
Chapter 15 
Continuous, Discrete Diagrams 
and Transitions. Applications 
in the Study of Language and Other 
Symbolic Forms 

Wolfgang Wildgen 

Abstract Peirce has shown that diagrams and diagrammatic reasoning are important 
in science and human thinking. Diagrams in science are like a shorthand for complex 
systems. There exists a choice between continuous and discrete diagrams. This choice 
has dramatic consequences for scientific modeling. The diagrams Peirce had in mind 
are founded in his logic of relations, whereas our focus is on topological and dynamic 
diagrams. Three fields of application are considered: technical diagrams in the context 
of architecture and engineering, mathematical diagrams, and diagrams in the study 
of language, visual and musical performance. Structural stability under deformation 
and variation enhances these diagrams’ abstraction power. Our analysis prioritizes 
continuous diagrams and qualitative dynamics (e.g., catastrophe theory). Discrete 
equivalents are considered based on vector calculus; this enables the construction of 
a cellular automaton. More specific applications concern the semantics of verbs and 
the coherence patterns of narrative texts. 

15.1 The Notion of a Diagram and Diagrammatic 
Reasoning 

The proper starting point for a treatise on diagrams is the work of Charles Sanders 
Peirce. Diagrams are, in his view, mental images, thoughts, or signs on paper, on a 
blackboard, or actually on a computer or electronic media. In his classification of 
signs, diagrams first point to the relation between the sign-body (the “representamen” 
in Peirce’s terms) and its object. Peirce distinguishes three types of such relations: 
icon, index, and symbol. Diagrams stand primarily in an iconic relation to their 
object, i.e., mediating some similarity or shared quality.
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Moreover, diagrams may, in some cases, be the (causal) result of a natural process, 
e.g., in the case of a photograph or an electronic scan that makes visible selected 
features of an object; in this case, indexical cues are added. Finally, diagrams may 
even use rules (i.e., conventions) in their establishment and reading, thus involving 
a symbolic relation. Nevertheless, the dominating category in diagrams is the iconic 
one, i.e., diagrams are (in Peirce’s view) a kind of icon. 

Every picture (however conventional its method) is essentially a representation of that kind. 
So is every diagram, even although there is no sensuous resemblance between it and its 
object, but only an analogy between the relations of the parts of each. 

Diagrams stand in an iconic relation to their objects; this means that between the 
appearances, the quality, the features of the object, and the (diagrammatic) sign, a 
(partial) mapping exists, which helps to identify the object, to which the sign refers 
or to select the sign which can “stand for” the object. Two further aspects have to 
be considered. First, the sign body can be simple or complex. Thus a single non-
composed sign is simple, and a compound sign, in the case of language, a morpheme 
(composed of phonemes), a word, a phrase, a sentence, or a text, are complex (to 
different degrees). A diagram has, in most cases, different components, i.e., it is 
complex, and specific relations exist that contribute to the meaning of the complex. 
These relations may be implicit. In this case, they are either specified by features 
of the components or are chosen from a limited set of general-purpose relations 
(cf. for nominal compounds, [26]: 135–138). In visual communication, the relevant 
components may be lines, surfaces, colors, etc.; the relations may be geometrical or 
due to the characteristics of color space. In musical composition, the components 
may be the single tones of a melody and their relations in a tonal system or the 
musical themes and their relations in a sonata. 

Peirce makes a further distinction in his triad: qualisign, sinsign, and legisign. We 
will mainly consider the case of sinsigns, e.g., spontaneous, single signs of iconic 
nature; in the language, we call the sinsign a token; if it is repeated and becomes 
a routine association, we call it a type. In the visual field, a picture may stand for 
different views of the same object or a recurrent category of objects, and then it 
is a type. The diagram as a legisign follows some rule of construction or for its 
reading. The aspect of construction will be important in the following. Peirce gives 
an outstanding example of using diagrams scientifically, the story of Kepler and his 
discovery of the laws of planetary motion. 

His admirable method of thinking consisted in forming in his mind a diagrammatical or 
outline representation of the entangled state of things before him, omitting all that was 
accidental, observing suggestive relations between the parts of his diagram, performing 
diverse experiments upon it, or upon the natural objects, and noting the results. Peirce [14]: 
255. 

In the following, we shall focus on three types of diagrams: 

1. Technical diagrams in the context of architecture (building) and engineering 
(machines), 

2. Mathematical diagrams,
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3. Diagrams in communication sciences (language, visual and musical perfor-
mance). 

Technical Diagrams 

Diagrams are of common and central use in the technical sciences, e.g., in architec-
ture, engineering, geography, and astronomy. A long history of millennia has given 
rise to elaborated technics of diagrammatic planning and control in the realization 
of technical artifacts. The use of diagrams in house-building is self-evident. The 
proportions and the measures can be fixed by a diagram of the ground- or the floor 
plan; others may specify the distribution of windows and doors and the sequence of 
floors, including the roof (its shape, inclination, etc.). We can assume that Egyptian 
architects already used diagrams for such purposes. Their usage normally presup-
poses an unwritten and un-pictured routine of technical realization. In the case of 
churches in medieval Romanic art, the use of diagrams on paper was minimal (if not 
inexistent). Mostly practices transmitted orally and by enactment were sufficient. The 
master builder used view lines following specific angles, rules of proper proportion, 
and knotted ropes to establish right angles (e.g., the “druid rope” with 12 equidistant 
knots). Applying the law of Pythagoras, right angles could be constructed. The ground 
floor was marked on the flattened surface scheduled for the church.1 Gothic cathe-
drals were such refined technical masterpieces that diagrams on paper and models for 
standardized stones or arches had to be used. Figure 15.1 shows a page in the port-
folio of Villard de Honecourt (who lived around 1200) and the detailed delineation 
of the façade for the Strasbourg-cathedral (first half of fourteenth century).

