Towards a Unifying Framework for Uncertainty in CPS

for Jan Peleska

Jim Woodcock

University of York | Aarhus University

3rd March 2023

Outline

Introduction

Motivation

Prism's Semantics

Probabilistic Predicative Programming

Conclusions

Jan Peleska

[^0]
Jan Peleska

- This talk is dedicated with affection to Jan Peleska on his 65th birthday.

Jan Peleska

- This talk is dedicated with affection to Jan Peleska on his 65th birthday.

Jan Peleska

- This talk is dedicated with affection to Jan Peleska on his 65th birthday.
- We discuss a unifying theory of uncertainty in robotics and CPS.

Jan Peleska

- This talk is dedicated with affection to Jan Peleska on his 65th birthday.
- We discuss a unifying theory of uncertainty in robotics and CPS.
- We use Hoare \& He's UTP and Hehner's probabilistic predicative programming.

Jan Peleska

- This talk is dedicated with affection to Jan Peleska on his 65th birthday.
- We discuss a unifying theory of uncertainty in robotics and CPS.
- We use Hoare \& He's UTP and Hehner's probabilistic predicative programming.
- This is a long-term research agenda at York and Aarhus universities.

Jan Peleska

- This talk is dedicated with affection to Jan Peleska on his 65th birthday.
- We discuss a unifying theory of uncertainty in robotics and CPS.
- We use Hoare \& He's UTP and Hehner's probabilistic predicative programming.
- This is a long-term research agenda at York and Aarhus universities.
- We start with a semantics for Prism and end with many questions.

This Paper is Inspired by Jan's Work

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.
- This checks that a system under test satisfies properties over CSP failures.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.
- This checks that a system under test satisfies properties over CSP failures.
- This depends on the soundness of the two-way translation.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.
- This checks that a system under test satisfies properties over CSP failures.
- This depends on the soundness of the two-way translation.
- With Ana, the four of us formalised the soundness argument.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.
- This checks that a system under test satisfies properties over CSP failures.
- This depends on the soundness of the two-way translation.
- With Ana, the four of us formalised the soundness argument.
- Normalised graphs in CSP model checking, action systems, Kripke structures.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.
- This checks that a system under test satisfies properties over CSP failures.
- This depends on the soundness of the two-way translation.
- With Ana, the four of us formalised the soundness argument.
- Normalised graphs in CSP model checking, action systems, Kripke structures.
- This paper extends that work to probabilistic Kripke structures.

This Paper is Inspired by Jan's Work

- We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
- DST were developing the Airbus Interphone System.
- Jan made me adapt my course examples and practicals.
- We found a significant error in the Interphone specification.
- Cabin crew could get locked out of a conference call during an emergency.
- We later worked together on European projects, such as INTO-CPS.
- Jan and Wen-ling developed a runtime verification technique for CSP.
- This checks that a system under test satisfies properties over CSP failures.
- This depends on the soundness of the two-way translation.
- With Ana, the four of us formalised the soundness argument.
- Normalised graphs in CSP model checking, action systems, Kripke structures.
- This paper extends that work to probabilistic Kripke structures.
- Objective Unify formalisms and tools for treating uncertainty in robotics.

Uncertainty in Robotics

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.
- It achieves its overall goal faster in the long term.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.
- It achieves its overall goal faster in the long term.
- Robot manipulator tries to push an irregular object to a designated pose.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.
- It achieves its overall goal faster in the long term.
- Robot manipulator tries to push an irregular object to a designated pose.
- The robot must minimise the number of actions.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.
- It achieves its overall goal faster in the long term.
- Robot manipulator tries to push an irregular object to a designated pose.
- The robot must minimise the number of actions.
- It decides not to push the object directly towards the final pose.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.
- It achieves its overall goal faster in the long term.
- Robot manipulator tries to push an irregular object to a designated pose.
- The robot must minimise the number of actions.
- It decides not to push the object directly towards the final pose.
- It uses the first pushes to gather information on the object's centre of mass.

Uncertainty in Robotics

- Autonomous vehicle tries to pass quickly through intersection without signals.
- Counterintuitively, the vehicle slows down instead of accelerating.
- It gathers information on the intentions of pedestrians and other vehicles.
- This information helps the vehicle coordinate its actions with others.
- It achieves its overall goal faster in the long term.
- Robot manipulator tries to push an irregular object to a designated pose.
- The robot must minimise the number of actions.
- It decides not to push the object directly towards the final pose.
- It uses the first pushes to gather information on the object's centre of mass.
- The later pushes are now much more effective.

A Unifying Framework for Uncertainty?

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.
Noisy sensing, imperfect control, environment changes, inaccurate models.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.
Noisy sensing, imperfect control, environment changes, inaccurate models.
Localisation and navigation, search and tracking, autonomous driving.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.
Noisy sensing, imperfect control, environment changes, inaccurate models.
Localisation and navigation, search and tracking, autonomous driving.
Multi-robot systems, object manipulation, human-robot interaction.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.
Noisy sensing, imperfect control, environment changes, inaccurate models.
Localisation and navigation, search and tracking, autonomous driving.
Multi-robot systems, object manipulation, human-robot interaction.

- Robot reasons about outcomes of actions with limited sensor information.

A Unifying Framework for Uncertainty?

- pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, ...
- What would a unifying theory for uncertainty look like?
- Research Hypothesis

We can unify different theories of uncertainty using:
UTP probabilistic relations. Bayesian semantics. Information theory.

- We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.
Noisy sensing, imperfect control, environment changes, inaccurate models.
Localisation and navigation, search and tracking, autonomous driving.
Multi-robot systems, object manipulation, human-robot interaction.

- Robot reasons about outcomes of actions with limited sensor information.
- Actions have short-term rewards and inform long-term success.

Unifying Semantics for Prism

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics Powerful enough for SotA modelling languages.

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics Powerful enough for SotA modelling languages.
- Denotational semantics Gold standard.

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics Powerful enough for SotA modelling languages.
- Denotational semantics Gold standard.
- Operational semantics Soundness wrto denotational semantics.

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics
- Denotational semantics Gold standard.
- Operational semantics Soundness wrto denotational semantics.
- Algebraic semantics Derived from opsem soundness proof.

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics
- Denotational semantics Gold standard.
- Operational semantics
- Algebraic semantics
- Programming logic

Powerful enough for SotA modelling languages.

Soundness wrto denotational semantics.
Derived from opsem soundness proof.
Probabilistic Hoare logic (cf. Hartog \& de Vink).

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics
- Denotational semantics Gold standard.
- Operational semantics
- Algebraic semantics
- Programming logic
- Refinement theory

Powerful enough for SotA modelling languages.

