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Ernst-Rüdiger Olderog

Christopher Bischopink

Festkolloquium for Jan Peleska

3 March 2023



Collaboration with Jan

Project UniForM Workbench 1995–98 [KPOB99]:

I Bernd Krieg-Brückner

I Jan Peleska

I Ernst-Rüdiger Olderog

I Alexander Baer, Elpro LET Berlin

Part of project contents:

I Application area: railway control for trams
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Single-track Line Segment

ÜmForM Workbench: Bremer + Olde

Komponenten des DESI

bur5 + ElpioAG

SBÜ
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Collaboration with Jan

Project UniForM Workbench , 1995–98 [KPOB99]:

I Bernd Krieg-Brückner

I Jan Peleska

I Ernst-Rüdiger Olderog

I Alexander Baer, Elpro LET Berlin

Part of project contents:

I Application area: railway control for trams

I programming language ST dedicated for
Programmable Logic Controllers (PLCs).

I Henning Dierks introduced PLC-Automata [Die01]:
formal semantics amenable for real-time model checking
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From Trains to Cars: The Challenge

Cooperation with Anders P. Ravn , Aalborg University.

Prove safety (collision freedom) of
traffic manoeuvres on different types of roads.
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From Trains to Cars: The Challenge

Cooperation with Anders P. Ravn , Aalborg University.

Prove safety (collision freedom) of
traffic manoeuvres on different types of roads.

motorways: Hilscher, Linker, O. and Ravn [HLOR11]
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From Trains to Cars: The Challenge

Cooperation with Anders P. Ravn , Aalborg University.

Prove safety (collision freedom) of
traffic manoeuvres on different types of roads.

country roads: Hilscher, Linker and O. [HLO13]
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From Trains to Cars: The Challenge

Cooperation with Anders P. Ravn , Aalborg University.

Prove safety (collision freedom) of
traffic manoeuvres on different types of roads.

urban crossings: Schwammberger [Sch18]
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Spatial Properties Hilscher, Linker, O. and Ravn [HLOR11]

Safety is hybrid system verification problem:

car dynamics + car controllers + assumptions |= safety

Dedicated Multi-lane Spatial Logic inspired by work in ProCoS:

I Interval temporal logic Moszkowski [Mos85]

I Duration Calculus Zhou, Hoare and Ravn [ZHR91]
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Collision freedom is a spatial property.

Our approach is based on

spatial logic + abstract controllers

hiding car dynamics.
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Model

A

D F

C

BE1
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Preliminaries:

I Car identifiers globally unique: A,B, . . .
Set of all car identifiers: I

I Infinite road (R)

I Lanes: L = {0, . . . ,N}
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Model

claim ED F

C A

BE spd(E)

pos(E)

1

2

0

A traffic snapshot is a structure TS = (res,clm,pos,spd ,acc), where

I res/clm : I→ P(L): set of lanes each car reserves/claims,

I pos/spd/acc : I→ R: position/speed/acceleration of each car.
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Transitions

TS
α−→ TS′ for an action α of the following type:

TS
t−→ TS′ time passes

TS
acc(C ,a)−−−−−→ TS′ accelerate

TS
c(C ,n)−−−−→ TS′ claim

TS
wd c(C)−−−−−→ TS′ withdraw claim

TS
r(C)−−→ TS′ reserve

TS
wd r(C ,n)−−−−−−→ TS′ withdraw reservation
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Local View

A

D

BE

view of E

View V = (L,X ,E ), where

I L subinterval of L,

I X subinterval of R,

I E ∈ I identifier of car under consideration.
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Multi-lane Spatial Logic with Scopes
Fränzle, Hansen and Ody [FHO15]

MLSLS: Syntax

Car variables: c,d and special variable ego

Formulae ϕ

ϕ ::= true | c = d | free | re(c) | cl(c) | ` = k (atoms)

| ¬ϕ1 | ϕ1∧ϕ2 | ∃c : ϕ1 (FOL)

| ϕ1aϕ2 | ϕ2

ϕ1
| cs : ϕ1 (chop and scope)
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MLSLS: Semantics