In the case of this cathedral, we know that the upper part does not follow the 
plan, i.e., in the technical realization of the plan, new considerations came to the 
foreground, or the plan was rather a program designed to persuade the clergy or 
urban authorities and was not coercive for later master builders who completed the 
cathedral. Beyond artistic criteria, a building must also be statically correct, i.e., 
the building should crumble neither during the construction nor centuries later. This 
important aspect had to be evaluated based on experience with previous constructions, 
which crumbled or resisted the forces of gravity.2 

In constructing a machine, e.g., a racing car, the visual design may be important 
for the public. Primordial is that the car is competitive; it must run fast and without 
dropout and breakdown. Suppose the case of architecture, physical laws (statics) 
and the dynamics of wind and frost must be considered. In the first case, the racing 
engine must fulfill motor motion, aerodynamics, and stability criteria for a change in

1 See Boscodon [3]. The association “amis de Boscodon” reconstructed the techniques of medieval 
constructions starting from the abbey of Boscodon in France (founded in 1132). The first diagram, 
called “Gabarit” was traced on the gravel of the place prepared for the construction of the abbey. 
The dominant geometrical components were a circle, rectangles (two squares), and different angles 
(right angle and angles contained in the golden section, based on the pentagon). 
2 The Catalan architect Antoni Gaudi devised special inverted models of the roof in his cathedral 
“Sagrada Familia” in Barcelona, where small sandbags simulated the forces of gravity. Such a 
three-dimensional model can be called a diagram, if we follow the definition given by Peirce. 
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Fig. 15.1 Detail of the book of sketches by Villard de Honnecourt (first half of thirteenth century) 
and a draft of the facade of the Cathedral of Strasbourg (fourteenth century)

speed or direction. Therefore, the diagram has to consider more than visual appear-
ances. It must respond to criteria of stability and dynamics valid for the object under 
construction. 

Modern technologies use computer-aided design (CAD) to build diagrams for 
technical purposes. Dynamical aspects, e.g., the aerodynamics of a racing car, can 
be simulated and diagrammatically represented using coded colors for simulated air 
resistance values. The code colors are symbols, but the distribution of colors on the 
surface of the racing car is a diagram (Fig. 15.2).

Diagrams and Biological Archetypes 

“Archetypes” refer to Plato and his dialogue Timaeus, where he pleads for a geometric 
foundation of natural laws and even laws of the human soul. Plato’s treatise’s favorite 
geometrical building blocks are triangles, regular surfaces, and regular solids (the 
five Platonic solids). A long tradition of Platonism revived in the Italian Renais-
sance by Marsilio Ficino (1433–1499) and Giordano Bruno (1548–1600) reached a 
culminating point in the work of Johann Wolfgang von Goethe (1749–1832)and his 
“Morphologie überhaupt” (General Morphology; cf. [24]). Goethe became famous as 
a poet, novelist, and the author of dramas but in his “Farbenlehre” (Lessons on color) 
and the morphology of plants and vertebrates, he conceived the idea of “Urbilder” 
(primary images) underlying the huge variability of plants and their stages of devel-
opment and those underlying the spinal column, including the cranium. Decennia, 
before the publication of Darwin’s treatise, Goethe tried to project the shapes of
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Fig. 15.2 Computational fluid dynamics (CFD) technology to improve aerodynamic performance

plants and vertebrae on an underlying primary image, e.g., the shape of a leaf or a 
spine. In the case of plants, he even suggested that a specific plant he had found in 
Palermo comes near to such a primary image. The idea of an (imagined) archetype 
is an example of a diagram that mirrors the constant and basic features of a class 
of biological forms. The unfolding of the biological diagram (archetype) to a multi-
plicity of specific morphologies can be observed in the development of plants and 
bodies. After Darwin’s treatise of 1859, the morphological dynamics in evolutionary 
time and growth processes could be accessed scientifically. Corresponding mathe-
matical tools have been proposed in dynamic systems theory, and we will use these 
tools in the following. In modern differential topology, which is a generalization and 
elaboration of Greek and premodern geometry, the elementary catastrophes (cuspoids 
and umbilics) and the three symbolic genres correspond to regular surfaces (polygons 
~ cuspoids), double-faced surfaces (dihedra ~ umbilics), and regular (Platonic) solids 
(polyhedra ~ symbolics); cf. ([28]: 49–56) and Wildgen [34]. The consequences for 
theoretical biology after Thom’s book of 1972 [19] are not the topic of this paper. 
We shall rather pursue his proposals for language and semiosis. 

Mathematical Diagrams 

In his article “Logic as Semiotic”, Peirce mentions “icons of the algebraic kind” 
([13]: 106). He gives us as an example two algebraic equations containing letters, 
subscript numbers, and mathematical symbols (+, ·, and =). The letters are symbols, 
the subscript numbers indices, but the equation and the arithmetic operations (+, 
·) form a diagram, i.e., an icon “in that it makes quantities look alike, which are 
analogous to the problem. Every algebraic equation is an icon, insofar it exhibits,
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employing the algebraic signs (which are themselves, not icons), the relations of the 
quantities concerned.” (ibid.: 107). 

Geometrical figures are visual diagrams insofar as lines, surfaces, intersections, 
parallels, and angles refer to possible real-world entities. However, they are also 
mathematical diagrams because they exhibit formal properties and basic laws, as 
those proved by Euclid, Archimedes, and many others throughout history. Moreover, 
a visual graph can be formulated algebraically in algebraic geometry, cf. Descartes’ 
geometry. In this sense, the visual mode is not a necessary feature of diagrams, 
although it is helpful in the case of applications (and teaching). 

In catastrophe theory, the calculus we shall apply in the second part of this article, 
the diagrammatic nature of the algebraic equations is more intricate. We take as 
an example the first compact elementary catastrophe called the cusp. The potential 
(gradient) is V = x4/4. As this basic dynamic system is unstable under deformation, 
the classification theorem of Thom has derived a universal unfolding, which is struc-
turally stable (cf. for details [23, 25]). The universal unfolding is V = x4/4 + ux2/2 
+ vx. It is a four-dimensional structure with the parameters: P (potential), x (internal 
variable), and u, v (external variables). The equation can be expressed graphically if 
we consider the first and second partial differentiation (relative to x): V' = x3 + ux + 
v, and: V'' = 3x2 + u. The critical points of the system are found if both derivations 
are equal to 0. 

A standard procedure for solving these equations leads to Eq. 27v2 + 4u3 = 0. It 
has the shape of a semi-cubic curve depicted in Fig. 15.3. 