Soundness wrto denotational semantics.
Derived from opsem soundness proof.
Probabilistic Hoare logic (cf. Hartog \& de Vink).
Refinement calculus (cf. Mclver \& Morgan).

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics
- Denotational semantics Gold standard.
- Operational semantics

Soundness wrto denotational semantics.

- Algebraic semantics
- Programming logic
- Refinement theory
- Testing theory

Powerful enough for SotA modelling languages.

Derived from opsem soundness proof.
Probabilistic Hoare logic (cf. Hartog \& de Vink).
Refinement calculus (cf. Mclver \& Morgan).
Testing practical systems (cf. Gaudel TcbFt).

Unifying Semantics for Prism

- Towards a specification-oriented semantics for proof and refinement.
- Start with DTMCs. Extend to MDPs, POMDPs, CTMCs, PAs, PTAs, POPTAs.
- Unifying semantics
- Denotational semantics
- Operational semantics
- Algebraic semantics
- Programming logic
- Refinement theory
- Testing theory
- Mechanisation

Powerful enough for SotA modelling languages.

Gold standard.

Soundness wrto denotational semantics.
Derived from opsem soundness proof.
Probabilistic Hoare logic (cf. Hartog \& de Vink). Refinement calculus (cf. Mclver \& Morgan).

Testing practical systems (cf. Gaudel TcbFt).
Implementation in Isabelle/UTP.

This Talk

Small motivating example of Prism DTMC.
Discussion on why we need a formal semantics for Prism.
Nonprobabilistic semantics: Unity and Kripke semantics.
Existing system module semantics for Prism.
Predicative Programming technique as a Kripke semantics.
Drahahilintin Dradinatiuon Dronummmine tonhmixuen an arnhahi istic semantics.
Probabilistic specifications and killer robot example.

This Talk

- Small motivating example of Prism DTMC.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.
- Nonprobabilistic semantics: Unity and Kripke semantics.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.
- Nonprobabilistic semantics: Unity and Kripke semantics.
- Existing system module semantics for Prism.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.
- Nonprobabilistic semantics: Unity and Kripke semantics.
- Existing system module semantics for Prism.
- Predicative Programming technique as a Kripke semantics.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.
- Nonprobabilistic semantics: Unity and Kripke semantics.
- Existing system module semantics for Prism.
- Predicative Programming technique as a Kripke semantics.
- Probabilistic Predicative Programming technique as a probabilistic semantics.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.
- Nonprobabilistic semantics: Unity and Kripke semantics.
- Existing system module semantics for Prism.
- Predicative Programming technique as a Kripke semantics.
- Probabilistic Predicative Programming technique as a probabilistic semantics.
- Probabilistic specifications and killer robot example.

This Talk

- Small motivating example of Prism DTMC.
- Discussion on why we need a formal semantics for Prism.
- Nonprobabilistic semantics: Unity and Kripke semantics.
- Existing system module semantics for Prism.
- Predicative Programming technique as a Kripke semantics.
- Probabilistic Predicative Programming technique as a probabilistic semantics.
- Probabilistic specifications and killer robot example.
- Where we go from here.

Outline

Introduction

Motivation

Prism's Semantics

Probabilistic Predicative Programming

Conclusions

Prism DTMC Example

- Throw a pair of six-sided dice until they are equal. How long will this take?

```
dtmc
module TwoDice
    u: [1..6];
    v: [1..6];
    s: [0..3] init 0;
    [] s=0 -> 1/6: (u'=1) & ( s'=1) + 1/6: (u'=2) & ( s'=1) + 1/6: (u'=3) & ( (s'=1) +
            1/6: (u'=4) & (s'=1) + 1/6: (u'=5) & ( s'=1) + 1/6: (u'=6) & (s'=1) ;
    [] s=1 -> 1/6: ( }\mp@subsup{v}{}{\prime}=1)& & (s'=2) + 1/6: ( v'=2) & ( s'=2) + 1/6: (v'=3) & ( (s'=2) +
            1/6: ( }\mp@subsup{\textrm{v}}{}{\prime}=4)&(\mp@subsup{\textrm{s}}{}{\prime}=2)+1/6:(\mp@subsup{v}{}{\prime}=5) & ( (s'=2) + 1/6: (v'=6) & ( (s'=2) ;
    [] s=2 & u=v -> ( (s'=3);
    [] s=2 & u!=v -> (s'=0);
    [] s=3 -> true;
endmodule
rewards "total_time"
    s=0 : 1;
endrewards
```


Prism Check

- We have a Prism model.
- But what properties does it have?
- How many throws of the dice-pair?
- How many throws, on average, do we need to terminate?
- Reward structure gives time steps.
- What's the expected time taken to reach, from the initial state, $s=3$?
- Prism says: you need 5.99997028280834 throws.
- But what if we have 10 dice?
- How many throws do we now need?

File Edit Model Properties Simulator Log Options

PRISM Model File: <Untitled>*

[^1]Verifying properties... done.

Why Do We Need another Formal Semantics for Prism?

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.
- Prism hiding is not CSP Hiding.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.
- Prism hiding is not CSP Hiding.

More powerful verification and validation of probabilistic systems

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.
- Prism hiding is not CSP Hiding.

More powerful verification and validation of probabilistic systems

- Refinement Theory Correctness by construction.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.
- Prism hiding is not CSP Hiding.

More powerful verification and validation of probabilistic systems

- Refinement Theory Correctness by construction.
- Assertions

Theorem proving. Design by contract. Runtime checking.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.
- Prism hiding is not CSP Hiding.

More powerful verification and validation of probabilistic systems

- Refinement Theory Correctness by construction.
- Assertions
- Tool integration Model checking + theorem proving.

Why Do We Need another Formal Semantics for Prism?

Prism's process algebra operators

- CSP-based. But some aspects are only syntactic, not semantic.
- Prism action labels are not CSP Events.
- Prism deadlock is not CSP Deadlock.
- Prism hiding is not CSP Hiding.

More powerful verification and validation of probabilistic systems

- Refinement Theory Correctness by construction.
- Assertions
- Tool integration Model checking + theorem proving.
- Testing Theory (Probabilistic) testing can be formal, too.

Outline

Introduction

Motivation

Prism's Semantics

Probabilistic Predicative Programming

Kripke Structure

Kripke Structure

- Describes models with propositionally labelled states.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.
- Labelling function maps a node to a set of properties holding in that state.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.
- Labelling function maps a node to a set of properties holding in that state.
- Why use Kripke structures?

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.
- Labelling function maps a node to a set of properties holding in that state.
- Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.
- Labelling function maps a node to a set of properties holding in that state.
- Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

- This captures the notion of observability to relate to actual executions.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.
- Labelling function maps a node to a set of properties holding in that state.
- Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

- This captures the notion of observability to relate to actual executions.
- An observer might not be able to read all state variables.

