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Jan Peleska

I This talk is dedicated with affection
to Jan Peleska on his 65th birthday.

I We discuss a unifying theory of
uncertainty in robotics and CPS.

I We use Hoare & He’s UTP and
Hehner’s probabilistic predicative
programming.

I This is a long-term research agenda
at York and Aarhus universities.

I We start with a semantics for Prism
and end with many questions.
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This Paper is Inspired by Jan’s Work
I We first met at 09:00 on the 10th of June 1991 at DST in Hamburg.
I DST were developing the Airbus Interphone System.
I Jan made me adapt my course examples and practicals.
I We found a significant error in the Interphone specification.
I Cabin crew could get locked out of a conference call during an emergency.
I We later worked together on European projects, such as INTO-CPS.
I Jan and Wen-ling developed a runtime verification technique for CSP.
I This checks that a system under test satisfies properties over CSP failures.
I This depends on the soundness of the two-way translation.
I With Ana, the four of us formalised the soundness argument.
I Normalised graphs in CSP model checking, action systems, Kripke structures.
I This paper extends that work to probabilistic Kripke structures.
I Objective Unify formalisms and tools for treating uncertainty in robotics.
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Uncertainty in Robotics

I Autonomous vehicle tries to pass quickly through intersection without signals.

I Counterintuitively, the vehicle slows down instead of accelerating.

I It gathers information on the intentions of pedestrians and other vehicles.

I This information helps the vehicle coordinate its actions with others.

I It achieves its overall goal faster in the long term.

I Robot manipulator tries to push an irregular object to a designated pose.

I The robot must minimise the number of actions.

I It decides not to push the object directly towards the final pose.

I It uses the first pushes to gather information on the object’s centre of mass.

I The later pushes are now much more effective.
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A Unifying Framework for Uncertainty?
I pGCL, MDPs, POMDPs, dynamic epistemic logic, epistemic mu-calculus, . . .
I What would a unifying theory for uncertainty look like?

I Research Hypothesis

We can unify different theories of uncertainty using:

UTP probabilistic relations. Bayesian semantics. Information theory.

I We focus on a specific domain initially: robot planning.

Modelling and solving robot decision and control tasks under uncertainty.

Noisy sensing, imperfect control, environment changes, inaccurate models.

Localisation and navigation, search and tracking, autonomous driving.

Multi-robot systems, object manipulation, human-robot interaction.
I Robot reasons about outcomes of actions with limited sensor information.
I Actions have short-term rewards and inform long-term success.
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Prism DTMC Example
I Throw a pair of six-sided dice until they are equal. How long will this take?� �

1 dtmc
2

3 module TwoDice
4 u: [1..6];
5 v: [1..6];
6 s: [0..3] init 0;
7 [] s=0 -> 1/6: (u’=1) & (s’=1) + 1/6: (u’=2) & (s’=1) + 1/6: (u’=3) & (s’=1) +
8 1/6: (u’=4) & (s’=1) + 1/6: (u’=5) & (s’=1) + 1/6: (u’=6) & (s’=1) ;
9 [] s=1 -> 1/6: (v’=1) & (s’=2) + 1/6: (v’=2) & (s’=2) + 1/6: (v’=3) & (s’=2) +
10 1/6: (v’=4) & (s’=2) + 1/6: (v’=5) & (s’=2) + 1/6: (v’=6) & (s’=2) ;
11 [] s=2 & u=v -> (s’=3);
12 [] s=2 & u!=v -> (s’=0);
13 [] s=3 -> true;
14 endmodule
15

16 rewards "total_time"
17 s=0 : 1;
18 endrewards
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Prism Check

I We have a Prism model.
I But what properties does it have?
I How many throws of the dice-pair?
I How many throws, on average, do

we need to terminate?
I Reward structure gives time steps.
I What’s the expected time taken to

reach, from the initial state, s=3?
I Prism says: you need

5.99997028280834 throws.
I But what if we have 10 dice?
I How many throws do we now need?
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Why Do We Need another Formal Semantics for Prism?

Prism’s process algebra operators

I CSP-based. But some aspects are only syntactic, not semantic.

I Prism action labels are not CSP Events.

I Prism deadlock is not CSP Deadlock.

I Prism hiding is not CSP Hiding.

More powerful verification and validation of probabilistic systems

I Refinement Theory Correctness by construction.

I Assertions Theorem proving. Design by contract. Runtime checking.

I Tool integration Model checking + theorem proving.

I Testing Theory (Probabilistic) testing can be formal, too.
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Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



14/29

Kripke Structure

I Describes models with propositionally labelled states.

I Temporal logic semantics traditionally given using Kripke structures.

I Structure consists principally of a transition relation.

I Nodes represent reachable system states. Edges represent state transitions.

I Labelling function maps a node to a set of properties holding in that state.

I Why use Kripke structures?

They represent closed finite-state models with independent state encoding.

I This captures the notion of observability to relate to actual executions.

I An observer might not be able to read all state variables.

I Trace: sequence of observable parts of states.