We get an overview of the shape of the four-dimensional catastrophe called the 
cusp if we add to selected points in the graph depicted in Fig. 15.3 small two-
dimensional pictures of the values in the plane (P, x) at these points (Fig. 15.4).

In this representation, we see the line of bifurcation, which separates the fields with 
one or two attractors (i.e., minima between the cusp line). As in Peirce’s example, 
the parameters: P, x, u, and v are symbolic units. The operations + , ·,  = , 2, 3, 4, and 
the two levels of partial differentiation V', V'' are diagrammatic units. Moreover, the 
underlying classification theorem implies a larger “machinery” of diffeomorphisms 
and other topological operations in the definition of structural stability. Without this

Fig. 15.3 The graph of the 
Eq. 27v2 + 4u3 = 0 in two  
dimensions 
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Fig. 15.4 Overview graph 
of the four-dimensional 
catastrophe; in the center: 
space (u,v), in the small 
pictures of the periphery: 
space (P, x)

background, the algebraic equations would be rather trivial, and the far-reaching 
applications of catastrophe theory (see for an overview [17]) would not be possible. 

In the next section, both geometrical (topological) features of diagrams and the 
dynamics referred to in diagrams will be a central concern. 

Diagrams in Linguistics and Musical Analysis 

Suppose we follow Peirce’s consideration of diagrams in mathematics. In that case, 
algebraic grammars (cf. the tradition of generative grammar) and logical grammars 
(cf. the tradition of Carnap and Montague) are diagrammatical representations. They 
also show the two faces of geometrical representations, the visual and the formal. The 
phrase structure “trees” of sentence analysis and their formal (algebraic or logical) 
representations are manifestations of this duality. In traditional grammar (from Aris-
totle, through Roman (stoic) grammar, to medieval and modern school grammar), 
geometrical aspects are not pertinent but useful for didactical purposes. However, 
these grammars reduce language facts to linear combinations of phonemes (letters 
in early grammar) or morphemes and words (to morphology and the lexicon in 
modern terms). After 1930 and mainly in the second half of the twentieth century, 
syntax became the main issue of linguistics. Bloomfield, Harris, and linguistic behav-
iorism first denied the study of meaning scientific relevance. These “fathers” of 
modern linguistics considered meaning in language to be inaccessible. Later, Richard 
Montague saw meaning as a problem of logic (of possible worlds), and in Cognitive 
Linguistics (Langacker, Talmy, Lakoff), it was adapted to psychological or cogni-
tive criteria. Although Langacker introduced the term “spatial grammar,” visual and 
geometrical diagrams were only considered easy didactic tools (cf. for a systematic 
analysis [29, 30]). In catastrophe theoretical semantics (cf. [23]), the spatial and 
dynamic nature of the entities referred to in linguistic utterances is not disregarded. 
Diagrammatic representations of meaning must be spatial and dynamic, even if the 
geometry and dynamics differ from those practiced in physics and mechanics. It
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Pitch distance 

Time progression 

Fig. 15.5 The counterpoint movement as a type of point-to-point dynamic of differences and 
correspondent larger and smaller tensions 

is qualitative and not quantitative, topological and not metrical. It retains abstract 
features of space and time. This transition was the message of René Thom’s semio-
physics and his dynamical model of sentence meaning and the meanings of narratives; 
cf. Thom [19, 21] and Wildgen [23, 28]. We shall develop this argument and the topo-
logical and dynamic diagrams techniques in the second and third sections. Peirce’s 
diagrammatic logic was an early excursion in the same direction Cf. Peirce ([15]: 
vol. 4, book IV: §§ 347–584). 

In visual communication, shapes must be recognized under different angles, at 
different distances, and under changing light; i.e., visual recognition must be struc-
turally stable under deformations. The same is true for musical gestalt, e.g., a melody. 
It may appear in different tunes, played on different instruments by different artists. 
Again structural stability under deformation is the critical feature. In Wildgen ([33]: 
175–179), a dynamic diagram of the musical gestalt called “fugue” (cf. Bach’s “The 
Art of the Fugue”) is proposed. We can only present a short sketch here, 

The basic movement of the first and the second theme (Dux and Comes) is pursuit/ 
escape. The counterpoint technique plays an important role; it literally means point 
(note) versus point (note). It is a profile of differences (see [11]: 120, Fig. 15.7). 
There is an asymmetry because one voice is considered the leader or reference (base) 
voice, and the other is dependent on it and acts as a contrast. Before Bach’s work, this 
diagram applied to the cantus firmus and the discant voice (see [10]: 244). There are 
many restrictions to the allowed/reasonable versions of the counterpoint (Fig. 15.5).3 

15.2 Topological and Dynamic Diagrams of Meaning 
in Language 

In the following section, some results exposed in Wildgen [28] and later research are 
summarized and used to specify the structure and use of topological and dynamic 
diagrams. In the first stage, continuous diagrams of meanings and the adequate 
ontology necessary for proper interpretations of these diagrams are introduced. In

3 For dynamic diagrams in visual semiotics see Wildgen [31, 35]. 
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the second stage, discrete diagrams of the spatial and temporal characteristics of 
(verbal and sentential) meanings are defined, and the cellular automata framework 
is sketched. This analysis shows the transitions of catastrophe theoretical semantics 
to discrete and combinatorial semantics (e.g., in feature and logical semantics). 

From Dynamic Models to Diagrams 

The construction and use of diagrams in catastrophe theory can conserve basic 
topological and dynamic characteristics and forget metrical details, variations in 
objects, or events under consideration. The crucial result in this field is the theorem 
by Whitney. It says that locally (in the environment of a point), we can only find 
three types of points (all other types become identical to these if perturbed): 

(a) regular points (Morse points); they do not qualitatively change under perturba-
tion; we may say that they have a static identity (of self-regulation), 

(b) fold-points (a frontier line between a stable and an unstable domain appears), 
(c) cusp-points (two stable attractors conflict and one may appear or disappear). 

Thom’s classification expands this list in the domain of real analysis, and Arnold 
[1] presents a list for the more general case of complex analysis. First, however, it 
is important to note the basic difference between static and process stability in the 
present context. 

a. Static stability and the unstable points in its neighborhood. 

