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Abstract

Implantable neuronal interfaces to the brain are an important keystone for future medical
applications. However, entering this field of research is difficult since such an implant re-
quires components from many different areas of technology. Since the complete avoidance
of wires is important due to the risk of infections and other long-term problems, means
for wireless transmitting data and energy are a necessity which adds to the requirements.
In recent literature many high-tech components for such implants are presented with re-
markable properties. However, these components are typically not freely available for your
system. Every group needs to re-develop their own solution. This raises the question if it
is possible to create a reusable design for an implant and its external base-station, such
that it allows other groups to use it as a starting point. In this article we try to answer this
question by presenting a design based exclusively on commercial off-the-shelf components
and studying the properties of the resulting system. Following this idea, we present a
fully wireless neuronal implant for simultaneously measuring electrocorticography signals
at 128 locations from the surface of the brain. All design files are available as open source.
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Introduction

There is nothing more drastic in a person’s life than losing motor control over the own
body (e.g. by a neuro-degenerative disease, stroke or paraplegia), getting blind or losing
limbs. The actual state of medical technology has only limited options for helping this
group of people. Results from brain-research suggest that it should be possible to build
technical medical devices which interact with the neuronal activity patterns of the brain
to ease the loss of life quality and partially restore functionality (e.g. creating visual
perception [1, 2, 3] and extracting information from neuronal activities [4, 5, 6, 7]). Even
with the limited knowledge of today, astonishing assisting systems for this group of people
are possible [8, 9, 10, 2]. One important example are invasive brain-computer interfaces
(BCI), which allow to control computers or robot-arms by evaluating the actual spatio-
temporal cortical activity patterns (e.g. [11, 4, 6, 5, 12, 8, 9, 13, 14, 15] and many more).

Transferring such systems into the daily medical routine remains a highly challenging task.
Effective control of external devices with invasive BCIs requires recording of neuronal
data with high temporal and spatial resolution, which is best achieved with intracortical
recordings. However, intracortical implantation of electrodes might lead to brain dam-
age. Furthermore, recording quality usually degrades over time due to formation of scar
tissue around the electrodes. An applicable compromise are electrocorticography (ECoG)
signals, recorded from the surface of the brain or the dura mater, which still contain
detailed information usable for BCI [16, 17, 18, 19, 20, 21]. Further requirements for an
implantable interface are long-term stability (up to several decades), bio-compatibility,
and persistence against humidity. From a functional point of view these systems need to
provide a high spatial- and temporal resolution to measure and/or change the neuronal
activity patterns in the human brain.

To achieve the functionality of neuro-prostheses, complex data analysis procedures need
to be applied in real time [16, 22, 5, 23, 24]. With current technology, it is not possible
to perform this computationally extensive data processing with processor units placed
inside the human body. The main reason is the high amount of heat produced by the
processors, which would lead to tissue damage [25, 26, 27]. Therefore, a neuro-prosthesis
needs to consist of two parts: an implanted device with recording (and optionally stim-
ulation) capabilities and an external analysis/ control system. However, a tethered data
transmission between the two parts has an inherent risk of infection [28, 29, 30], cerebral
fluid loss, as well as bio-mechanical problems in chronic applications. A solution of this
problem is a wireless connection between the implant and the base station. This would
allow to fully embed the implant inside the human body without physical connections.
It would be even more advantageous if the implant could completely be placed inside the
human skull (e.g. for keep the fluidic environment around the brain intact). Following
these requirements, the implant has to be capable of exchanging data wirelessly with an
external base station through skull, fat, fluids and skin. In order to avoid components
with limited lifetimes like batteries, a wireless power link has to provide the energy for
the implant.
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Although there are approaches for wireless data exchange [31] (using various technologies,
e.g. Ultra-Wide Band [32], Offset Quadrature Phase Shift Keying [33], Amplitude Shift
Keying [34], Frequency Shift Key Modulation [35], RF backscattering [36] and RF ID
Technology [37]) and energy transmission systems [38, 39, 40], especially for neuronal
implants, these systems are not available on the market. Thus, it is nearly impossible
for other groups to obtain and (re)use these systems. We would like to support other
researchers in the field by providing them with a wireless energy- and data interface,
and thus push their research and enable them to focus on other functional parts of their
system. Therefore, we present here a neuro-implant for sub-cranial implantation that is
based on commercial off-the-shelf (COTS) components.

Our system is targeted for animal experiments. In the long run, we aim at a system
for human medical applications. In 2010 we started to design an application specific
integrated circuit (ASIC) [41] which was able to communicate with the undocumented
analog-digital-converter on the Intan Tech bio-signal amplifier RHA 2116 for collecting
electrophysiological data. Later we improved this ASIC design by upgrading it with
support for the wireless module ([42, 43]) which we present here in detail. Those first
prototypes were based on large and fully rigid FR-4 PCBs. Because it is important that
the implant follows the curvature of the brain [44], we started preparation for integrating
all components on an industry grade flexible PCB-foil.

