. Björn Niehaves Luca Tom Bauer Jan Westermann Steffen Frederik Janas Fock |
03-IBAP-KI | Foundations of Artificial Intelligence You can find course dates and further information in Stud.IP. | Michael Beetz |
03-DMB-MI-1-MI2 | You can find course dates and further information in Stud.IP. | Udo Frese |
03-IBAP-MLe | Fundamentals of Machine Learning (in English) You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze Zhao Ren |
03-IBAP-MLd | Fundamentals of Machine Learning You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze Zhao Ren |
03-IMAA-HCIT | Ringvorlesung zur Bewertung des aktuellen Stands medizinischer IT-Infrastrukturen und -Lösungen sowie künftiger Herausforderungen You can find course dates and further information in Stud.IP. | Prof. Dr.-Ing. Horst Karl Hahn |
03-IMAP-ISPS | Information Security: Processes and Systems You can find course dates and further information in Stud.IP. | Prof. Dr.-Ing. Carsten Bormann Stefanie Gerdes |
03-IBAA-ITM | You can find course dates and further information in Stud.IP. | Prof. Dr. Andreas Breiter |
03-IMS-IUAG | Smart Environment for the Aging Society You can find course dates and further information in Stud.IP. | Kerstin Schill Christop W. Zetzsche-Schill |
03-M-GS-7 | Introduction to R (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Werner Brannath |
03-IMVP-WAWR | AI - Knowledge Acquisition and Knowledge Representation (in English) You can find course dates and further information in Stud.IP. | Michael Beetz Oger aus Weit Weit Weg Tom Schierenbeck, ????????? |
03-IBFW-KIBR | You can find course dates and further information in Stud.IP. | Michael Beetz |
03-IMS-APKS | Cognitive Systems Seminar (in English) You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze |
03-IMAP-LLML | Life-Long Machine Learning (in English) You can find course dates and further information in Stud.IP. | Martin Mundt |
03-IBAT-LO | You can find course dates and further information in Stud.IP. | Christoph Lüth Dr. Serge Autexier |
03-M-GS-16 | Mathematical Tools for Studying You can find course dates and further information in Stud.IP. | Ronald Stöver |
03-IMAA-MAD | Mobile App Development (in English) Profil: DMI Schwerpunkt: IMA-DMI, IMVA-DMI https://lvb.informatik.uni-bremen.de/imva/03-imva-mad.pdf Die Veranstaltung richtet sich an Studenten der Informatik und Digitalen Medien. In Gruppenarbeit sollen die Studierenden semesterbegleitend ein App-Projekt umsetzen. In der Vorlesung werden alle relevanten Informationen der modernen Softwareentwicklung, mit Fokus auf die mobile App-Entwickung, vermittelt. Dazu gehören Themen wie mobiles Testing, Scrum, UX Design, Evaluation & Nutzertests, Design Patterns und Cross-Plattform-Entwicklung. Das Ziel dabei ist die Vermittlung von praxisrelevantem Wissen aus dem Alltag eines erfolgreichen Unternehmens. You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Malaka David Ruh Nicolas Autzen Marcus-Sebastian Schröder |
03-IMS-SUSAI | Modern Perspectives on AI Sustainability (in English) You can find course dates and further information in Stud.IP. | Martin Mundt |
03-IBAP-MRCA | Modern Robot Control Architectures (in English) Schwerpunkt: AI https://lvb.informatik.uni-bremen.de/ibap/03-ibap-mrca.pdf
Robotics is a complex field that emerged at the intersection of multiple disciplines such as physics, mathematics and computer science. New advances in hardware and software design and progress in artificial intelligence enable robotics research to pursue higher goals and achieve increased autonomy in various environments. For instance, robots can operate in disaster zones for search and rescue operations, can be employed in rehabilitation and healthcare, space and underwater exploration, etc. Given the complexity of such scenarios, it is essential to develop robust robotic systems with a high degree of autonomy, able to assist humans in difficult and tedious tasks.