The prototypical (local) systems are the potential functions: V = x2 (one can add a 
function that contains more quadratic terms and constants). The gradient: V' = 2x = 
0 defines the singularity of the unfolding. The stable system V = x2 has a minimum 
(V'' = 2 > 0) as its singularity. The dual of this function is V = −x2, which is the 
prototype of an unstable singularity, V' = −2x = 0; V = −2 < 0; it is a maximum. 
Figure 15.6 shows the two dynamical systems and, as analogs, two physical systems 
(pendulums with damping). 

Fig. 15.6 Basic dynamical systems
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Fig. 15.7 Configurations of 
conflict 

The diagrams in Fig. 15.6 show the graph of the equations V = x2 and V = -x2 

and physical analogs, the normal and the inverted pendulum. 

b. Process stability. Most dynamical systems are not structurally stable; they degen-
erate under small perturbations. Nevertheless, they can have a stable evolution 
called “unfolding” under specific conditions. These special cases can be called 
highly ordered instabilities or catastrophes. The minimum number of unfolding 
parameters gives the measure of degeneracy, and it is called the co-dimension. 
Figure 15.7 shows the conflict lines between stables regimes for the compact 
catastrophes: cusp (germ: V = x4), butterfly (germ: V = x6), and star (germ: V 
= x8). 

An even simpler picture is given by a diagrammatic representation of the stable 
attractors in the unfolding (⊕ =  minimum, ◯ =  maximum, — = vector field). 

cusp (A3): ⊕ — ◯ — ⊕ 
butterfly (A5): ⊕ — ◯ — ⊕ — ◯ — ⊕ 
star (A7): ⊕ — ◯ — ⊕ — ◯ — ⊕ — ◯ — ⊕ 
In the family of umbilics, the notion of a saddle (●) must be introduced (if we 

add a quadratic function, e.g., y2 to the family members, maxima become saddles; 
cf. Gilmore [7]: 119f). 

cusp (A3) + y2: ⊕ — ● — ⊕ 
The consideration of saddle connexions becomes necessary in the derivation of 

four-valent diagrams in the case of the elliptic umbilic (D−4) (Fig. 15.8). 

Fig. 15.8 Dynkin diagram 
of the elliptic umbilic
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Fig. 15.9 Diagram of the 
compactified elliptic umbilic 

If the elliptic umbilic is made compact, attractors ⊕ close the saddle connections. 
In this case, we obtain the maximal substructure with four minima (Fig. 15.9). 

This diagram is the basic type of a two-dimensional configuration with four attrac-
tors (cf. [25]: 204–212). The configuration with 1, 2, and 3 linearly arranged attrac-
tors and the configuration of four attractors in a two-dimensional (x–y) plane will be 
fundamental concepts in the following sections. 

If we consider linear paths in an unfolding, i.e., in the phase spaces sketched 
in Fig. 15.7, we can classify types of processes. In this chapter, only the most 
basic types will be used. The specific diagrams of such paths are called archetypal 
morphologies by René Thom. They are diagrammatical abbreviations of explicit 
dynamical descriptions. For example, in Fig. 15.10, the diagrams called EMISSION, 
CAPTURE, and (bimodal) CHANGE are derived from the catastrophe set of the cusp. 
The diagrammatic simplification eliminates the lines of (unstable) maxima, and the 
circles symbolize the bifurcation points (type ‘fold’: V = x3). 

Fig. 15.10 The derivation of archetypal diagrams from the “cusp”
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Based on these conventions of diagram construction, a small list is defined (orig-
inally twelve members, in Wildgen [26], this list has been enlarged but remains 
moderate). 

15.3 The Interpretation of Dynamic Diagrams in Semantics 

The starting point of catastrophe theoretical semantics were articles [18] and book 
chapters (in Thom [19]; in English 1975) which used an intuitive interpretation where 
forces (vector fields and attractors) were interpreted as animate agents (animals and 
humans). In the prototypical situation, one agent acts on an entity with less agency 
(matter, solid objects, living beings dominated by the agent). For example, we will 
show a scenario in which three agents interact. In Thom’s list of archetypes, it is 
called the diagram of “giving”. Later in this chapter, the situation with four entities 
will be considered. In catastrophe theoretical semantics, it is called the diagram of 
“sending”. 

The intermediate, symmetric scene is the most unstable in the three-agent scenario. 
Both agents concentrate their control on one target, and their control must be coordi-
nated to secure a smooth exchange. Thus, if A releases his control before B takes the 
object, or if A holds the object tight although B seizes it, the character of the process 
is dramatically changed and degenerates to “A loses, drops the object” or “A and B 
compete for the object C”. Thus the unstable state of exchange is the “junction” of 
the process, the point of maximum co-ordination of the controls. On the other hand, 
it can be a metastable state if the object gains some autonomy, for example, if it lies 
on a table between A and B such that it is within reach of both but is not strictly 
controlled by either of them. This configuration corresponds to the transfer diagram 
(see [25]: 185). 

In Fig. 15.11, we distinguish five major phases separated by the sub-diagrams 
called “EMISSION”, “CAPTURE”, and “TRANSFER” (transition) between HAVE1 
and HAVE2. The phases can be further subdivided by the dominant perspective (M1 
or M2). The line of TRANSFER separates HAVE 1 and HAVE 2.

Concerning the major agents M1 and M2, the diagram of giving is in disequilib-
rium. Agent M1 finishes “poorer”, and agent M2 “richer”. A symmetric configuration 
is found in the diagram of mutual exchange, which corresponds to a closed loop in 
the underlying control space of the catastrophe called “butterfly” (A5). Figure 15.12 
shows this structure.

In the first phase, M1, we may call him the patient, gets object 1 and “wins”, thus 
creating an asymmetry of possession; in the second phase, the attractor M2, now 
the patient, gets object 2 and “wins”. From a more general perspective, this figure 
represents two movements of a simple game.
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Fig. 15.11 The phases of the TRANSFER diagram

Fig. 15.12 The energetic cycle of transfer

15.4 Ontologies Underlying the Interpretation of Dynamic 
Diagrams 

Peirce distinguishes in his early treatise on categories (1867/68) two major domains: 
BEING (or the center of consciousness) and SUBSTANCE (the immediately real). 
Three further subdivisions appear as moments of the basic move from BEING to 
SUBSTANCE4 : 

• Quality (reference to ground); cf. Peirce ([15]: § 1.555) 

This oven (substance) is black (quality). 