15/29

Unity Single Command Semantics

I Prism \ Probability = Unity [Chandy & Misra]

I Guarded command c ∈ C []g->u.

I Sub-state space Sc = { s ∈ S | s |= g } UTP: this is simply g.

I Guard g predicate over variables in V .

I Command u assignments to variables in V .

I Update u of c u : Sc → S.

I Example [] x>y -> (x’=y) & (y’=x);

I Semantics x > y ∧ (x ′ = y) ∧ (y ′ = x) ∧ (z ′ = z).

I Extension variables (unmentioned) stay the same: Example (z’=z).
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Prism System Module Semantics

I Single Command Semantics. Assumptions: the same as Unity.
I Command c of C is schematically: [a] g → p1 : u1 + · · ·+ pn : un

I Action label a is needed only for flattening process-algebraic operators.
I Guard g is a predicate over the variables in V .
I g defines global state subset Sc = { s ∈ S | s |= g }.
I Update uj of c: transition assigning values to variables uj : Sc → S.
I Let uj =

∧
i : 1 . .m • (v ′i = ei).

I Each s ∈ Sc , is an m-tuple: i ∈ 1 . .m⇒ (ti = ei(s)).
I Update uj in c occurs with probability pj .
I c defines, for s ∈ Sc , a function µc,s : S → R≥0, for t ∈ S:

µc,s(t) =̂
∑

j : 1 . . n • [[[uj(s) = t ]]] ∗ pj

I DTMC and MDP syntax guarantees µc,s is a probability distribution over S.
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Prism DTMC Semantics

I A discrete-time Markov chain is defined by a transition probability matrix.

I First, define the matrix, for any s, t ∈ S:

P(s, t) =̂
∑

c : C • µc,s(t)

I The rows of P may sum to more than 1. Why?

I Local nondeterminism in a module: overlapping guards.

I Prism displays a warning when local nondeterminism is detected in a DTMC.

I Nondeterministic choice is randomised.

I A probability distribution is obtained by normalising P:

P(s, t) =̂ P(s, t)/
∑

u : S • P(s,u)

I Replaces nondeterminism by uniform probabilistic choice between transitions.
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Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



19/29

Discrete Distribution
I Suppose that e is an expression with free variables v .
I Expression e is a discrete distribution if it satisfies two criteria:

1. Its value (for all assignments to v ) is a probability: [0 ≤ e ≤ 1 ].

2. Its sum (for all assignments to v ) is 1:
∑

v • e = 1.

I Suppose n and m are strictly positive integers.
I Then (1/2)n+m is a distribution because it satisfies the two criteria:

1. Values: ∀n,m : 1 . .∞ • 0 ≤ (1/2)n+m ≤ 1.

2. Sum: (
∑

n,m : 1 . .∞ • (1/2)n+m ) = 1.

I Suppose n and m are nonnegative integers (in contrast to the last example).

I (1/2)n+m is not a distribution, because it fails the second criterion:

(
∑

n,m : 0 . .∞ • (1/2)n+m ) = 1



20/29

Probability Distributions

I Distribution: frequency of occurrence of values of variables.
I Example 2−n: says n has value 3 1⁄8 of the time.
I Example (1/2)n+m: says state (n = 3) ∧ (m = 1) occurs 1⁄16 of the time.
I If n,m : N1 are distributed as (1/2)n+m, then∑

m : N1 • (1/2)n+m = (1/2)n

gives the frequency of occurrence of values of n.
I Independent variables: product of distributions partitioning variables.
I Example: (1/2)n+m = (1/2)n ∗ (1/2)m, so n and m are independent.
I Average value of e as v varies according to distribution p is

∑
v • e ∗ p.

I Example: average value of n2 as n varies over N1 with (1/2)n is∑
n : N1 • n2 ∗ (1/2)n = 6.

I Average value of n −m as n and m vary over N1 with distribution (1/2)n+m is∑
n,m : N1 • (n −m) ∗ (1/2)n+m = 0.
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Normalisation

Definition (Normalisation)
If E ’s variables are n and m, then

N (E) =̂ E /
(∑

n,m • E
)

I Let E be an expression:
I Whose value (for all assignments of values) is nonnegative.
I Whose sum (over all assignments of values) is strictly between 0 and∞.

I Then, the normalisation N (E) is a distribution.

I Its values are in the same proportion as the values of E .
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A Probabilistic Programming Language

I Iverson [[[P ]]] = (1 2 P 3 0) = if P then 1 else 0.