Here we present our wireless module and its base station for exchanging data and providing
energy to the implant. For the first time, we make all design files (circuit diagrams, board
designs, test boards, firmware and software) available as open source. Furthermore, we
re-implemented the functionality of our ASIC as a firmware for a Microsemi IGLOO nano
FPGA. We also wrote a second IGLOO nano FPGA firmware for supporting the newer
Intan RHD2132 with better ADC performance, instead of using the undocumented ADC
features of the Intan RHA2116. Both firmwares are also part of the open-source package
as well as test boards for the Microsemi nano FPGA and the Intan RHD2132. This
allows us to present a design which can be built completely from commercial off-the-shelf
components and make it available as open-source. Since the Microsemi nano FPGA and
the Intan RHA/ RHD are all available as bare dies, the size of the system is suitable for
an implant usable for human medical applications.

In parallel, we investigated how our ASIC with our open-source wireless module and Intan
RHA2116 operates on an industry grade flexible PCB-foil. We analyze the results and
report which problems arose. Furthermore, we are examining the temperature distribution
around the implant in measurements and simulations.
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Figure 1: Concept of the implant with its base station.

Results

System concept

Our design goal was to build a system that can be implanted completely subcranially,
which is supplied with energy via a wireless link (without any implanted batteries) and
which exchanges data wirelessly with an external base station. Figure 1 shows the func-
tional blocks necessary for such a system.

An array of electrodes serves as an interface between the brain tissue and a set of integrated
analog signal amplifiers with band-pass properties. After the amplification of the neuronal
signals, analog-digital converters digitize the incoming signals and generate several digital
data streams. An Application Specific Integrated Circuit (ASIC) filters these data streams
according to user-defined specifications and merges the parallel streams into a single
one, optimized for a minimal bandwidth. The condensed data stream is re-packed into
transmission packages and transmitted via an RF transceiver data link to an external base
station. The base station receives the data packages and unpacks, checks, and repacks
them. These newly built packages, optimized for fast processing by 32 or 64-bit CPUs, are
sent via Ethernet to an external PC for further use (e.g. visualization and analysis). From
the external PC, the base station receives instructions about the user defined parameters
for the data processing of the implant and transmits them to the implant to set the desired
configuration in the ASIC. Beside the bi-directional wireless data exchange, the implant
collects energy from an inductive wireless power link for power supply.

The wireless module

The presented wireless module incorporates two connected sub-segments: One which
supplies the implant wirelessly with energy and the other one for wireless communication.
Figure 2 visualizes all the necessary components plus its external counterparts. Figure 3
shows a PCB realization of that block diagram with a total size of 20 mm x 20 mm x 1.6
mm. In the following section, both functional blocks are described in detail.
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Figure 2: Overview of the components required for realizing the presented system concept
of the wireless energy and data link.

Figure 3: Realization of the wireless data / power module on a 0.15mm thick FR4 board
(20x20x1.6mm3) with its hand wound coil for the inductive power link.

The power supply: The concept of the wireless power link was designed based on the
Texas Instruments (TI) bqTESLA system [45]. TI designed these products for wirelessly
recharging mobile devices, e.g. MP3-players and smart-phones, based on the QI standard.
Consequently, the corresponding components - designed for an integration into a mobile
device - are highly miniaturized and designed for high efficiency. In theory, this link
can deliver up to 5 Watt [46]. Between the energy receiver and transmitter an ongoing
communication regulates the properties of the wireless energy link dynamically and load-
dependently. The frequency of the power link is dynamically regulated between 110 kHz
and 205 kHz [46] and depends on the amount of the consumed power on the secondary
side (implant). This regulation, in combination with a fixed resonance frequency of the
receiver, helps to prevent harvesting too much energy on the implant site, that would lead
to unnecessarily heating up the implant as well as the surrounding tissue.

On the primary side (base station) we used the bqTESLA wireless power evaluation kit
(bq25046EVM-687) as a off-the-shelf low-cost power transmitter [46]. On the secondary
side, a BQ51013YFFT IC as power receiver is part of the design [47]. This chip-sized ball
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grid array (BGA) contains the means to communicate with the external energy trans-
mitter, rectification of the inducted AC wave, and voltage regulation. The receiver IC
delivers a 5V power rail. If this IC is used, then two important design aspects have to be
considered: 1.) Many of the required ceramic capacitors on the side of the secondary coil
need to be rated for 50V. As a result, the capacitors with larger capacitance are too thick
for some target areas of implantation. Therefore, it is necessary to split them into several
smaller parallel capacitors. 2.) Due to the small distance between the balls of the BGA,
it was not possible to contact important pads in a typical fashion. Thus, it is necessary
to place via holes underneath the pads for the BGA package. This requires the via to
be filled up and closed with a planar surface, which is quite demanding for the (external)
manufacturer of the printed circuit board (PCB).