• Relation (reference to a correlate) 

Peter is taller than John (correlate) 

• Representation (that which refers to ground, correlate, and interpretant) 

[These signs express] “always some relation of an intellectual nature, being either 
constituted by the action of a mental kind or implying some general law.” (ibid.: § 
1.563).

4 Peirce looks back on a long tradition since the categories of Aristotle. Prominent philosophers 
preceding Peirce who tried to elaborate the scheme of Aristotle were Kant with his table of categories 
(in the “Kritik der reinen Vernunft”) and Hegel in his “Wissenschaft der Logik”. 
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Peirce argues that these categories mediating between SUBSTANCE and BEING 
have an irreducible semiotic status. The three categories exemplify the concepts of 
Firsthood, Secondhood, and Thirdhood. This basic ontological distinction is parallel 
to the concept of quantitative valency applied in the following sections, i.e., diagrams 
can point to one entity (Firsthood), two entities (Secondhood), or three entities 
(Thirdhood). We shall add a more complex configuration with four entities (“Fourth-
hood”). The categories introduced by Peirce reappear as Quality (and Motion), Action 
(Interaction), and Internal Action/Interaction in our classification. 

In philosophy, many different ontologies have been proposed; finally, a general, 
absolute, independent subdivision of ontological domains was abandoned. Never-
theless, humans (and animals with a degree of conscience) operate with ontological 
distinctions in specific domains. Thus the lexicon of nouns and verbs in different 
languages shows the effect of ontological categorization. Our proposal for the seman-
tics of human languages can be considered an operative categorization without 
metaphysical ambitions.5 Therefore, we shall only mention two further proposals: 
Rudolf Carnap distinguishes in his “Der logische Aufbau der Welt” [4] four types 
of objects (structures, events, states, qualities) ordered on a linear scale defined by 
epistemological presupposition: 

1. Objects in the own mind, 
2. physical objects, 
3. objects belonging to other minds, 
4. abstract objects (cf. culture, society, religion). 

In the framework of ecological psychology, initiated by Gibson [6], the underlying 
scale has the steps: (1) the psychophysical transition from the phenomena to the mind, 
(2) processes external to the individual mind, including those in other minds, and 
(3) internal (perceptual, mental) processes. A major problem in ecological semantics 
concerns the place of qualities (qualia). We presume that this is a domain that tran-
scends this scale insofar as it emerges from stratum 3 (internal action) due to external 
processes (on strata 1 and 2). The level of action and interaction is the fully deployed 
domain and thus manifests as the center of this stratification. This level was chosen 
in the example given above, the diagram of “giving”. Based on such (and similar) 
proposals, we suggest a list of ontological levels, which primarily is a heuristic tool 
leading to different types of interpretations of diagrams. 

The Basic Ontological Stratification 

Four major stratified domains are distinguished: 1. locomotion in space, 2. change 
in a quality space, 3. external action/interaction, and 4. internal action, which are 
further subdivided:

5 Cf. as an example the onto-semantic analysis of the lexicon of German verbs in Ballmer and 
Brennenstuhl [2]. 
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1. Locomotion in space–time 

1.1 Interlocal locomotion (outside the neighborhood relative to some landmark). 

1.2 Locomotion in the system’s neighborhood and its periphery, e.g., the movement 
of the limbs relative to a body, is called local. 

2.1 Change on one categorical, mainly bipolar scale (in one dimension of the space 
of qualities). 

2.2 Change in the phase-space of a dynamical system (from one phase to the other). 

2.3 Change on a quantitative scale (at the ordinal, interval, or metrical level of 
measurement). 

3. Action and interaction (the process in an action or interaction scenario) 

3.1 External (physical, chemical, biological) action of an agent on an object or another 
(secondary) agent. 

3.2 Change of possession. 

3.3 Communicative action. 
Action and interaction stand ontologically between physical locomotion (1), 

which governs parts of them, and internal (intentional) processes (4), which direct 
the action. The effect is often a change of quality (2). These processes are typically 
mixed, i.e., the different roles in an action/interaction scenario operate on different 
strata. 

4. Internal action/interaction (with internalized objects and targets) 

4.1 Perceptual action (in the sensory system). 

4.2 Mental action. This process is at least partially self-referential (in the brain). 
In domain 4, the processes are strictly internal within a body or a cognitive system; 

we cannot observe them directly in other people. However, these processes have 
perceivable traces (in the individual’s behavior), and we can linguistically label such a 
process and tell the event to our audience. The processes of domain 4 also have another 
peculiar property. They are the basis of the modality scale (cf. [28], Chap. 5.3). 

For every domain, we may distinguish maximum diagrams and partial diagrams. 
However, only the maximum diagrams will be enumerated to illustrate the depen-
dence between domains and diagrams. 

A Short Description of the Principal Domains 

Although we use traditional labels from case theory (cf. [25], Chap. 1, [32]), the 
content of these labels is independent of recent traditions. We systematically depart 
from classical case theory because our primary criterion is dynamic configuration.
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The possible dynamic configurations are nested and hierarchically structured. We 
distinguish: 

1. primary agents (they are the foundation of the process and do not disappear in 
the process); 

2. secondary agents (they appear and disappear in the process). 

The dynamic “cases “defined by the configurational criterion are called: 

(a) A (Agent)—P (Patient) (primary roles) 
(b) I (Intermediary)—B (Binding force) (secondary roles). 

The label I summarizes a plurality of forces that are linearly intermediate between 
A and P. Depending on the domain of interpretation, it can be a path (interlocal 
locomotion), a metastable phase on a quality scale (quality space), an instrument 
(action space) or an object (change of possession). 

Role B (binding force) has a rather variable realization. Configurationally it is an 
intermediary force parallel to the primary sequence A–I–P. Therefore it calls for a 
second dimension in state space (cf. [23]: 85–92). It can be parallel to A (a helper of 
the agent), P (a beneficiary of the event), and I (a secondary instrument, a medium 
of exchange). 