Kripke Structure

- Describes models with propositionally labelled states.
- Temporal logic semantics traditionally given using Kripke structures.
- Structure consists principally of a transition relation.
- Nodes represent reachable system states. Edges represent state transitions.
- Labelling function maps a node to a set of properties holding in that state.
- Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

- This captures the notion of observability to relate to actual executions.
- An observer might not be able to read all state variables.
- Trace: sequence of observable parts of states.

Unity Single Command Semantics

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
[Chandy \& Misra]

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
[Chandy \& Misra]
- Guarded command $c \in C$
[] g->u.

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
[Chandy \& Misra]
- Guarded command $c \in C$
- Sub-state space $\quad S_{C}=\{s \in S \mid s \models g\}$ UTP: this is simply g.

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
- Guarded command $c \in C$
- Sub-state space
- Guard
$S_{c}=\{s \in S \mid s \models g$
g
[Chandy \& Misra]
[] g->u.
UTP: this is simply g. predicate over variables in V.

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
- Guarded command $c \in C$
- Sub-state space
- Guard
- Command
u
g
[Chandy \& Misra]
[] g->u.
$S_{C}=\{s \in S \mid s \models g\} \quad$ UTP: this is simply g.
predicate over variables in V. assignments to variables in V.

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
- Guarded command $c \in C$
- Sub-state space
- Guard
- Command
- Update
$S_{c}=\{s \in S \mid s \models g\}$
g
u
u of c
[Chandy \& Misra]
[]g->u.
UTP: this is simply g. predicate over variables in V. assignments to variables in V. $u: S_{c} \rightarrow S$.

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
- Guarded command $c \in C$
- Sub-state space
- Guard
- Command
- Update
- Example
g
u
u of c
[Chandy \& Misra]
[]g->u.
$S_{c}=\{s \in S \mid s \models g\} \quad$ UTP: this is simply g.
[] $x>y->\left(x^{\prime}=y\right) \& \quad\left(y^{\prime}=x\right)$;

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
- Guarded command $c \in C$
- Sub-state space
- Guard
- Command
- Update
- Example
- Semantics
[Chandy \& Misra]
[]g->u.
$S_{C}=\{s \in S \mid s \models g\} \quad$ UTP: this is simply g.
g
u
u of c $u: S_{C} \rightarrow S$.
[] $x>y ~->~\left(x^{\prime}=y\right) ~ \& ~\left(y^{\prime}=x\right)$;
$x>y \wedge\left(x^{\prime}=y\right) \wedge\left(y^{\prime}=x\right) \wedge\left(z^{\prime}=z\right)$.

Unity Single Command Semantics

- Prism \backslash Probability $=$ Unity
- Guarded command $c \in C$
- Sub-state space
- Guard
- Command
- Update
- Example
- Semantics
- Extension variables (unmentioned) stay the same: Example $\left(z^{\prime}=z\right)$.
$x>y \wedge\left(x^{\prime}=y\right) \wedge\left(y^{\prime}=x\right) \wedge\left(z^{\prime}=z\right)$.

Prism System Module Semantics

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.
- Let $u_{j}=\Lambda i: 1 \ldots m \bullet\left(v_{i}^{\prime}=e_{i}\right)$.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.
- Let $u_{j}=\wedge i: 1 \ldots m \bullet\left(v_{i}^{\prime}=e_{i}\right)$.
- Each $s \in S_{C}$, is an m-tuple: $i \in 1 \ldots m \Rightarrow\left(t i=e_{i}(s)\right)$.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.
- Let $u_{j}=\wedge i: 1 \ldots m \bullet\left(v_{i}^{\prime}=e_{i}\right)$.
- Each $s \in S_{C}$, is an m-tuple: $i \in 1 \ldots m \Rightarrow\left(t i=e_{i}(s)\right)$.
- Update u_{j} in c occurs with probability p_{j}.

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.
- Let $u_{j}=\wedge i: 1 \ldots m \bullet\left(v_{i}^{\prime}=e_{i}\right)$.
- Each $s \in S_{C}$, is an m-tuple: $i \in 1 \ldots m \Rightarrow\left(t i=e_{i}(s)\right)$.
- Update u_{j} in c occurs with probability p_{j}.
- c defines, for $s \in S_{C}$, a function $\mu_{c, s}: S \rightarrow \mathbb{R}_{\geq 0}$, for $t \in S$:

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{C}=\{s \in S \mid s \models g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.
- Let $u_{j}=\wedge i: 1 \ldots m \bullet\left(v_{i}^{\prime}=e_{i}\right)$.
- Each $s \in S_{C}$, is an m-tuple: $i \in 1 \ldots m \Rightarrow\left(t i=e_{i}(s)\right)$.
- Update u_{j} in c occurs with probability p_{j}.
-c defines, for $s \in S_{c}$, a function $\mu_{c, S}: S \rightarrow \mathbb{R}_{\geq 0}$, for $t \in S$:

$$
\mu_{c, s}(t) \widehat{=} \sum j: 1 \ldots n \bullet\left[u_{j}(s)=t\right] * p_{j}
$$

Prism System Module Semantics

- Single Command Semantics. Assumptions: the same as Unity.
- Command c of C is schematically: [a] $g \rightarrow p_{1}: u_{1}+\cdots+p_{n}: u_{n}$
- Action label a is needed only for flattening process-algebraic operators.
- Guard g is a predicate over the variables in V.
- g defines global state subset $S_{c}=\{s \in S|s|=g\}$.
- Update u_{j} of c : transition assigning values to variables $u_{j}: S_{c} \rightarrow S$.
- Let $u_{j}=\bigwedge i: 1 \ldots m \bullet\left(v_{i}^{\prime}=e_{i}\right)$.
- Each $s \in S_{C}$, is an m-tuple: $i \in 1 \ldots m \Rightarrow\left(t i=e_{i}(s)\right)$.
- Update u_{j} in c occurs with probability p_{j}.
- c defines, for $s \in S_{C}$, a function $\mu_{c, s}: S \rightarrow \mathbb{R}_{\geq 0}$, for $t \in S$:

$$
\mu_{c, s}(t) \widehat{=} \sum j: 1 \ldots n \bullet\left[u_{j}(s)=t\right] * p_{j}
$$

- DTMC and MDP syntax guarantees $\mu_{c, S}$ is a probability distribution over S.

Prism DTMC Semantics

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} \sum c: C \bullet \mu_{c, s}(t)
$$

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} \sum c: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1 . Why?

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} \mathrm{C}: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1. Why?
- Local nondeterminism in a module: overlapping guards.