The 5V output of the power receiver IC is too high for operating the RF transceiver and
other active components. Thus, a highly efficient and very small DC/DC converter is
required. We applied a Torex XCL 206 step-down micro DC/DC converter with built-in
inductor which only requires two small capacitors as external components [48]. In the ex-
pected operating point, it works with an efficiency over 80%. Due to its switching nature,
PI filters, for smoothing the DC supply rail, are advised on the consumer side. However,
additional capacitive loads exceeding 50µF, by e.g. PI filters and block capacitors for the
ICs, cause problems and loads beyond 70µF stopped the DC/DC converter from working
at all.

Data Transfer: The wireless data transfer is based on Microsemi ZL70102 transceivers
[49]. The RF transceiver operates in the Medical Implant Communication Service fre-
quency band (MICS, 401 - 406 MHz) and is commercially available for medical applica-
tions including implants. The transceiver establishes a bi-directional wireless link, using
4-FSK or 2-FSK mode of operation. In order to achieve a high data rate, especially for a
continuous data streaming, it is necessary to provide a large extra memory for the con-
troller, which is operating the transceiver via SPI on the implant site. This is necessary
because pauses of unknown origin in the data transfer of up to 80 ms may randomly occur.
The transceiver is available as a chip-sized BGA.

The ZL70102 requires several external components. Among those is a 24 MHz clock. We
used a very small (2 mm x 1.6 mm x 0.7 mm) CMOS 3.3 V clock from NDK (NZ2016SA)
[50]. Besides driving the transceiver, it also provides a clock signal for other components
(e.g. ADCs, microcontroller, FPGAs or ASICs (e.g. [51]) for data processing).

Between the RF transceiver and the antenna (circular loop antenna with 5mm diameter),
we installed an adaptive antenna-matching circuit with a SAW filter (RF Monolithics
RF3607D, 403.5 MHz SAW filter) [52]. The adaption of the matching circuit is accom-
plished by using two tunable capacitors which are part of the ZL70102. Those are opti-
mized by the transceiver automatically. The SAW filter is one of the largest components
(3.8 mm x 3.8 mm x 1.0 mm) on the implant.

For the base-station module outside the body, a solution based on a Microsemi ZL70120
was designed [53]. Among other components, this Microsemi RF transceiver base station
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Figure 4: Base station RF transceiver module based on a Microsemi ZL70120 module and
an in-house designed antenna. The rest of the base station has to be connected via SPI
to this module.

module contains a ZL70102, antenna-matching circuit and a clock. We designed a simple
PCB for this module and added a 50 Ohm rectangular loop antenna to it (see Figure 4).
Via SPI, we operated this transceiver base station module with a FPGA using a custom
firmware. This FPGA is part of a board (Orange Tree ZestET1) with Gigabit Ethernet
connectivity [54]. This allows to stream the data from the implant to an external PC via
TCP/IP. The base station also supplies the implant with control sequences from the PC
using the other direction of communication.

The implant prototype

Figure 5: Implant prototype: (a) Reference electrode, (b) 128 electrodes, (c) 8xRHA, (d)
ASIC, (e) 24 MHz clock, (f) RF-transceiver, (g) Inductive energy link

The described system for the implant was realized (see Figure 5) with 128 gold electrodes
in an area of 9mm x 17mm with a diameter of 0.4mm for the individual electrodes and a
center-to-center electrode distance of 1.4mm on a flexible 50µm thick PCB-foil (DuPont
Pyralux AP). This PCB-foil has a size of 34mm x 79mm. It can be folded at 3 lines
(see Figure 6) to further reduce the overall size of the implant as shown in Figure 7. All
electrical components are placed on one side of the two-layered PCB-foil with respect to
the polyimide process developed for future implementations. The weight of the implant is
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Figure 6: The implant is based on a flexible substrate, which allows it to be folded along
three lines. This reduces the required space for implantation

Figure 7: Kalomed Prototype with bending radius of 0.64mm (left) and coil for power
supply (right)

1.72g, and it fits into a volume of 4mmx24mmx32mm excluding the power-link coil. The
coil has a square shape with a side length of 22mm and a thickness of 2.2mm.

Analog front-end: For the analog front-end Intan RHA2116 chips are used, which
include the neural amplifiers and an analog-to-digital converter (ADC). Eight of these ICs
are part of one implant, where each RHA provides 16 analog channels. The RHA contains,
beside bio-signal amplifiers with a band-pass filter, an ADC that allows sampling all its
individual channels at 10 kHz and 16 bit resolution. The integrated ADC is documented in
a previous version of the RHA2116 data sheet. This part of the description was removed
from the actual documentation. For newer designs, it is suggested to use the Intan
RHD2132. We chose to operate the ADCs with their full 10 kHz sample rate which allows
to reuse this setup with intracortical electrodes for recording action potentials. These
ADCs generate 8 parallel data streams with a total of 20.48 MBit/s. On the other end of
the data processing chain, the RF transceiver is only capable of transmitting up to 0.515
MBit /s.