The Domain: Locomotion in Space–Time 

Locomotion may be simple (linear) or include the transition through a frontier or 
several linearly arranged frontiers (on a path). The maximum configuration is one 
with three roles: A (agent), P (patient), I (intermediary force). A possible elaboration 
contains one or more domains on the path through which the intermediary force goes 
when it comes from the source and before it reaches the goal. Partial configurations 
have one or two roles (attractors) (Fig. 15.13). 

The Domain: Change in a Quality Space 

The configurations are similar to those described above, the difference being that 
partial diagrams are more frequent and elaborations with a third (intermediate) quality 
are rare. We can introduce two pairs; A versus non-A (privation of A) and A versus

Fig. 15.13 The maximal diagram of locomotion and partial diagrams 
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CA (bimodal proportional opposition of A to its complement CA). In the first case, 
we consider only a partial scenario while the complementary state is undetermined. 
In a proportional opposition, both qualitative states are present; the change from one 
quality to the other is moved into the foreground. 

1. Privation 

Stop to be A (become non-A), 
begin to be A (stop to be non-A); 

2. Proportional 

Stop to be A (leave the domain A and become CA, i.e., change from A to CA), 
begin to be A (leave the domain CA and become A) (Fig. 15.14). 

We can easily see that the first diagram is a part of the second one. 

The Domain: Action and Interaction 

The maximum configuration is the diagram of transfer (or of instrumental action, 
which is the symmetric variant of it). Figure 15.15 shows the two diagrams. 

The two variants have the same thematic grid (A–I–P).

Fig. 15.14 Basic processes in a quality space 

Fig. 15.15 The maximal diagrams of action and interaction 
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Agent Patient 

Transitory agent / object 

Mediating force 

Fig. 15.16 A section of the elliptic umbilic and the diagram of mediated transfer (“sending”) 

The scenario where four forces interact (cf. the diagram “star” in Fig. 15.7) corre-
sponds in sentential semantics to a configuration of four dynamic “cases”. The fourth 
agent is a binding force that enables a specific interaction between the other forces. It 
was labeled B at the beginning of this section. Figure 15.16 represents the elaborated 
diagram, which refers to a two-dimensional behavior space. The two-dimensional 
space of internal variables (x,y) has three attractors, A, B, and C, that correspond to 
the basic triad of dynamic “cases” A–I–P; the central attractor D stands for the case 
B that mediates the transition between A and P via the transitory agent I. The graph 
to the right is only an incomplete representation of this dynamically very complex 
situation. 

The fourth participant can be interpreted as a helper (i.e., a secondary agent 
in the tradition of narratology) or a beneficiary (a secondary patient). The elabo-
rated configuration can be represented in a three-dimensional diagram regarding our 
topologic-dynamic description.6 The four-valent scenario can be fully realized in the 
scenario of instrumental sending: 

Example: (i)  Albert (A: source) sends Imela (I: secondary agent) with British 
Airways (B: helper) to Paris (P: goal). 

The intermediary force can also be an object exchanged or a primary instrument. 
Examples: 
(ii) Andrea (A) sends a letter (I) to her friend (P) by airmail (B). 
(iii) Annabel (A) gives an interview (I) to the press (P) by telephone (B). 
(iv) Anne (A) propels the arrow (I) towards the tree (P) with a bow (B). 

The Domain: Communicative and Perceptual Action 

The configuration is similar to those already discussed. We can distinguish between 
emissive actions, where perceivable events are produced, and receptive actions, where 
such events are received. If both partial diagrams combine, we have a transfer of 
perceivable units, signal transmission; if this transmission is mutual and reciprocal,

6 Cf. Wildgen ([23]: 86–92) and Wildgen ([25]: 204–222). 
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B = Code Message 1 Message 2 

Sender 1 

Sender 2Addressee 1 

Addressee 2 

Fig. 15.17 The basic diagram of communicative action 

we have sign communication. A binding force is added if a symbolic instrument, a 
system of conventional signs, is put to work. Language as a system is such a symbolic 
instrument. The roles defined by their place in the configuration have somewhat 
different content. Figure 15.17 shows the basic configuration. 

If we take a closer look at the dynamics of the event, we notice important differ-
ences between communicative action (domain 3.3) and the basic domains 3.2 (change 
of possession) and 3.1 (physical action): 

– The sender does not lose the message if he emits it. Rather, he sends a duplicate; 
similarly, the receiver creates an analogous message using the information he 
receives and his knowledge. 

– The intermediary role B (the binding force, the code) is a necessary constituent for 
the transfer, which could not occur without it. Furthermore, this force is very rich 
and complicated. Whereas the Agent and the Patient are individuals, the language 
system has a social, supra-individual, and, therefore, abstract nature. 

In perception, the object received can be either a sign (cf. the partial interpre-
tation of receptive action in 3.3) or a percept (some natural input to the sensory 
organs). The sensory inputs continually entering our sensory organs are the back-
ground of sign reception.7 At an intermediate level, our attention is focused on a 
specific percept; we see, hear, and smell something specific. The topological scenario 
is that of CAPTURE. 

These basic derivations from external processes become even more prominent if 
we analyze what is going on in mental action. 

The Domain: Mental Action 

The new phenomena at this stratum are:

– The semantic closure of the mind on itself. This feature was emphasized by 
Maturana and Varela [9] and other theoreticians of the brain. 

– The self-referential nature of mental processes.

7 Cf. Petitot ([16]: Chap. 6: Attractor syntax and perceptual constituency). 



350 W. Wildgen

Fig. 15.18 The basic 
diagram of mental action 

– The overwhelming importance of cognitive contexts, i.e., memory, knowledge 
disposition, attitudes, personality traits, and others. 

These basic characteristics are diagrammatically represented in a specific form of 
the maximum schema given in Fig. 15.18. 

The different phases of the process are labeled: 

e: egressive (emission): the mind produces an idea, an emotion, an attitude, 
i: ingressive (reception): the mind receives, retains, and stabilizes an idea, an 
emotion, an attitude, 
s: self-referentiality: the mind produces and receives (from itself) an idea, an 
emotion, an attitude. 

The diagrams labeled e and i are only partial pictures of s, which is complete. 
The actual processes can become part of the permanent structure of the mind, and 

parts of the permanent structure can, in turn, be actualized. This mode is called the 
resultative (r). The pure form of the resultative phase is the stock of persistent ideas 
and emotions in mind. 