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} \sum c: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1. Why?
- Local nondeterminism in a module: overlapping guards.
- Prism displays a warning when local nondeterminism is detected in a DTMC.

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} c: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1. Why?
- Local nondeterminism in a module: overlapping guards.
- Prism displays a warning when local nondeterminism is detected in a DTMC.
- Nondeterministic choice is randomised.

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} c: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1. Why?
- Local nondeterminism in a module: overlapping guards.
- Prism displays a warning when local nondeterminism is detected in a DTMC.
- Nondeterministic choice is randomised.
- A probability distribution is obtained by normalising \bar{P} :

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} c: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1. Why?
- Local nondeterminism in a module: overlapping guards.
- Prism displays a warning when local nondeterminism is detected in a DTMC.
- Nondeterministic choice is randomised.
- A probability distribution is obtained by normalising \bar{P} :

$$
P(s, t) \widehat{=} \bar{P}(s, t) / \sum u: S \bullet \bar{P}(s, u)
$$

Prism DTMC Semantics

- A discrete-time Markov chain is defined by a transition probability matrix.
- First, define the matrix, for any $s, t \in S$:

$$
\bar{P}(s, t) \widehat{=} c: C \bullet \mu_{c, s}(t)
$$

- The rows of \bar{P} may sum to more than 1 . Why?
- Local nondeterminism in a module: overlapping guards.
- Prism displays a warning when local nondeterminism is detected in a DTMC.
- Nondeterministic choice is randomised.
- A probability distribution is obtained by normalising \bar{P} :

$$
P(s, t) \widehat{=} \bar{P}(s, t) / \sum u: S \bullet \bar{P}(s, u)
$$

- Replaces nondeterminism by uniform probabilistic choice between transitions.

Outline

Introduction

Motivation

Prism's Semantics

Probabilistic Predicative Programming
Conclusions

Discrete Distribution

Discrete Distribution

- Suppose that e is an expression with free variables v.

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

- Suppose n and m are strictly positive integers.

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

- Suppose n and m are strictly positive integers.
- Then $(1 / 2)^{n+m}$ is a distribution because it satisfies the two criteria:

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

- Suppose n and m are strictly positive integers.
- Then $(1 / 2)^{n+m}$ is a distribution because it satisfies the two criteria:

1. Values: $\forall n, m: 1 \ldots \infty \bullet 0 \leq(1 / 2)^{n+m} \leq 1$.

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

- Suppose n and m are strictly positive integers.
- Then $(1 / 2)^{n+m}$ is a distribution because it satisfies the two criteria:

1. Values: $\forall n, m: 1 \ldots \infty \bullet 0 \leq(1 / 2)^{n+m} \leq 1$.
2. Sum: $\left(\sum n, m: 1 \ldots \infty \cdot(1 / 2)^{n+m}\right)=1$.

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

- Suppose n and m are strictly positive integers.
- Then $(1 / 2)^{n+m}$ is a distribution because it satisfies the two criteria:

1. Values: $\forall n, m: 1 \ldots \infty \bullet 0 \leq(1 / 2)^{n+m} \leq 1$.
2. Sum: $\left(\sum n, m: 1 \ldots \infty \cdot(1 / 2)^{n+m}\right)=1$.

- Suppose n and m are nonnegative integers (in contrast to the last example).

Discrete Distribution

- Suppose that e is an expression with free variables v.
- Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v) is a probability: $[0 \leq e \leq 1]$.
2. Its sum (for all assignments to v) is $1: \sum v \bullet e=1$.

- Suppose n and m are strictly positive integers.
- Then $(1 / 2)^{n+m}$ is a distribution because it satisfies the two criteria:

1. Values: $\forall n, m: 1 \ldots \infty \bullet 0 \leq(1 / 2)^{n+m} \leq 1$.
2. Sum: $\left(\sum n, m: 1 \ldots \infty \bullet(1 / 2)^{n+m}\right)=1$.

- Suppose n and m are nonnegative integers (in contrast to the last example).
- $(1 / 2)^{n+m}$ is not a distribution, because it fails the second criterion:

$$
\left(\sum n, m: 0 \ldots \infty \bullet(1 / 2)^{n+m}\right)=1
$$

Probability Distributions

Probability Distributions

- Distribution: frequency of occurrence of values of variables.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

$$
\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}
$$

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then
$\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}$
gives the frequency of occurrence of values of n.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then
$\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}$
gives the frequency of occurrence of values of n.
- Independent variables: product of distributions partitioning variables.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then
$\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}$
gives the frequency of occurrence of values of n.
- Independent variables: product of distributions partitioning variables.
- Example: $(1 / 2)^{n+m}=(1 / 2)^{n} *(1 / 2)^{m}$, so n and m are independent.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

$$
\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}
$$

gives the frequency of occurrence of values of n.

- Independent variables: product of distributions partitioning variables.
- Example: $(1 / 2)^{n+m}=(1 / 2)^{n} *(1 / 2)^{m}$, so n and m are independent.
- Average value of e as v varies according to distribution p is $\sum v \bullet e * p$.

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

$$
\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}
$$

gives the frequency of occurrence of values of n.

- Independent variables: product of distributions partitioning variables.
- Example: $(1 / 2)^{n+m}=(1 / 2)^{n} *(1 / 2)^{m}$, so n and m are independent.
- Average value of e as v varies according to distribution p is $\sum v \bullet e * p$.
- Example: average value of n^{2} as n varies over \mathbb{N}_{1} with $(1 / 2)^{n}$ is

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

$$
\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}
$$

gives the frequency of occurrence of values of n.

- Independent variables: product of distributions partitioning variables.
- Example: $(1 / 2)^{n+m}=(1 / 2)^{n} *(1 / 2)^{m}$, so n and m are independent.
- Average value of e as v varies according to distribution p is $\sum v \bullet e * p$.
- Example: average value of n^{2} as n varies over \mathbb{N}_{1} with $(1 / 2)^{n}$ is

$$
\sum n: \mathbb{N}_{1} \bullet n^{2} *(1 / 2)^{n}=6
$$

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

$$
\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}
$$

gives the frequency of occurrence of values of n.

- Independent variables: product of distributions partitioning variables.
- Example: $(1 / 2)^{n+m}=(1 / 2)^{n} *(1 / 2)^{m}$, so n and m are independent.
- Average value of e as v varies according to distribution p is $\sum v \bullet e * p$.
- Example: average value of n^{2} as n varies over \mathbb{N}_{1} with $(1 / 2)^{n}$ is

$$
\sum n: \mathbb{N}_{1} \bullet n^{2} *(1 / 2)^{n}=6
$$

- Average value of $n-m$ as n and m vary over \mathbb{N}_{1} with distribution $(1 / 2)^{n+m}$ is

Probability Distributions

- Distribution: frequency of occurrence of values of variables.
- Example 2^{-n} : says n has value $31 / 8$ of the time.
- Example $(1 / 2)^{n+m}$: says state $(n=3) \wedge(m=1)$ occurs $1 / 16$ of the time.
- If $n, m: \mathbb{N}_{1}$ are distributed as $(1 / 2)^{n+m}$, then

$$
\sum m: \mathbb{N}_{1} \bullet(1 / 2)^{n+m}=(1 / 2)^{n}
$$

gives the frequency of occurrence of values of n.