ASIC: The 8 ADC data streams are collected by an in-house designed digital ASIC [42].
Besides serializing these parallel inputs, the ASIC has the capability to significantly reduce
the incoming data according to user-defined parameters such as sample rate, resolution
and the selection of electrodes which are included in the recording. Since the performance
of the implanted electrodes can degrade with time, all the parameters can be changed
dynamically during runtime in order to utilize the limited RF data bandwidth in an op-
timal way. Thus the implant uses the bi-directional nature of the RF link for receiving
user-control commands from the base station during operation. The ASIC also controls
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the RF transceiver (e.g. initializing the connection and its parameters) as well as provides
and caches the outgoing data (embedded into a suitable and compact transmission pro-
tocol) for achieving a high and continuous data transmission rate via the SPI connection.
Furthermore, the ASIC contains integrated test-pattern generators, which can be used
instead of the real measurement data from the Intan RHA2116 ICs.

Table 1: Usage of the IGLOO nano FPGA resources for an implant with Intan RHA or
RHD analog front-end. A large portion (up to 33% in the case with RHAs) of these core
resources are by optional virtual RHAs/ RHDs for testing purposes.

Resource Usage (RHA) Usage (RHD)

CORE 5859 of 6144 (95%) 5236 of 6144 (85%)
IO (W/ clocks) 38 of 68 (56%) 38 of 68 (56%)
GLOBAL (Chip+Quadrant) 6 of 18 (33%) 6 of 18 (33%)
PLL 0 of 1 (0%) 0 of 1 (0%)
RAM/FIFO 8 of 8 (100%) 8 of 8 (100%)

Nano FPGA: Taking the data processing structures from the ASIC, we re-implemented
the design in a way suitable for Microsemi IGLOO AGLN250 nano field programmable
gate arrays. This allows us to provide a complete neuro-implant development system as
open source solution exclusively using off-the-shelf components. Besides implementing
the firmware for the Intan RHA analog-front end, we also wrote a second version for the
newer Intan RHDs. Table 1 shows the required resources on the FPGA. The bare die
of the FPGA is only slightly bigger (3.22mm x 3.48mm) compared with the ASIC but
has a larger buffer for avoiding data loss during data transmission pauses. However, this
component is still small enough to be used on a neuro-implant development system with
the same size. In future designs of our implant development prototype, the nano FPGA
will allow us to develop and test new versions of the data processing while keeping the
test system in realistic dimensions. We provide the RHA and RHD based nano FPGA
firmwares as well as tests boards for the Microsemi nano FPGA and the Intan RHD2132
as open source.

Problems with flexible PCBs: Due to problems with the quality of the PCB foils
(shorts created by shifts between the layers of the foil during production), the implant
prototype used for testing was equipped with only one instead of all 8 amplifier arrays.
This has an effect on the power consumption (each RHA array consumes 5mW in this
scenario) and consequently on the number of available channels for measurements. For
testing different configurations, the 16 physically available measurement channels can
be combined with the internal RHA test pattern generators in our ASIC. Besides the
missing RHA arrays, the prototype supports all functions of the final implant, especially
the complete wireless power and data transmission.
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Performance of the wireless module

Examples boards with the wireless module were produced on 150µm thick FR4 and 50µm
thick flexible PCB-foil substrates. Both versions were tested successfully. However, due
to the required very fine resolution (50 µm strip width and distance between elements)
of the PCBs, most of the flexible PCB-foils were produced with faults (e.g. shortcuts).
Fortunately, we were able to fix some of them by manual cutting and grinding.

Figure 8: Wireless operation distances and according frequencies and primary voltages.

Power link: For the secondary side, we used a handwound coil (see figure 3) with 20
mm x 20 mm size and 18 turns of litz wire (20 x 0.05 mm individual wires). For the
power-receiver IC we used, the maximum distance is defined by the Qi standard (version
1.0) with 5mm. This requires that the secondary coil is placed between skin and skull
with two thin wires through the skull. Our transmitter can bridge a distance of 4.5mm
with the described coil (L=10.5uH, Q=1). With a modified receiver coil we reached
5.5mm (L=15uH, Q=0.76). Figure 8 shows results of a range measurement, and how the
base station adjusts the field strength and frequency depending on the distance and the
inductance of the receiver coil. The figure shows no significant difference in the operation
point (frequency and voltage) for air or meat as transmission medium. The received
rectified power was set to 100mW for the experiment.

An update of the Qi standard [55] was announced, which will work over distances between
12mm and 45mm while being backwards compatible with the existing receivers. Further-
more, the ’Rezence’ standard from the alliance for wireless power was also announced
to have similar properties. These new standards are based on magnetic resonance which
permit thick obstacles between the primary and secondary coil. It is expected that an
update of our implant to these new standards will allow to place the secondary coil also
under the skull.

10

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/036855doi: bioRxiv preprint first posted online Jan. 15, 2016; 

http://dx.doi.org/10.1101/036855
http://creativecommons.org/licenses/by/4.0/


Figure 9: Data transfer rates for different distances.