This course aims to provide the fundamentals of modern robot control approaches that enable robots to operate in the environment autonomously. The course introduces a basic understanding of robotics, along with tools and methods to control mobile robotic platforms and manipulators. Firstly, the course presents the basics of modeling robotic systems in terms of geometry, kinematics, and dynamics. Next, real robotic systems are considered with their different types of sensors and actuators. Furthermore, system identification as a means to adapt the robot model to the reality is treated. Finally, the course provides methods and approaches to control robots from a deliberative and reactive point of view. Students will put this knowledge into practice during tutorials and exercise sheets using Python implementation and robot simulations.
Contents
- Introduction to Robotics and AI: long term robot autonomy, artificial intelligence, deliberative vs. reactive control, robotic applications.
- Robot Geometry and Transformations: robot transformations in the 3D space, exponential and logarithmic maps, forward and inverse geometric models.
- Kinematics: definition of twists and wrenches for rigid bodies, geometric Jacobian formulation, forward and inverse kinematics.
- Dynamics: an introduction to Lagrangian and Newtonian mechanics, robot dynamics formulation, recursive Newton-Euler algorithm.
- Sensing and Actuation Modalities: types of sensors and actuators, sensor fusion, actuator control.
- System Identification: methods to identify geometry, kinematic and dyanmic parameters of a robot.
- Localization: direct and probabilistic methods for robot localization, odometry, global localization, particle filter.
- Path Planning: path vs. trajectory generation, graph-based methods for path planning (e.g. Djikstra, A*).
- Dynamic Control: PD gravity compensation control, computed torque control, admittance vs impedance control.
Learning Outcomes
At the end of the course, the student is expected to be able to:
- Have a basic understanding about autonomous robots and AI.
- Compute the coordinate transformations for rigid bodies commonly used in robotics.
- Apply the robot forward and inverse kinematics.
- Describe a robotic system based on its kinematic and dynamic properties.
- Implement and understand the low-level actuator control methods.
- Describe the sensor and actuator modalities used in robotics, and explain their relevance for robot control.
- Apply system identification methods to improve robot models and adapt them to reality.
- Use probabilistic methods for robot localization.
- Generate a path for a mobile robot or manipulator using motion planning methods.
- Apply dynamical control methods on robotic systems such that they are robust against disturbances.
- Assess the strengths and limitations of different control methods presented in the course.
- Identify open challenges in robotics research and current trends in state-of-the-art.
- Communicate confidently using the terminology in the field of robotics.
- Cooperate and work in teams in order to solve tasks.
Examination
During the semester, students are required to complete 6 worksheets in groups of 4. To pass the course, students must achieve a minimum of 50% on both the worksheets and the written exam. The final grade is 40% based on worksheets and 60% on the written exam.
You can find course dates and further information in Stud.IP. | Frank Kirchner M. Sc. Mihaela Popescu M. Sc Jonas Haack |
03-IBFW-HTO | Optimization Bootcamp (in English) https://lvb.informatik.uni-bremen.de/igs/03-ibfw-hto.pdf A large number of problems arising in practical scenarios like communication, transportation, planning, logistics etc. can be formulated as discrete linear optimization problems. This course briefly introduces the theory of such problems. We develop a toolkit to model real-world problems as (discrete) linear programs. We also explore several ways to find integer solutions such as cutting planes, branch & bound, and column generation.
Throughout the course, we learn these skills by modeling and solving, for example, scheduling, packing, matching, routing, and network-design problems. We focus on translating practical examples into mixed-integer linear programs. We learn how to use solvers (such as CPLEX, Gurobi, Xpress and free ones) and tailor the solution process to certain properties of the problem.
This course consists of two phases:
- One week Mon-Fri (full day, 9-5) of lectures and practical labs: July 14-18, in MZH.
- A subsequent project period: One problem has to be modeled, implemented, and solved individually or in a group of at most three students. The topic will be provided by the lecturers and will be discussed on the last day of the block course. The project including the implementation has to be presented in the beginning of the winter semester.
There are no prerequisites except some basic programming skills to participate.