- Independent variables: product of distributions partitioning variables.
- Example: $(1 / 2)^{n+m}=(1 / 2)^{n} *(1 / 2)^{m}$, so n and m are independent.
- Average value of e as v varies according to distribution p is $\sum v \bullet e * p$.
- Example: average value of n^{2} as n varies over \mathbb{N}_{1} with $(1 / 2)^{n}$ is

$$
\sum n: \mathbb{N}_{1} \bullet n^{2} *(1 / 2)^{n}=6
$$

- Average value of $n-m$ as n and m vary over \mathbb{N}_{1} with distribution $(1 / 2)^{n+m}$ is

$$
\sum n, m: \mathbb{N}_{1} \bullet(n-m) *(1 / 2)^{n+m}=0 .
$$

Normalisation

Definition (Normalisation)
If E 's variables are n and m, then

$$
\mathbf{N}(E) \widehat{=} E /\left(\sum n, m \bullet E\right)
$$

Normalisation

Definition (Normalisation)
If E 's variables are n and m, then
$\mathbf{N}(E) \hat{=} E /\left(\sum n, m \bullet E\right)$

- Let E be an expression:

Normalisation

Definition (Normalisation)

If E 's variables are n and m, then

$$
\mathbf{N}(E) \widehat{=} E /\left(\sum n, m \bullet E\right)
$$

- Let E be an expression:
- Whose value (for all assignments of values) is nonnegative.

Normalisation

Definition (Normalisation)

If E 's variables are n and m, then

$$
\mathbf{N}(E) \widehat{=} E /\left(\sum n, m \bullet E\right)
$$

- Let E be an expression:
- Whose value (for all assignments of values) is nonnegative.
- Whose sum (over all assignments of values) is strictly between 0 and ∞.

Normalisation

Definition (Normalisation)

If E 's variables are n and m, then

$$
\mathbf{N}(E) \widehat{=} E /\left(\sum n, m \bullet E\right)
$$

- Let E be an expression:
- Whose value (for all assignments of values) is nonnegative.
- Whose sum (over all assignments of values) is strictly between 0 and ∞.
- Then, the normalisation $\mathbf{N}(E)$ is a distribution.

Normalisation

Definition (Normalisation)

If E 's variables are n and m, then

$$
\mathbf{N}(E) \widehat{=} E /\left(\sum n, m \bullet E\right)
$$

- Let E be an expression:
- Whose value (for all assignments of values) is nonnegative.
- Whose sum (over all assignments of values) is strictly between 0 and ∞.
- Then, the normalisation $\mathbf{N}(E)$ is a distribution.
- Its values are in the same proportion as the values of E.

A Probabilistic Programming Language

A Probabilistic Programming Language

- Iverson

$$
[P]=(1 \triangleleft P \triangleright 0)=\text { if } P \text { then } 1 \text { else } 0
$$

A Probabilistic Programming Language

- Iverson
- Inaction

$$
\begin{aligned}
& {[P]=(1 \triangleleft P \triangleright 0)=\text { if } P \text { then } 1 \text { else } 0 .} \\
& \text { skip } \widehat{=}\left[x^{\prime}=x\right] *\left[y^{\prime}=y\right]
\end{aligned}
$$

A Probabilistic Programming Language

- Iverson
- Inaction
- Assignment
$[P]=(1 \triangleleft P \triangleright 0)=$ if P then 1 else 0.
skip $\widehat{=}\left[x^{\prime}=x\right] *\left[y^{\prime}=y\right]$
$x:=e \hat{=}\left[x^{\prime}=e\right] *\left[y^{\prime}=y\right]$

A Probabilistic Programming Language

- Iverson
- Inaction
- Assignment
- Conditional
$[P]=(1 \triangleleft P \triangleright 0)=$ if P then 1 else 0.
skip $\widehat{=}\left[x^{\prime}=x\right] *\left[y^{\prime}=y\right]$
$x:=e \hat{=}\left[x^{\prime}=e\right] *\left[y^{\prime}=y\right]$
if c then A else $B \widehat{=} c * A+(1-c) * B$

A Probabilistic Programming Language

- Iverson
- Inaction
- Assignment
- Conditional
- Sequence
$[P]=(1 \triangleleft P \triangleright 0)=$ if P then 1 else 0.
skip $\widehat{=}\left[x^{\prime}=x\right] *\left[y^{\prime}=y\right]$
$x:=e \hat{=}\left[x^{\prime}=e\right] *\left[y^{\prime}=y\right]$
if c then A else $B \widehat{=} c * A+(1-c) * B$
$A ; B \widehat{=} \sum x_{0}, y_{0} \bullet A\left[x_{0}, y_{0} / x^{\prime}, y^{\prime}\right] * B\left[x_{0}, y_{0} / x, y\right]$

A Probabilistic Programming Language

- Iverson
- Inaction
- Assignment
- Conditional
- Sequence
- Normalisation
$[P]=(1 \triangleleft P \triangleright 0)=$ if P then 1 else 0 .
skip $\widehat{=}\left[x^{\prime}=x\right] *\left[y^{\prime}=y\right]$
$x:=e \hat{=}\left[x^{\prime}=e\right] *\left[y^{\prime}=y\right]$
if c then A else $B \widehat{=} c * A+(1-c) * B$
$A ; B \widehat{=} \sum x_{0}, y_{0} \bullet A\left[x_{0}, y_{0} / x^{\prime}, y^{\prime}\right] * B\left[x_{0}, y_{0} / x, y\right]$
$A \| B \widehat{=} \mathbf{N}(A * B)$

A Probabilistic Programming Language

- Iverson
- Inaction
- Assignment
- Conditional
- Sequence
- Normalisation
- Galois connection $\langle N\rangle_{\mathcal{I}} \sqsupseteq P=\left[N \leq[P]_{\mathcal{I}}\right]$
skip $\widehat{=}\left[x^{\prime}=x\right] *\left[y^{\prime}=y\right]$
$x:=e \widehat{=}\left[x^{\prime}=e\right] *\left[y^{\prime}=y\right]$
if c then A else $B \hat{=} c * A+(1-c) * B$
$A \| B \widehat{=} \mathbf{N}(A * B)$
$[P]=(1 \triangleleft P \triangleright 0)=$ if P then 1 else 0.
$A ; B \hat{=} \sum x_{0}, y_{0} \bullet A\left[x_{0}, y_{0} / x^{\prime}, y^{\prime}\right] * B\left[x_{0}, y_{0} / x, y\right]$