Data link: We measured data transfer rates with the implant prototype in wireless
operation (Figure 9). For the measurement we configured the implant to sample 52
channels at 2kHz and a resolution of 10 bits, which generates a data stream on the implant
with 1.12 Mbit/s while the Microsemi transceiver shows a limitation of 515 kbit/s. This
guarantees a full TX-buffer and allows to measure the maximal transmission performance.
For each measurement condition (medium and distance), a set of 10 data tracks was
recorded, each containing 100,000 sample sets. The duration of the transmission for each
set was measured to reach the transmission rate.

For simulating in-vivo-measurements, we placed the implant prototype between two 1 cm
thick stacks of sliced meat. We also tested the implant in air and observed comparable
transmission rates at similar distances. Most important is the result that the data can
be transmitted with almost maximum transceiver speed through 10mm of meat. A data
transmission was possible up to 47 mm, but with a strongly reduced data rate due to
the re-transmission of corrupted packets. Also under good conditions some samples are
lost, because the Microsemi transceiver is not optimized for real time transfer but for
good data integrity. The reason for the data loss lies in the limited amount of buffer the
ZL70102 owns. In the case that this transceiver’s buffer is filled with a constant data rate,
even small transmission pauses will fill the ZL70102 buffer completely in a short amount
of time. Data needs to be discarded if it can not be buffered elsewhere on the implant.
Time-stamps are included by our implant electronics to reconstruct the timing, even if
packets are lost.
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Figure 10: The complete system and measurement setup. A plastic box (a) is filled with
Ringer Solution to simulate the fluids around the brain. The red and the black wire (b)
are dipped into the fluid to apply a test stimulus between the electrodes and the reference
electrode of the implant prototype (c). Underneath the implant lies the receiver antenna
which is connected (d) to the base station receiver board (e). An adapter board (f)
connects the receiver to the base station FPGA board (Orange Tree ZestET1) (g), which
provides the data via Ethernet. The implant is powered using the TI bq25046EVM-687
kit board (e).

Performance of the analog front end

For a rms-noise test, we analyzed the signals from a measurement, where the electrode
array of the implant prototype was placed in Ringer solution (Figure 10). Since many
of the externally produced PCB-foils had defects, we decided to use a repairable sample
with only one Intan RHA2116 chip with 16 working channels. The prototype implant
(with one RHA) was working in wireless operation, sampling 16 channels with 1kHz and
a resolution of 10 bits. The rms noise of the measurement is 7.9µV. Figure 11 shows
the spectrum of the system noise. Figure 12 shows what sinusoidal waves look like when
recorded with the analog front end of the implant.

Tests in a real-world application: First successful tests of the electronics on non-
miniaturized, non-wireless test boards were conducted in an animal experiment. Our
goal was to test if the functionality can be demonstrated under real-world conditions.
We restricted our experiments in line with the 3R-rules (reduce, refine, replace) to the
recording sessions required for that purpose. In a first test we connected the system via
cables to electrodes which were already implanted in an awake behaving animal (Macaca
Mulatta) for a series of other neuro-research experiments. These implanted electrodes
[44] were based on the substrate which we planned to use for the next generation of our
flexible ECoG-implant.
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Figure 11: Noise spectrum for open inputs in Ringer solution.

We tried to repeat this with the miniaturized and fully wireless implant on the flexible
substrate. We soldered cables onto the individual electrodes of the implant. Similar to the
first test, we plugged the implant into the connector of a pre-implanted surface electrode
grid. In contrast to the first test, a problem with the system was revealed. In the case
that the reference electrode of wireless system was not grounded, the amplitude of the
recorded signal was strongly reduced and the neuronal signal nearly vanishes from the
recorded time series. The reason for this behavior is not fully understood yet.

One hypotheses is that this configuration allows the wireless power supply to induce an
additional, strong 100kHz sinusoidal signal on top of the neuronal signal at the inputs of
the amplifier. These combined signals are now larger than the threshold voltages of the
Intan RHA’s ESD protection diodes of the analog input channels. As result, the protection
diodes open a direct connection to electrical ground which eradicates the signal.

In tests without animals, measurements with an oscilloscope of voltages differences be-
tween the RHA’s analog inputs and its reference revealed such voltages. A larger distance
between the RHAs and the energy transmitter/ energy harvesting coil may reduce the
problem or switching to a different kind of wireless energy link system might also remove
this problem. We were able to confirm that the wireless power supply still functions if the
distance between the receiver and the coil is increased to even 10cm. It has to be noted,
that this problem could also be an artifact of the several tenth of cm long cables soldered
onto the electrodes for allowing the implant to be connected to the already implanted
electrode-grid. These cables could possibly act as an antennas which allow the induction
of these voltages. However, before we could determine reason of the problem or find a
cure, the financial support for the project ended.
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Figure 12: Received signals for a 40 Hz test signal. The amplitude depends on the
distance between the stimulating wire and the channel electrode. The different channels
are depicted in offset steps of 400 µV.