I Inaction skip =̂ [[[ x ′ = x ]]] ∗ [[[ y ′ = y ]]]

I Assignment x := e =̂ [[[ x ′ = e ]]] ∗ [[[ y ′ = y ]]]

I Conditional if c then A else B =̂ c ∗ A + (1− c) ∗ B

I Sequence A ; B =̂
∑

x0, y0 • A[x0, y0/x ′, y ′] ∗ B[x0, y0/x , y ]

I Normalisation A ‖ B =̂ N (A ∗ B)

I Galois connection 〈〈〈N〉〉〉I w P = [N ≤ [[[P ]]]I ]
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Iverson Laws

〈〈〈N〉〉〉 = N > 0

〈〈〈1〉〉〉 = true

〈〈〈0〉〉〉 = false

[N ≤ [[[ 〈〈〈N〉〉〉 ]]] ]

〈〈〈[[[P ]]]〉〉〉 w P

[¬ 〈〈〈N〉〉〉 ] = [N = 0 ]

P w Q ⇒ [[[P ]]] ≤ [[[Q ]]]

M ≤ N ⇒ 〈〈〈M〉〉〉 w 〈〈〈N〉〉〉

[[[P ∧ Q ]]] = [[[P ]]] ∗ [[[Q ]]]

[[[P ∨ Q ]]] = [[[P ]]] + [[[Q ]]]− [[[P ]]] ∗ [[[Q ]]]

[[[¬ P ]]] = 1− [[[P ]]]

[[[ k ∈ A ]]] + [[[ k ∈ B ]]] = [[[ k ∈ A∪B ]]] + [[[ k ∈ A∩B ]]]

[[[ x ∈ A ∩ B ]]] = [[[ x ∈ A ]]] ∗ [[[ x ∈ B ]]]

[[[ ∀m • P(k ,m) ]]] =
∏

m • [[[P(k ,m) ]]]

[[[ ∃m • P(k ,m) ]]] = min{1,
∑

m • [[[P(k ,m) ]]]}

#{m | P(k ,m) } =
∑

m • [[[P(k ,m) ]]]
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∑
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Example: Killer Robots

I cyberman and the dalek attack the Tardis daily.
I cyber has probability 1⁄2 of success.
I dalek has probability 3⁄10 of success.
I cyber attacks with probability of 3⁄5.
I dalek attacks with probability of 2⁄5.
I What is the probability of a successful attack?
I Conditional probability: P(A ∧ B) = P(A) ∗ P(B | A).

P(cyber) = 3⁄5, P(succ | cyber) = 1⁄2,
P(dalek) = 2⁄5, P(succ | dalek) = 3⁄10

P(succ)
= P(cyber ∧ succ) + P(dalek ∧ succ)
= P(cyber)∗P(succ | cyber)+P(dalek)∗P(succ | dalek)
= 3⁄5 ∗ 1⁄2 + 2⁄5 ∗ 3⁄10 = 21⁄50
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Computational Approach

P(cyber) = 3⁄5,P(succ | cyber) = 1⁄2,
P(dalek) = 2⁄5,P(succ | dalek) = 3⁄10

Tardis =

if 3⁄5 then
( robot := cyber ;
if 1⁄2 then attack := succ
else attack := fail )

else
( robot := dalek ;
if 3⁄10 then attack := succ
else attack := fail )

� �
1 dtmc
2 const int cyber=1;
3 const int dalek=2;
4 const int succ=1;
5 const int fail=2;
6 module Tardis
7 robot : [1..2] init 1;
8 attack : [1..2] init 1;
9 s : [0..3] init 0;
10 [] s=0 -> 3/5: (robot’=cyber) & (s’=1)
11 + 2/5: (robot’=dalek) & (s’=2);
12 [] s=1 -> 1/2: (attack’=succ) & (s’=3)
13 + 1/2: (attack’=fail) & (s’=3);
14 [] s=2 -> 3/10:(attack’=succ) & (s’=3)
15 + 7/10:(attack’=fail) & (s’=3);
16 [] s=3 -> true;
17 endmodule
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Computational Approach

Tardis = if 3⁄5 then ( robot := cyber ; if 1⁄2 then attack := succ else attack := fail )
else ( robot := dalek ; if 3⁄10 then attack := succ else attack := fail )

= 3⁄10 ∗ (robot ,attack := cyber, succ) + 3⁄10 ∗ (robot ,attack := cyber, fail)
+ 6⁄50 ∗ (robot ,attack := dalek, succ) + 14⁄50 ∗ (robot ,attack := dalek, fail)

I Probabilistic final states: assignments. Semantically equivalent to:
I Probability that attack ′ = succ: 3⁄10 + 6⁄50 = 21⁄50, the same answer as before.
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Further Work (1)

I Apply this semantics to unifying theories of uncertainty.

I Partially observable Markov decision processes, dynamic epistemic logic, . . .

I Research on describing and analysing uncertainty raises many questions.

I What would a unifying theory for uncertainty look like?

I What connects the semantics and tools that support different approaches?

I Can we establish more connections?

I Can we support probabilistic/statistical model checking with theorem proving?

I Can we support theorem proving with probabilistic/statistical model checking?

I Can we establish uncertainty properties using CbyC?
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Further Work (2)

I What about probabilistic refinement-based model checking?

I Can we qualify one target analysis tool for high assurance?

I What’s the formal testing theory for a system with unknown MDP semantics?

I What are the testability hypotheses (in Gaudel’s sense)?

I How do we exploit testing, proof, and model checking together?

I What about uncertainty modelling and runtime verification?

I How do we develop, apply, and evaluate uncertain systems?

I We have described preliminary work towards answering these questions.
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