Iverson Laws

Iverson Laws

$\langle N\rangle=N>0$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N>0 \\
& \langle 1\rangle=\text { true }
\end{aligned}
$$

$\langle 0\rangle=$ false

$$
[N \leq[\langle N\rangle]
$$

$$
[k \in A]+[k \in B]=[k \in A \cup B]+[k \in A \cap B]
$$

$$
\langle[P]\rangle \sqsupseteq P
$$

$$
[x \in A \cap B]=[x \in A] *[x \in B]
$$

$$
[\forall m \bullet P(k, m)]=\prod m \bullet[P(k, m)]
$$

$$
P \sqsupseteq Q \Rightarrow[P] \leq[Q]
$$

$$
M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle N\rangle
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N>0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false }
\end{aligned}
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N>0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle N\rangle]]}
\end{aligned}
$$

Iverson Laws

$$
\begin{aligned}
& \langle M\rangle=N>0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle N\rangle]]} \\
& \langle[P]\rangle \sqsupseteq P
\end{aligned}
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle N\rangle]]} \\
& \langle[P]\rangle \sqsupseteq P \\
& {[\neg\langle N\rangle]=[N=0]}
\end{aligned}
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle N\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q]
\end{aligned}
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupset Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M
\end{aligned}
$$

Iverson Laws

$$
\begin{array}{ll}
\langle N\rangle=N>0 & {[P \wedge Q]=[P] *[Q]} \\
\langle 1\rangle=\text { true } & \\
\langle 0\rangle=\text { false } & \\
{[N \leq[\langle N\rangle]]} & \\
\langle[P]\rangle \sqsupseteq P & \\
{[\neg\langle N\rangle]=[N=0]} & \\
P \sqsupseteq Q \Rightarrow[P] \leq[Q] & \\
M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M\rangle &
\end{array}
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M\rangle
\end{aligned}
$$

$$
[P \wedge Q]=[P] *[Q]
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M
\end{aligned}
$$

Iverson Laws

$$
\begin{aligned}
& \langle M\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M\rangle
\end{aligned}
$$

$$
[P \wedge Q]=[P] *[Q]
$$

$$
[P \vee Q]=[P]+[Q]-[P] *[Q]
$$

$$
[\neg P]=1-[P]
$$

$[k \in A]+[k \in B]=[k \in A \cup B]+[k \in A \cap B]$

Iverson Laws

$$
\begin{aligned}
& \langle M\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M
\end{aligned}
$$

$$
[P \wedge Q]=[P] *[Q]
$$

$$
[P \vee Q]=[P]+[Q]-[P] *[Q]
$$

$$
[\neg P]=1-[P]
$$

$$
[k \in A]+[k \in B]=[k \in A \cup B]+[k \in A \cap B]
$$

$$
[x \in A \cap B]=[x \in A] *[x \in B]
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M
\end{aligned}
$$

$$
[P \wedge Q]=[P] *[Q]
$$

$$
[P \vee Q]=[P]+[Q]-[P] *[Q]
$$

$$
[\neg P]=1-[P]
$$

$$
[k \in A]+[k \in B]=[k \in A \cup B]+[k \in A \cap B]
$$

$$
[x \in A \cap B]=[x \in A] *[x \in B]
$$

$$
[\forall m \bullet P(k, m)]=\Pi m \bullet[P(k, m)]
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M
\end{aligned}
$$

$$
[P \wedge Q]=[P] *[Q]
$$

$$
[P \vee Q]=[P]+[Q]-[P] *[Q]
$$

$$
[\neg P]=1-[P]
$$

$$
[k \in A]+[k \in B]=[k \in A \cup B]+[k \in A \cap B]
$$

$$
[x \in A \cap B]=[x \in A] *[x \in B]
$$

$$
[\forall m \bullet P(k, m)]=\prod m \bullet[P(k, m)]
$$

$$
[\exists m \bullet P(k, m)]=\min \left\{1, \sum m \bullet[P(k, m)]\right\}
$$

Iverson Laws

$$
\begin{aligned}
& \langle N\rangle=N\rangle 0 \\
& \langle 1\rangle=\text { true } \\
& \langle 0\rangle=\text { false } \\
& {[N \leq[\langle M\rangle]]} \\
& \langle[P]\rangle P \\
& {[\neg\langle N\rangle]=[N=0]} \\
& P \sqsupseteq Q \Rightarrow[P] \leq[Q] \\
& M \leq N \Rightarrow\langle M\rangle \sqsupseteq\langle M
\end{aligned}
$$

$[P \wedge Q]=[P] *[Q]$
$[P \vee Q]=[P]+[Q]-[P] *[Q]$
$[\neg P]=1-[P]$
$[k \in A]+[k \in B]=[k \in A \cup B]+[k \in A \cap B]$
$[x \in A \cap B]=[x \in A] *[x \in B]$
$[\forall m \bullet P(k, m)]=\Pi m \bullet[P(k, m)]$
$[\exists m \bullet P(k, m)]=\min \left\{1, \sum m \bullet[P(k, m)]\right\}$
$\#\{m \mid P(k, m)\}=\sum m \bullet[P(k, m)]$

Example: Killer Robots

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?
- Conditional probability: $\mathrm{P}(A \wedge B)=\mathrm{P}(A) * \mathrm{P}(B \mid A)$.

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?
- Conditional probability: $\mathrm{P}(A \wedge B)=\mathrm{P}(A) * \mathrm{P}(B \mid A)$.

$$
\begin{array}{ll}
\mathrm{P}(\text { cyber })=3 / 5, & \mathrm{P}(\text { succ } \mid \text { cyber })=1 / 2 \\
\mathrm{P}(\text { dalek })=2 / 5, & \mathrm{P}(\text { succ } \mid \text { dalek })=3 / 10
\end{array}
$$

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?
- Conditional probability: $\mathrm{P}(A \wedge B)=\mathrm{P}(A) * \mathrm{P}(B \mid A)$.

$$
\begin{aligned}
\mathrm{P}(\text { cyber })=3 / 5, & \mathrm{P}(\text { succ } \mid \text { cyber })=1 / 2, \\
\mathrm{P}(\text { dalek })=2 / 5, & \mathrm{P}(\text { succ } \mid \text { dalek })=3 / 10 \\
\mathrm{P}(\text { succ }) &
\end{aligned}
$$

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?
- Conditional probability: $\mathrm{P}(A \wedge B)=\mathrm{P}(A) * \mathrm{P}(B \mid A)$.