Estimated power consumption of the implant

Table 2: Estimated power consumption of the implant’s components.
Component power consumption

Microsemi ZL70102 transceiver 17mW (measured)
ASIC up to 9.44mW (measured)
Clock quartz 16.5mW (measured)
RHA amplifier arrays 5mW (each IC) (measured)
DC/DC-Converter 8.5mW (for 1 RHA), 15mW (for 8 RHAs), (data-sheet)
TI inductive power receiver 10-40 mW (data-sheet)

An estimate for the main electrical loads of the components of the implant are shown in
table 2. Combined with the losses of the power supply ICs, the fully equipped implant
will dissipate about 110mW-140mW of power, while the intensively tested prototype with
one RHA consumes about 73mW-103mW (both are presented in the next section). For
safety reasons, the power receiver IC is programmed not to accept more than 200mW to
limit the production of heat in a case of failure.
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Examining the implant’s thermal properties

Tissue Heating: A major concern for neural implants is the heating of the tissue, as
proteins start denaturation at approximately 40◦C. The IEEE Standard [56] states a
brain temperature 40.5◦C as critical for a heat stroke. The tissue temperature close to
the implant is affected by different heat sources. Most critical is the joule heating of
the implant electronics due to the high power densities (e.g. 17mW in 9mm3 for the
transceiver IC). Due to the folded structure of our implant, all active components are
embedded inside the implant, which strongly increases the contact area to the tissue.

Another heat source are eddy currents from the inductive field of the power and data
transmission in the conductive tissue and in the implant. The eddy currents are expected
to be negligibly small, according to the stable operating point shown in Figure 8. Heating
by the field of the data transmission in the MICS-band can also be neglected. The whole
RF transceiver only consumes 17mW of power, only a percentage of it is really transformed
into field energy.

Finally the joule heating of the base station coil, which has contact to the skin above the
implant, increases the temperature of the tissue. A simple countermeasure could be a
cooling system over the implant attached on the outside of the body.

Figure 13: Left: Simulated heat-up. Right: Measured temperature increase after power
on.

Simulation of joule heating: As our prototype is equipped with only one amplifier
array instead of eight, we used a simple FEM model (COMSOL) to evaluate the heating
of the final, fully assembled and folded implant. We used the outer dimensions shown in
Figure 7 and applied a heat source of 100 mW distributed over the volume of the implant.
We chose 100mW for the simulation as an estimation for the typical power dissipated by a
fully equipped implant in operation. Actual values might be lower or higher depending on
the number of active RHAs and the actual efficiency of the TI inductive power receiver,
but they do not change the magnitude of the resulting temperatures. Figure 13 shows
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Figure 14: Temperature distribution after 300 seconds, calculated with a simple FEM
model (COMSOL). Rectangle shows the 24mm x 4mm implant cross section dimensions.

the heat-up curves at the surface of the implant and at different distances within living
tissue. The temperature at the surface in thermal equilibrium is calculated to be 0.25K
above the starting temperature of 37◦C, in a sphere with 10cm diameter and a border
temperature of 37◦C. Additionally, Figure 14 shows a temperature map taken after 300
seconds, with the 24mm x 4mm cross section of the implant positioned in the center.

Measurement of total heating for the prototype: In addition to the simulation,
we made an experiment to observe the heating in wireless operation. The measurement
setup is shown in Figure 15. The implant prototype was isolated with a thin PCB-
foil of plastic wrap against a liquid medium (Ringer solution) with a volume of 150ml.
For the temperature measurement we used a thermocouple and contacted it to different
parts of the implant. Based on the simulation, we expected the surface temperature to be
saturated after a few minutes. Longer test periods are not expected to provide meaningful
results, because in contrast to a living subject, the surrounding tissue (in our case 150ml
fluid) would heat up more and more because of the small volume and lack cooling by
blood perfusion.

The black curve in Figure 13 shows a rapid joule heating of the coil in air, while the
heating saturates at approximately 0.1◦C in water (red) and at even lower values in the
conductive Ringer solution (yellow). Close to the ASIC, which is covered under a 0.75mm
plastic housing and has a power dissipation of 9.44mW , we also measured a temperature
increase below 0.1◦C.

In contrast to the low heating at the ASIC, the blue curve shows the temperature on top
of the unencapsulated RF transceiver IC, which has a power dissipation of 17 mW. In
Figure 7, the transceiver is located behind the saw filter, which is ca. 1mm higher than
the transceiver IC. Thus, after folding, the transceiver IC has no direct contact to the
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Figure 15: Measurement setup for testing the heating up of the implant.

tissue. In our experiment, the PCB-foil was not folded and we saw a strong temperature
increase at the contact between the IC and the liquid medium. The ground planes in the
substrate are expected to distribute the thermal power more equally to the outer implant
surface.
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Discussion

This article starts with the question if it is possible to design a fully wireless neuro-
implant and it’s external base-station such that the results can be reused by other groups
as starting point for their own technology development activities. As an answer, we
present a system concept which can be transferred into real hardware by using only
commercial off-the-shelf components. This hardware realization is explained in detail and
its performance reported. Furthermore, an analysis concerning the heat development of
the implant was conducted in measurements and simulations. Finally, all design files
(circuit diagrams, boards, firmwares, and software as well as documentation concerning
the development process) are made open source in the supplemental materials. We deliver
two versions of firmwares for the Microsemi IGLOO nano FPGA. One was written for the
Intan RHA2116, using undocumented ADC functionality, like the ASIC we used for the
measurements with the flexible implant prototype and other firmware version which was
optimized for using the newer Intan RHD2132.