Somewhere: 〈φ〉 ≡ truea

 true
φ

true

a true

Example : Collision check

CE
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MLSLS: Semantics

Somewhere: 〈φ〉 ≡ truea

 true
φ

true

a true

Example : Collision check

CE

〈re(ego)∧ re(c)〉
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MLSLS: Semantics

Somewhere: 〈φ〉 ≡ truea

 true
φ

true

a true

Example : Collision check

CE

〈re(ego)∧ re(c)〉

cc ≡ ∃c : c 6= ego ∧〈re(ego)∧ re(c)〉
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MLSLS: Semantics

Somewhere: 〈φ〉 ≡ truea

 true
φ

true

a true

Example : Collision check

CE

cc ≡ ∃c : c 6= ego ∧〈re(ego)∧ re(c)〉

Safety from ego’s perspective: ¬cc
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Potential collision

Claim of another car C overlaps with E ’s own reservation or claim:

3 3

2

1

2

0 0

1

E

E

C C

pc ′(ego) ≡ ∃c : c 6= ego∧〈cl(c)∧ (re(ego)∨ cl(ego))〉
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State Clock Logic Raskin and Schobbens [RS97]

The syntax of SCL formulae ψ is as follows:

ψ ::= p | ¬ψ | ψ1∨ψ2 | ψ1 U ψ2 | ψ1 S ψ2 | ψ C∼c | B∼c ψ,

where p ranges over propositional symbols and ∼ ∈ {<,≤,=,≥,>}.

I State history operator ψ C∼c specifies that

the time since ψ held at last must satisfy ∼ c .

I State prophecy operator B∼c ψ specifies that

the time until ψ holds next must satisfy ∼ c .

Models of SCL formulae are sets of timed sequences of states .
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State Clock Automata Raskin and Schobbens [RS97]

SC Automata : a variant of Timed Automata with

I a history clock xp and a prophecy clock yp

for each proposition p.

l1

Up
· · ·

l2

Clg
yDn < 2

l3

Dn
xUp ≥ 1

l4

Opg
· · ·

Properties:

SC Automata accept the timed
sequences of states that satisfy
SCL formulae.

E.g. Clg → B<2 Dn

Dn → C≥1 Up

SC Automata are complemen-
table and language inclusion
decidable.
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Timed MLSL Bischopnik and O. [BO22]

We combine SCL and MLSLS by instantiating the
uninterpreted propositions p of SCL with MLSLS formulae .

Example :

ϕ = 〈pc ′(ego)〉 → B<2 ¬〈pc ′(ego)〉

SC Automata can be used to accept TMLSL formulae.
We employ them as monitors for such formulae.
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Example: Planned Lane Change

Consider the following traffic snapshot:

1

2 A

E B

pos(A) = 0
pos(E) = 10
pos(B) = 16

spd(A) = 13
spd(E) = 9
spd(B) = 9

I Car A has a monitor for ϕ = 〈pc ′(ego)〉 → B<2 ¬〈pc ′(ego)〉:

l1
¬pc

y¬pc = 0

l2
pc

y¬pc < 2

l3
pc

¬(y¬pc < 2)

l4
. . .
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Example: Planned Lane Change

Consider the following traffic snapahot:

1

2 A

E B

pos(A) = 0
pos(E) = 10
pos(B) = 16

spd(A) = 13
spd(E) = 9
spd(B) = 9

I Car A has a monitor for ϕ = 〈pc ′(ego)〉 → B<2 ¬〈pc ′(ego)〉.
I Plan of car E for near future:

ω = 〈(c(E ,2),3.5),(r(E ),8)〉

I Car E broadcasts this plan to neighbouring cars.