$$
\begin{aligned}
& \mathrm{P}(\text { cyber })=3 / 5, \\
& \mathrm{P}(\text { dalek })=2 / 5, \quad \mathrm{P}(\text { succ } \mid \text { cyber })=1 / 2, \\
& \mathrm{P}(\text { succ })
\end{aligned}
$$

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?
- Conditional probability: $\mathrm{P}(A \wedge B)=\mathrm{P}(A) * \mathrm{P}(B \mid A)$.
$\mathrm{P}($ cyber $)=3 / 5, \quad \mathrm{P}($ succ \mid cyber $)=1 / 2$,
$\mathrm{P}($ dalek $)=2 / 5, \quad \mathrm{P}($ succ \mid dalek $)=3 / 10$
P (succ)
$=\mathrm{P}($ cyber \wedge succ $)+\mathrm{P}($ dalek \wedge succ $)$
$=\mathrm{P}($ cyber $) * \mathrm{P}($ succ \mid cyber $)+\mathrm{P}($ dalek $) * \mathrm{P}($ succ \mid dalek $)$

Example: Killer Robots

- cyberman and the dalek attack the Tardis daily.
- cyber has probability $1 / 2$ of success.
- dalek has probability $3 / 10$ of success.
- cyber attacks with probability of $3 / 5$.
- dalek attacks with probability of $2 / 5$.
- What is the probability of a successful attack?
- Conditional probability: $\mathrm{P}(A \wedge B)=\mathrm{P}(A) * \mathrm{P}(B \mid A)$.
$\mathrm{P}($ cyber $)=3 / 5, \quad \mathrm{P}($ succ \mid cyber $)=1 / 2$,
$\mathrm{P}($ dalek $)=2 / 5, \quad \mathrm{P}($ succ \mid dalek $)=3 / 10$
P (succ)
$=\mathrm{P}($ cyber \wedge succ $)+\mathrm{P}($ dalek \wedge succ $)$
$=\mathrm{P}($ cyber $) * \mathrm{P}($ succ \mid cyber $)+\mathrm{P}($ dalek $) * \mathrm{P}($ succ \mid dalek $)$
$=3 / 5 * 1 / 2+2 / 5 * 3 / 10=21 / 50$

$$
\begin{array}{lll}
10 & 1 & 1 \\
l
\end{array}
$$

Computational Approach

Computational Approach

$\mathrm{P}($ cyber $)=3 / 5$,

Computational Approach

$$
\mathrm{P}(\text { cyber })=3 / 5, \mathrm{P}(\text { succ } \mid \text { cyber })=1 / 2,
$$

Computational Approach

```
P}(\mathrm{ cyber })=3/5,P(\mathrm{ succ | cyber })=1/2
P}(\mathrm{ dalek })=2/5
```


Computational Approach

$\mathrm{P}($ cyber $)=3 / 5, \mathrm{P}($ succ \mid cyber $)=1 / 2$,
$\mathrm{P}($ dalek $)=2 / 5, \mathrm{P}($ succ \mid dalek $)=3 / 10$

Computational Approach

$$
\begin{aligned}
& \mathrm{P}(\text { cyber })=3 / 5, \mathrm{P}(\text { succ } \mid \text { cyber })=1 / 2, \\
& \mathrm{P}(\text { dalek })=2 / 5, \mathrm{P}(\text { succ } \mid \text { dalek })=3 / 10
\end{aligned}
$$

Tardis $=$
if $3 / 5$ then
(robot := cyber ; if $1 / 2$ then attack := succ else attack := fail)
else
(robot := dalek ; if $3 / 10$ then attack $:=$ succ else attack := fail)

Computational Approach

$$
\begin{aligned}
& \mathrm{P}(\text { cyber })=3 / 5, \mathrm{P}(\text { succ } \mid \text { cyber })=1 / 2, \\
& \mathrm{P}(\text { dalek })=2 / 5, \mathrm{P}(\text { succ } \mid \text { dalek })=3 / 10
\end{aligned}
$$

Tardis $=$

if $3 / 5$ then

(robot := cyber ;

$$
\text { if } 1 / 2 \text { then attack }:=\text { succ }
$$ else attack := fail)

else
(robot $:=$ dalek ; if $3 / 10$ then attack := succ else attack := fail)

```
dtmc
```

dtmc
const int cyber=1;
const int cyber=1;
const int dalek=2;
const int dalek=2;
const int succ=1;
const int succ=1;
const int fail=2;
const int fail=2;
module Tardis
module Tardis
robot : [1..2] init 1;
robot : [1..2] init 1;
attack : [1..2] init 1;
attack : [1..2] init 1;
s : [0..3] init 0;
s : [0..3] init 0;
[] s=0 -> 3/5: (robot'=cyber) \& (}\mp@subsup{s}{}{\prime}=1
[] s=0 -> 3/5: (robot'=cyber) \& (}\mp@subsup{s}{}{\prime}=1
+ 2/5: (robot'=dalek) \& (}\mp@subsup{s}{}{\prime}=2)
+ 2/5: (robot'=dalek) \& (}\mp@subsup{s}{}{\prime}=2)
[] s=1 -> 1/2: (attack'=succ) \& (}\mp@subsup{s}{}{\prime}=3
[] s=1 -> 1/2: (attack'=succ) \& (}\mp@subsup{s}{}{\prime}=3
+ 1/2: (attack'=fail) \& (}\mp@subsup{s}{}{\prime}=3)
+ 1/2: (attack'=fail) \& (}\mp@subsup{s}{}{\prime}=3)
[] s=2 -> 3/10:(attack'=succ) \& (s'=3)
[] s=2 -> 3/10:(attack'=succ) \& (s'=3)
+ 7/10:(attack'=fail) \& (}\mp@subsup{s}{}{\prime}=3)
+ 7/10:(attack'=fail) \& (}\mp@subsup{s}{}{\prime}=3)
[] }S=3 -> true
[] }S=3 -> true
endmodule

```
endmodule
```


Computational Approach

Computational Approach

Tardis

Computational Approach

Tardis $=$ if $3 / 5$ then $($ robot $:=$ cyber ; if $1 / 2$ then attack $:=$ succ else attack $:=$ fail $)$ else (robot $:=$ dalek ; if $3 / 10$ then attack $:=$ succ else attack $:=$ fail)

Computational Approach

$$
\begin{aligned}
\text { Tardis }= & \text { if } 3 / 5 \text { then }(\text { robot }:=\text { cyber ; if } 1 / 2 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
& \text { else }(\text { robot }:=\text { dalek; if } 3 / 10 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
= & 3 / 10 *(\text { robot, attack }:=\text { cyber, succ })+3 / 10 *(\text { robot, attack }:=\text { cyber, fail }) \\
& +6 / 50 *(\text { robot, attack }:=\text { dalek, succ })+14 / 50 *(\text { robot }, \text { attack }:=\text { dalek, fail })
\end{aligned}
$$