Comparison with other neuro-implants: As a very important key-technology for
future neuro-prostheses systems, building implantable systems is getting more and more
popular. In contrast to other ’typical’ systems, with our 128 channel system for measuring
ECoG signals we developed an implant that can be placed completely under the skull and
avoids energy storage elements (e.g. batteries) with a limited lifetime. We are convinced
that it is very high important for long-term stability and safety that the skull can be
closed completely again after implantation. This keeps the natural barrier against germs
intact and prevents cerebral fluid leakages [28].

Another approach taken by [57] is to replace parts of the skull directly with the implant
or components of the external base-station [58] but this leaves the skull constantly open.

A completely different approach was chosen by [59, 35]. They developed a 100 channel
recording unit (LFPs and action potentials) which can be implanted into the torso like
a pacemaker. The system uses RF (3.2/3.8 GHz) and infra-red light for the wireless
data transmission. The power is provided by a Li-ion battery and can be recharged with
2MHz electromagnetic waves. A similar approach is presented in [60]. There they use
Bluetooth for exchanging data, a battery, and titan casing for recording from two times 64
channels. Such a battery has a limited lifetime which is clearly below the required several
decades. This strategy can’t be transferred to implants that will be installed under the
skull. One major problem of neuro-implants, in comparisons e.g. to pacemakers, is that
after some time scar-tissue or even bone encapsulates the part of the implant that is
situated within the head. Without damaging the brain tissue, replacing the implant
or parts of it (e.g. batteries) becomes very problematic. [61] presents a two times 32
channel recording system. This system is designed such that each of the 32 channels are
implanted into separate cortical areas. It has inductive power supply and infra-red based
data transmission. Part of the system is implanted under the skull and connected with
wires to a data processing unit which is installed under the skin. [62] is an earlier version
of [61], which again seems to be the predecessor of [35].
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As equipment for research applications, we find a recording system for 32 channels using
frequency-shift keying (FSK) modulation in the 4GHz range for data transmission and is
powered by a battery [63]. This system is large (38mm x 38mm x 51mm in an aluminum
enclosure) and installed outside of the subject. Also a lot of research effort went into the
development of recording systems which can be put e.g. on top of freely moving or even
flying insects. [64] demonstrates a four channel system that uses a 900MHz RF data link
and a battery for providing power to the system. The weight of the system is very low.
[65] presents a similar system which is able to record 10 channels with 26.1K samples
per second and 4 additional channels with 1.63k samples per second. For this system a
battery is not required because it harvests energy from RF electromagnetic waves. [66]
shows a device that can apply electrical stimulation to the central nervous system of a
large beetle and control it.

The development of a fully implantable system based on the Utah needle array is shown in
[67, 68, 69, 70]. This system contains individual threshold-based action potential detectors
for all its 100 channels. It sends the detected spikes via a 900MHz data link to its base
station. However, the system was tailored for recording the timing of action potentials
and not of ECoG signals. For only one selected channel, the device is able to deliver
the recorded time series with 15.7k samples per second. Energy is also provided via an
inductive link. Also it is not yet clear if the approach with these needle arrays will work
over several decades [71]. Our own experience shows that recording with surface electrode
mats are much more long-term stable than with needle arrays.

In [72] the development of an integrated circuit for recording 128-channels with on-the-fly
spike feature extraction and wireless telemetry is presented. It uses for data transmission
UWB (ultra wide band with 90Mbit per second) and has no solution concerning the power
supply. [73] presents an all-in-one chip solution for 32 recording channels. It is able to
collect power via a 13.56MHz inductive link. Data is transmitted via 900MHz FSK coded.
In [74] a complete chip-set for a 100 channel recording system is shown. It has an wireless
data transfer unit and harvests energy via an inductive power link.

Concerning the individual components of such an implant [75, 76, 77] like e.g. bio-signal
amplifiers [78, 79, 80], analog-to-digital converter [81, 82, 83], data processors [42, 84],
wireless data transfer sub-system [85, 86, 87, 88, 89, 90, 91, 92, 61], or energy harvesting
[93, 94] a large number of publications exist.

Many of those components, system parts, and system designs show remarkable perfor-
mances but they are not freely available. The implant we present has lower specs com-
pared to these highly optimized solutions but our system can be re-build by everybody
and then be modified to your heart’s content.