15.5 Discrete Dynamic Diagrams Using Vector Calculus 

The minimal dimensionality of space–time is given by one dimension of time 
and another of space. A one-dimensional vector field can represent motion in one 
dimension, whereas the time dimension remains implicit. Throughout this section, 
vectors on one space dimension are used for the construction of discrete diagrams 
of processes in space–time. 

If a vehicle moves in a plane, one can note the direction and the length of the 
movement by a vector -> w (w = way). For example, if the distance is measured in 
km and direction with a compass, a displacement of 6 km in the direction North-East 
can be described as in Fig. 15.19. On the other hand, suppose neither the direction 
nor the specific amount of movement is of interest. In that case, the two-dimensional 
frame (the plane) can be reduced to one-dimensional, and the unit vector of length 1 
replaces the vector of length /w/.

A basic feature of the vector notion is that the factor time is implicit because 
the vector describes the difference between the place of the moving element in t0 
and t1. If the amount of motion is restricted to unit-amount 1, a constant movement
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Fig. 15.19 The vectorial 
representation of motion 
(a) and its reduction to the 
unit-vector (b)

inside every cell of our discrete system is given. In this simplified version, one can 
only distinguish between rest (the vector length is zero) and uniform motion (the 
vector length is 1). If two vectors, w1 and w2, in a plane are considered, the sum and 
the difference between w1 and w2 can be computed geometrically by applying the 
parallelogram law. 

A model of the whole system may be based on (continuous) differential equations. 
However, one can simplify the model by radically replacing it with a model with a grid 
of discrete steps and with self-similarity, i.e., every piece of the system is identical to 
all the others, and the same rules apply to every piece of the system. This allows very 
quick and highly frequent applications of the same rules to all system elements. This 
type of mathematical model is called a cellular automaton (CA). Toffoli characterizes 
the CA as follows: 

In the cellular-automaton model of a dynamical system, the “universe” is a uniform checker-
board, with each square or cell containing a few bits of data; time advances in discrete steps 
and the “laws of the universe” are just a small look-up table, through which at each time 
step each cell determines its new state from that of its neighbours; this leads to laws which 
are local and uniform. Such a simple underlying mechanism is sufficient to support a whole 
hierarchy of structures, phenomena and properties. ([22]: 119) 

Compared to a continuous dynamic model the following transformations are 
necessary: 

a. continuous space and time are replaced by a discrete grid, 
b. the system/state at each point remains a continuous variable of the same kind 

(e.g. real, complex, vector) as in the original equation, and 
c. derivatives are replaced by differences between state-variables that are 

contiguous in space and time. ([22]: 121) 

If, for example, we take two vectors as described above, the zero-vector (state) 
and the unit-vector (say /ui/ = +  1), we have two basic values since every cell of the 
system may have the value of either 1 or 0. Graphically we can represent the zero 
vector as a blank cell and the (positive) unit vector as a shaded cell. To illustrate 
what a cellular automaton can describe, we build a model of expansion/reduction
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of a narrative on this basis. The starting point is a matrix and a local environment 
defined by the neighbors which touch it at one point (if not along a line that separates 
the cells). 

One can imagine a game where several narrative units (clauses containing an 
event or action) are given. Every participant must complete sequences of events and 
eliminate narrative units without proper followers. The rules of this game can be 
stated in terms of a CA restricted to specific environments. In our example, the set 
(8,4) of units on the diagonal from upper left to lower right will be submitted to 
special restrictions. 

Rules of the “narrative” game: 

1. zero-vectors (the cell is 0) are not affected by the game, 
2. if a cell is 1 and its relevant neighbors (in the set (8,4)) are 0, make it zero 
3. if a cell is 1 and one of its neighbors (8,4) is 1, change the other neighbor to 1. 

Figure 15.21 shows different phases of play with a random starting condition. 
One can observe how, in (2), all narrative units without narrative continuity are 

eliminated; only the basic sequence is completed until the borderline of the matrix is 
reached. This example suggests that the temporal evolution of a narrative plot (e.g., 
if a story is retold repeatedly) can be modeled with the help of a cellular automaton. 

Example of a diagrammatic description of a narrative episode 

The unit vector allows for the addition and multiplication of vectors (these operations 
are diagrammatical, as the comments of Peirce in Sect. 1 have shown). In Fig. 15.22, 
these operations are illustrated. These operations allow for constructing a list of basic 
uni-valent, bi-valent, and tri-valent diagrams. They constitute the vocabulary of a 
cellular automaton describing processual sequences, their major regularities, and 
restriction (quasi-a grammar of processes in space–time). Cf. for details Wildgen 
([27] and [28]: Part two: The Meaning of Oral Narratives). 

Based on the notion of unit-vector shown in Fig. 15.20, a set of basic diagrammatic 
units (the first stratum of the vocabulary of narrative syntax) can be defined. All units 
occupy a unit cell (length 1 × 1), i.e., a unit-square with a vector length on time (t) 
and space (r) = 1 are defined. For t, only positive integers are possible (time is not 
moving backward). In the first elaboration, half-steps are allowed with values of t 
(0, 1/2, 1). For r, we distinguish positive values (motion of the protagonist) with the 
values (0, 1/2, 1) and negative values (motion of the antagonist) with the choices: (0, 
−1/2, −1). This simplification leads to the vocabulary of basic diagrams represented 
in Fig. 15.23.

Description: 

Diagram 1: Positive motion/action r (protagonist) 

Diagram 2: Transition from a positive motion/action to a stable state 

Diagram 3: Transition to the opposite direction 

Diagram 4: Transition between two partial, positive motions/actions
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Fig. 15.20 Global and local 
neighborhoods and two 
states of the automaton 

Fig. 15.21 A simple narrative game 

Fig. 15.22 Illustration of the operation of an “addition” of unit vectors and a “multiplication” with 
a constant

Diagram 5: No motion on r, a stable state 

Diagram 6: Transition from a state to a positive motion/action (protagonist) 

Diagram 7: Transition from a state to a negative motion/action (antagonist) 

Diagram 8: Transition between two independent stable states 

Diagram 9: Negative motion/action on r (antagonist) 

Diagram 10: Transition from a negative motion/action to a stable state 

Diagram 11: Transition from a negative motion/action to a positive one
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Fig. 15.23 Basic set of univalent vector cells in a diagrammatic grammar of narratives

Diagram 12: Transition between two partial, negative motions/actions. 
The set of 12 basic diagrams is exhaustive for this space–time matrix’s chosen level 

of differentiation. In Wildgen ([28]: 165–171), two further sets, the set of bivalent 
and the set of trivalent diagrams, are defined. 