Computational Approach

$$
\begin{aligned}
\text { Tardis }= & \text { if } 3 / 5 \text { then }(\text { robot }:=\text { cyber ; if } 1 / 2 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
& \text { else }(\text { robot }:=\text { dalek; if } 3 / 10 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
= & 3 / 10 *(\text { robot, attack }:=\text { cyber, succ })+3 / 10 *(\text { robot, attack }:=\text { cyber, fail }) \\
& +6 / 50 *(\text { robot, attack }:=\text { dalek, succ })+14 / 50 *(\text { robot, attack }:=\text { dalek, fail })
\end{aligned}
$$

- Probabilistic final states: assignments. Semantically equivalent to:

Computational Approach

$$
\begin{aligned}
\text { Tardis }= & \text { if } 3 / 5 \text { then }(\text { robot }:=\text { cyber ; if } 1 / 2 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
& \text { else }(\text { robot }:=\text { dalek ; if } 3 / 10 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
= & 3 / 10 *(\text { robot, attack }:=\text { cyber, succ })+3 / 10 *(\text { robot, attack }:=\text { cyber, fail }) \\
& +6 / 50 *(\text { robot, attack }:=\text { dalek, succ })+14 / 50 *(\text { robot, attack }:=\text { dalek, fail })
\end{aligned}
$$

- Probabilistic final states: assignments. Semantically equivalent to:

```
module Tardis
    robot : [1..2] init 1;
    attack : [1..2] init 1;
    t : [0..1] init 0;
    [] t=0 -> 3/10: (robot'=cyber) & (attack'=succ) & (t'=1)
        3/10: (robot'=cyber) & (attack'=fail) & (t'=1)
        6/50: (robot'=dalek) & (attack'=succ) & (t'=1)
        14/50: (robot'=dalek) & (attack'=fail) & (t'=1)
    [] t=3 -> true;
endmodule
```


Computational Approach

$$
\begin{aligned}
\text { Tardis }= & \text { if } 3 / 5 \text { then }(\text { robot }:=\text { cyber } ; \text { if } 1 / 2 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
& \text { else }(\text { robot }:=\text { dalek; if } 3 / 10 \text { then attack }:=\text { succ else attack }:=\text { fail }) \\
= & 3 / 10 *(\text { robot, attack }:=\text { cyber, succ })+3 / 10 *(\text { robot, attack }:=\text { cyber, fail }) \\
& +6 / 50 *(\text { robot }, \text { attack }:=\text { dalek, succ })+14 / 50 *(\text { robot }, \text { attack }:=\text { dalek, fail })
\end{aligned}
$$

- Probabilistic final states: assignments. Semantically equivalent to:

```
module Tardis
    robot : [1..2] init 1;
    attack : [1..2] init 1;
    t : [0..1] init 0;
    [] t=0 -> 3/10: (robot'=cyber) & (attack'=succ) & (t'=1)
            3/10: (robot'=cyber) & (attack'=fail) & (t'=1)
            6/50: (robot'=dalek) & (attack'=succ) & (t'=1)
            14/50: (robot'=dalek) & (attack'=fail) & (t'=1)
    [] t=3 -> true;
endmodule
```

- Probability that attack $=$ succ: $3 / 10+6 / 50=21 / 50$, the same answer as before.

Outline

Introduction

Motivation

Prism's Semantics

Probabilistic Predicative Programming
Conclusions

Further Work (1)

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.
- What would a unifying theory for uncertainty look like?

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.
- What would a unifying theory for uncertainty look like?
- What connects the semantics and tools that support different approaches?

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.
- What would a unifying theory for uncertainty look like?
- What connects the semantics and tools that support different approaches?
- Can we establish more connections?

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.
- What would a unifying theory for uncertainty look like?
- What connects the semantics and tools that support different approaches?
- Can we establish more connections?
- Can we support probabilistic/statistical model checking with theorem proving?

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.
- What would a unifying theory for uncertainty look like?
- What connects the semantics and tools that support different approaches?
- Can we establish more connections?
- Can we support probabilistic/statistical model checking with theorem proving?
- Can we support theorem proving with probabilistic/statistical model checking?

Further Work (1)

- Apply this semantics to unifying theories of uncertainty.
- Partially observable Markov decision processes, dynamic epistemic logic, ...
- Research on describing and analysing uncertainty raises many questions.
- What would a unifying theory for uncertainty look like?
- What connects the semantics and tools that support different approaches?
- Can we establish more connections?
- Can we support probabilistic/statistical model checking with theorem proving?
- Can we support theorem proving with probabilistic/statistical model checking?
- Can we establish uncertainty properties using CbyC?

Further Work (2)

Further Work (2)

- What about probabilistic refinement-based model checking?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?
- What's the formal testing theory for a system with unknown MDP semantics?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?
- What's the formal testing theory for a system with unknown MDP semantics?
- What are the testability hypotheses (in Gaudel's sense)?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?
- What's the formal testing theory for a system with unknown MDP semantics?
- What are the testability hypotheses (in Gaudel's sense)?
- How do we exploit testing, proof, and model checking together?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?
- What's the formal testing theory for a system with unknown MDP semantics?
- What are the testability hypotheses (in Gaudel's sense)?
- How do we exploit testing, proof, and model checking together?
- What about uncertainty modelling and runtime verification?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?
- What's the formal testing theory for a system with unknown MDP semantics?
- What are the testability hypotheses (in Gaudel's sense)?
- How do we exploit testing, proof, and model checking together?
- What about uncertainty modelling and runtime verification?
- How do we develop, apply, and evaluate uncertain systems?

Further Work (2)

- What about probabilistic refinement-based model checking?
- Can we qualify one target analysis tool for high assurance?
- What's the formal testing theory for a system with unknown MDP semantics?
- What are the testability hypotheses (in Gaudel's sense)?
- How do we exploit testing, proof, and model checking together?
- What about uncertainty modelling and runtime verification?
- How do we develop, apply, and evaluate uncertain systems?
- We have described preliminary work towards answering these questions.

[^0]: This talk is dedicated with affection
 to Jan Peleska on his 65th birthday.
 We discuss a unifying theory of
 uncertainty in robotics and CPS.
 Mo nice Heara \& Ho'c I ITP and
 Hehner's

 This is a long-term research agenda
 at York and Aarhus universities.
 We start with a semantics for Prism
 and end with many questions.

[^1]: | Model | Properties | Simulator | Log |
 | :--- | :--- | :--- | :--- |