Bio-compatibility: One of the remaining obstacle preventing us from applying the sys-
tem in-vivo, are long-term stable bio-compatible coatings which can protect the electronics
from the harsh fluidic environment in the body. This coating has to stay intact over many
years and has to be very thin and flexible. We designed the implant to be completely
coated in a first processing step. In a second step, the coating must be removed from the
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electrodes and then the implant is folded at three folding lines for reducing the required
area. Therefore, it is required that the coating is not only flexible but has a good adhesion
to all the components. We expect that the adhesion between the coating (e.g. Parylene C)
and the used material for the PCB-foil (DuPont Pyralux AP and insulating resist) might
cause problems. This requires to change the substrate of the PCB-foil to something more
suitable (e.g. Parylene C as well) and will hopefully give us the opportunity to reduce the
thickness of the substrate for improving the bending radius of the PCB-foil. Currently,
we are testing several promising candidates for coatings and substrates [43].

Electrical stimulation: Another goal for the future is to add comprehensive stimulation
capabilities to the implant for allowing electrical stimulation of the brain tissue (e.g. for
visual cortical prostheses). Our ASIC has the capability of stimulation. However, it can
only create simple 3.3V uni-polar stimulation pulses (unregulated in current strength)
on 8 extra pads. This was our very first step of including stimulation into a design.
For the implant on the flexible substrate, we decided not to connect these outputs to
the electrodes. Instead we focused our efforts [95] on developing better current pumps
optimized for the high-voltage electrical stimulation with up to ±90V and ±10mA [96],
which is required for ultra high density surface grids with very small electrodes. In the
case of stimulation with such high voltages, it is important to protect the sensitive analog-
inputs of the recording system. High voltages can destroy the bio-signal amplifier which
have a working range of several around 100mV. Even in the best case scenario, these
amplifiers are overloaded and this will cause severe recording artifacts for many 10ms.
In addition, the ESD protection diodes of the amplifiers’ input channels will kick in and
burn an undefined amount of current from the stimulation pulse. A solution against this
problem lies in fast analog switches which can withstand such high voltages while keeping
the distortion of the sub-mV neuronal signals as low as possible. We are also working on
this kind of optimized switches for this special application [97].

Possible improvements for the design: Especially two aspects of the implant need
improvement in future: 1.) By exchanging the power harvesting to magnetic resonance
technology (the new Qi standard or the Rezence wireless power charging standard), the
maximal operating distance between the primary and secondary coil can be increase to
up to 40mm. In the actual state, our implant requires an energy harvesting coil between
the skin and outside of the skull which is connected with two small wires to the implant
under the skull. 2.) The effective data transmission rate is limited to 515kbit/s. For many
applications this transmission rate is too low. We looked into the possibility of optical data
transmission by infra-red light. Together with the BIAS (Bremen institute of applied beam
technology), we tested the feasibility of this idea by sending high-frequency signals through
meat, skin and bones. We expect that data transfer rates of over 100MBit/s should be
possible with optimized micro-optics and a vertical-cavity surface-emitting laser (VCSEL)
on the implant as well as a suitable external receiver. If code division multiple access
(CDMA) is used, even several implants can send information on the same wavelength.
For the channel from the external base-station to the implant, the slow RF connection
still can be used or also replaced by an IR data transmission (which is more challenging)
on a different wavelength.

20

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/036855doi: bioRxiv preprint first posted online Jan. 15, 2016; 

http://dx.doi.org/10.1101/036855
http://creativecommons.org/licenses/by/4.0/


Ex-vivo tests have proven the feasibility of our system design. However, during first in vivo
functionality tests, we ran into problems (for details see results) which never were seen
during lab-bench tests. As a result, the amplitude of the measured neuronal signals nearly
vanishes when the reference of the Intan RHA2116 and the base-station doesn’t have a
low impedance connection. Such a cable is not a requirement we want for a wireless
system. The reason for this is still unclear and maybe an artifact of the very special
measurement setup (e.g. long cables soldered onto the electrodes of the flexible implant
as a connection to an additional electrode which was already implanted in the animal) or
the close distance between the energy coil placement and the rest of the implant. After
solving this problem, real in vivo tests need to be performed in order to verify the system
performance under real measurement conditions. This information is required to estimate
the development steps that have to be taken for making the system safe enough for using
it for human patients.

In summary, the actual state of the implant is not yet ready for implantation, especially
not for long-term implantation in medical applications. Several problems have still to be
solved in future development. Nevertheless, we deliver an open source tool kit completely
based on commercial off-the-shelf components. This collection contains circuit diagrams,
board designs, FPGA firmwares, and software which allows interested researchers to de-
velop their own wireless neuro-implant without starting from scratch.

Materials and Methods

All experimental procedures using animals were approved by the local authorities (Der
Senator fuer Gesundheit, November 11 2014) and were in accordance with the 3R-priciples,
the regulation for the welfare of experimental animals, issued by the federal government of
Germany and with the guidelines of the European Union (Council Directive 2010/63/EU)
for care and use of laboratory animals.

Supplementary

In the supplemental data we present the design files for the firmwares, software and PCB
designs as open source as well as documentation concerning the development process.
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