You can find course dates and further information in Stud.IP. | Prof. Dr. Nicole Megow |
03-IMAT-PK | You can find course dates and further information in Stud.IP. | Prof. Dr. Sebastian Siebertz |
03-IBAT-PN | You can find course dates and further information in Stud.IP. | Dr. Sabine Kuske |
03-IMVP-PROSY | Program Synthesis (in English) You can find course dates and further information in Stud.IP. | Mario Gleirscher |
03-IBFW-C++ | Introductory Course C/C++ https://lvb.informatik.uni-bremen.de/igs/03-ibfw-c++.pdf Das Modul kann nur in der freien Wahl angerechnet werden. Der Kurs findet vom 12.09. bis 29.09.25 von 08-13h statt. Mittwoch, den ??? von ??? Programmiertest im Testcenter. Die Inhalte dieser Veranstaltung werden für Technische Informatik 2 (Studiengang Informatik) und Computergraphik vorausgesetzt. Mit dem abschließenden Programmiertest können 2 ECTS für "freie Wahl" (unbenotet) erworben werden. You can find course dates and further information in Stud.IP. | Olaf Bergmann |
03-IBFW-PBVML | Seminar on visual languages You can find course dates and further information in Stud.IP. | PD Dr. Björn Gottfried |
03-IMAP-QSE | Quality oriented system design (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler |
03-IBAP-RN | You can find course dates and further information in Stud.IP. | Ute Bormann |
03-IMAP-RL | Reinforcement Learning (in English) You can find course dates and further information in Stud.IP. | Frank Kirchner Melvin Laux |
03-IMVP-RPROS | Robot Programming with ROS (in English) IMVP-AI Room: TAB Knowledge (0.30)
Learning Outcome: * Understand and apply concepts of functional programming * Understand and apply artificial intelligence techniques * (…) IMVP-AI Room: TAB Knowledge (0.30)
Learning Outcome: * Understand and apply concepts of functional programming * Understand and apply artificial intelligence techniques * Program an autonomous robot platform using ROS * Implement failure handling techniques
Contents: This course gives a solid practical introduction to the Robot Operating System (ROS2) up to advanced topics on how to control robots. The lecture covers the tools of ROS2 and the cognitive robot architecture CRAM. Students work in small groups on a TurtleBot to apply the lectures content hands-on to the robot. Eventually the students will be able to design an autonomously driving vehicle, being evaluated in a final competition.
Profile: KIKR https://lvb.informatik.uni-bremen.de/imvp/03-imvp-rpros.pdf You can find course dates and further information in Stud.IP. | Michael Beetz |
03-IMS-AIS | Seminar on Autonomous and Intelligent Systems (in English) You can find course dates and further information in Stud.IP. | Frank Kirchner Melvin Laux Dr. Lisa Gutzeit |
03-IMAP-SECORO | Software Engineering for Cognitive Robots (in English) You can find course dates and further information in Stud.IP. | Nico Hochgeschwender |
03-IBAP-SWT | You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Koschke |
03-IMAT-TRS | Theory of Reactive Systems You can find course dates and further information in Stud.IP. | Wen-Ling Huang |
03-IMVP-ÜP | You can find course dates and further information in Stud.IP. | Thomas Röfer |
03-IBAP-ÜB | You can find course dates and further information in Stud.IP. | Thomas Röfer |
03-IMAP-UUW | Management of Uncertain Knowledge (in English) You can find course dates and further information in Stud.IP. | Kerstin Schill Joachim Clemens |
03-IMS-VPUR | Visual Perception for Underwater Robotic Systems (in English) The seminar provides a systematic introduction to the specific aspects of visual perception for underwater robotic systems. It has an application-oriented focus on (…) The seminar provides a systematic introduction to the specific aspects of visual perception for underwater robotic systems. It has an application-oriented focus on computer vision and deep learning in the fields of marine science and engineering. Starting from a description of visual sensing in the underwater environment, approaches ranging from image enhancement to complex 3D reconstruction methods will be presented. Possible topics for further in-depth study by the seminar participants include:
Image enhancement and restoration Object recognition and tracking Photo mosaicing and 3D reconstruction Visual SLAM Multi-modal data fusion Simulation, datasets and modeling Structured light and LIDAR On-board / real-time processing You can find course dates and further information in Stud.IP. | Dr. Daniel Gregorek |