Based on these sets of diagrams, a cellular automaton for narratives can be 
defined, in which central notions of a narrative syntax such as adjacency, coherence, 
and narrative skeleton can be defined. For example, in Wildgen ([28]: 196–200), a 
complex diagram describes the processual content of a narrative. The story is called 
“Calvin’s rock-war” and was analyzed with traditional tools in Labov’s article “The 
Transformation of Experience in Narrative Syntax” [8]. 

15.6 Conclusion: Diagrams, Indexes, and Symbols 
in Scientific Theories 

Diagrams and the iconic mapping they realize are an encompassing phenomenon. 
We have focused on the scientific and rational aspects of diagram construction. Major 
tenants of diagrams such as bodily rooted and manifested diagrams, gestures, and 
more primitive means of expression found in non-human beings have been neglected. 
They are the focus of other contributions to this volume, e.g., Chaps. 10 and 14. 

Diagrams have their specific methods of construction as soon as they become 
complex and expose a rich network of internal relations. At this level, their orga-
nization is linked to self-organization, economy, and a kind of “formal structure”
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following self-organized optimality. These features are, however, in most cases, unin-
tentional and not rationally controlled. Nevertheless, they make up the germ, the foun-
dation of any explanation or broader understanding of the underlying phenomena. 
They contribute to the functionality of diagrams and their communicative success or 
failure. This non-arbitrariness was clear to Charles Sanders Peirce around 1900. It 
separates his semiotic thinking from conventionalism and formalism, which began to 
dominate after 1910, cf. the “Principia Mathematica” of Russel and Whitehead 1910. 
Carnap and Bar-Hillel prepared the position of “language as algebra” in Chomsky 
[5] and “English as a formal language” in Montague [12]. However, this is only one 
bank of the river. The other bank is the rhetorical and quasi-literary endeavor creating 
networks of quasi-theories mixing eclectic elements of different provenience moti-
vated by “deconstruction” in post-structuralism (cf. Derrida’s publications). In his 
“Lessons on the History of Science,” Peirce tells us: 

“The first quality required for this process [diagrammatic representation, W.W.], 
the first element of high reasoning power, is evidently imagination; and Kepler’s 
fecund imagination strikes every reader. But “imagination” is an ocean-wide term, 
almost meaningless, so many and so diverse are its species. What kind of imagina-
tion is required to form a mental diagram of a complicated state of affairs? Not that 
poet-imagination that “bodies forth the forms of things unknowne”,8 but a devil’s 
imagination quick to take Dame Nature’s hints. The poet-imagination riots in orna-
ments and accessories, a Kepler’s makes the clothing and the flesh drop off, and the 
apparition of the naked skeleton of truth to stand revealed before him.” ([14]: 255). 

The different types of signs and their combination or interaction constitute 
an important condition for realizing scientific theories. They respond to different 
demands on science: 

• Diagrams. They respond to the traditional condition of correspondence or 
mimesis. The theory must tell us something about the object, the world under 
analysis. This function is essentially descriptive or informative. If we have no 
prior knowledge about the object, the scientist can tell us something about it, and 
we may imagine the object and recognize it if in contact with it. For instance, 
the biologist describes a new plant or a new animal. If we meet an animal in 
nature or a zoo or find such a plant, we can recognize (and name) it. Diagrams 
should reproduce major constellations and dependencies for complex ensembles 
of things or events. These are the central ingredients in the formation of scientific 
theories. 

• Indexes. In many instances, we may have a description, an image, etc., but we are 
unsure if the object in question exists. It may be a fantasy; the information given 
may be faulty or even a lie, a fraud. We ask for proof. In this case, indexical cues, 
hints, and even demonstrations “ad oculos” are asked for. In the case of networks 
of signs or complex sign constructions, the choice of relevant relations may be 
false or unrevealing, obscure or irrelevant. The central structures reveal causal

8 A quote from Shakespeare: “And as imagination bodies forth//The forms of things unknown, the 
poet’s pen//Turns them to shapes and gives to airy nothing//A local habitation and a name”, William 
Shakespeare, A Midsummer Night’s Dream. 
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links and a chain of cause and effect. Any causal attribution must be checked 
for its validity. The truth of a story depends essentially on the validity of causal 
hypotheses. 

• Symbols. In every act of communication, the partners must presuppose a system of 
conventions that control the exchange of information. This is already the case for 
simple icons or indexes, but it becomes overwhelming in the case of complex signs 
or if sequences or fields of signs are to be handled. Therefore the symbolic nature 
of sign communication is the dominating mode. The major risk of symbols is given 
by the fact that they presuppose conventions. In most cases, we did neither initiate 
nor control these conventions (we even, in most cases, are unaware of them). 
Therefore, we can never be sure that those persons or institutions responsible for 
the conventions were honest. In other exchanges, e.g., in the case of goods sold 
or bought, we must be careful to check not only the quality of the goods and the 
validity of the money but also respond to the question: is the object bought worth 
the money we have paid? A highly developed field of laws, their application, and 
the institutions that control them are necessary to make us trust the system of 
economic exchanges. In sign communication, we must more or less believe and 
trust the partners of symbolic exchange. The only things we can rely on (still with 
risk) are iconic and indexical cues. 

The fundamental arbitrariness of symbols has the consequence that although 
iconic and indexical signs never appear in isolation or in their pure form, they are 
extremely important. If the iconic mimesis and the indexical (causal) foundation of 
sign communication are not guaranteed, the richness of symbolic communication 
loses its value, becomes irrelevant, or an annoyance. Silence and the avoidance of 
any exchange would be the better choice. The evolution of human language and 
civilizations shows that we did not follow this route. 
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