18/29 Space and Time for Traffic Manoeuvres



Supervisor in car A

Car A receives plan of E for near future

ω = 〈(c(E ,2),3.5),(r(E ),8)〉

via com?ω of the negotiation transitions of its supervisor

l • l
com?(ω)

check(ω)
allow !(ego, ω)

¬check(ω)
deny !(ω)

which checks it using its monitor for ϕ.
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Timely resolution

Car A receives plan of E : ω = 〈(c(E ,2),3.5),(r(E ),8)〉

Supervisor in car A performs check(ω) :

1

2 A

E B

pos(A) = 0
pos(E) = 10
pos(B) = 16

spd(A) = 13
spd(E) = 9
spd(B) = 9

A

E B

pos(A) = 45.5
pos(E) = 41.5
pos(B) = 47.5

A

E B

pos(A) = 48.75
pos(E) = 43.75
pos(B) = 49.75

t = 3.5,
c(E, 2)

t = 0.25

It leads to potential collision 〈pc ′(A)〉 at time 3.5

that is resolved after 0.25 time units.

So supervisor finds satisfaction of ϕ and broadcasts allow !(A,ω) .
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Controller C, here in car E

Plan of E : ω = 〈(c(E ,2),3.5),(r(E ),8)〉

l0 • l1 l2

a!(α, t)
ω.add(α, t)

a?(α, t)
ω.add(α, t)

is rts(ω)

com!(ω)

com?(ω)

allow?(c, ω)
β.add(c)

all allowed(β)

execute(ω)

is empty(ω)

deny?(ω)
ω.clear()
β.clear()

Here car A broadcasts allow !(A,ω) .

Thus E can execute its plan.
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Terminology

I Monitor Aϕ : SC Automaton for checking a TMLSL formula ϕ

I Supervisor ( Enforcer ) A′ϕ :

monitor Aϕ enriched with negotiating transitions

l • l
com?(ω)

check(ω)
allow !(ego, ω)

¬check(ω)
deny !(ω)

I Controller C:

l0 • l1 l2

a!(α, t)
ω.add(α, t)

a?(α, t)
ω.add(α, t)

is rts(ω)

com!(ω)

com?(ω)

allow?(c, ω)
β.add(c)

all allowed(β)

execute(ω)

is empty(ω)

deny?(ω)
ω.clear()
β.clear()
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Checking a sequence of actions

Consider the monitor Aϕ for the TMLSL formula ϕ.

Given a sequence of actions ω up to a time bound t with TS0
ω−→ TS.

Question: Does TS0, ω �t ϕ hold ?

Lemma

For l ∈ L0 with TS0 � L(l) the following holds:

check(TS0, l ,ω) = true

{by def.} iff ∃ l ′ ∈ locset(Aϕ ,TS0,ω)∧ l ′ 6∈ bad

iff TS0, ω �t ϕ.
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Soundness

Theorem

For every finite timed state sequence m ∈ L(A′ϕ || C) up to time t
there is a finite timed word of actions ω up to time t
such that

I ω has been successfully checked by the enforcer A′ϕ ,

I the states in m describe the evolution of TS0 along ω,

I ω and TS0 are a model of ϕ up to time t,

in symbols: TS0,ω �t ϕ .

Timed sequences of actions and states :

ω :
TS 0 TS 1 TS 2

. . . TSn

m :

�

s0
�

s1

�

s2
↑
t

(α0, t0) (α1, t1) (α2, t2) (αn−1, tn−1)
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Completeness

Theorem

Every finite timed word of actions ω with TS0,ω �t ϕ satisfies

m(TS0,ω) ∈ L(A′
ϕ,L′0
|| C) ,

where L′0 = { l ∈ L0 | TS0 � L(l) }.

Timed sequences of actions and states :

ω :
TS 0 TS 1 TS 2

. . . TSn

m :

�

s0

�

s1

�
s2

↑
t

(α0, t0) (α1, t1) (α2, t2) (αn−1, tn−1)
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Conclusion

We presented an approach for autonomous cars on motorways

I to check their manoeuvre plans for the near future
before carrying them out,

I based on a combination of a spatial and a timed logic.

Future work:

I Planning beyond a time bound t ?

I How to arrive at the manoeuvre plans ?

I Other types of roads.
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Dear Jan,

Congratulations

to your achievements in

applying mathematical rigour to real practical problems!

All the best for your future!
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