Inhomogeneous Domain Walls

Existence and Propagation of Interfaces in Nanowires

Lars Siemer ^a, Ivan Ovsyannikov ^b, Jens Rademacher ^a

^a University of Bremen, ^b University of Hamburg

Domain Walls

Magnetization dynamics $m(x,t) \in \mathbb{S}^2$ with spin-transfer governed by **Landau-**Lifschitz-Gilbert-Slonczewski equation

$$\partial_t \boldsymbol{m} - \alpha \boldsymbol{m} \times \partial_t \boldsymbol{m} = -\boldsymbol{m} \times \boldsymbol{h}_{\text{eff}} + \boldsymbol{m} \times (\boldsymbol{m} \times \boldsymbol{J}).$$

For axial symmetry and polarized spin-torque in direction $e_3 \in \mathbb{S}^2$:

$$oldsymbol{h}_{\mathsf{eff}} = \partial_x^2 oldsymbol{m} + (h - \mu \, oldsymbol{m}) oldsymbol{e}_3 \,, \quad oldsymbol{J} = rac{eta}{1 + c_{\mathsf{cp}} m_3} oldsymbol{e}_3 \,,$$

damping $\alpha > 0$, applied field $h \in \mathbb{R}$, anisotropy $\mu \in \mathbb{R}$, and $\beta \geq 0$ as well as $c_{\rm cp} \in (-1,1)$ describe strength of spin-transfer and ratio of polarization.

Domain Walls (DWs) separate uniform (spatial) states, i.e. heteroclinics, and are relative equilibria (w.r.t. translation, rotation) of the form

$$\boldsymbol{m}(\xi,t) = \boldsymbol{m}_0(\xi) e^{\mathrm{i}\varphi(\xi,t)}$$

 $\xi=x-st$, $\varphi(\xi,t)=\phi(\xi-st)+\Omega t$, speed s, frequency Ω , and ${m m}_0(\xi)=$ $(\sin \theta, 0, \cos \theta)^{\mathsf{T}}$. Define $q(\xi) := \phi' = (m_1 m_2' - m_2 m_1') \cdot (1 - m_3^2)^{-1}$.

Definition 1. DW with constant ϕ , i.e. $q \equiv 0$, is called **homogeneous** and **inhomogeneous** otherwise. It is called **flat** if q has a limit at $|\xi| \to \infty$ and

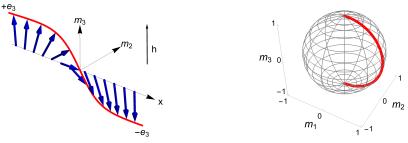


Figure 1. Homogeneous DW profile (left) and projection onto sphere (right). Parameters: $\alpha=0.5, \beta=0.5$ $0.1, \mu = -1, h = 50, c_{\rm cp} = 0, s_0 = 19.92, \Omega_0 = 40.4$

Existence

If $c_{\rm cp}=0$ (or $\beta=0$), family of explicit homogeneous DWs for $\mu<0$ (nanowire) $known^{1,2}$

$$m_0 = (\operatorname{sech}(\sigma\sqrt{-\mu}\xi), 0, -\tanh(\sigma\sqrt{-\mu}\xi))^{\mathsf{T}},$$

parameteried by $\Omega_0 = \frac{h + \alpha \beta}{1 + \alpha^2}$, $s_0^2 = -\frac{(\beta - \alpha h)^2}{\mu(1 + \alpha^2)^2} > 0$ ($\sigma = 1$ for $s_0 > 0$, $\sigma = -1$ for $s_0 < 0$). Smooth extension to $s_0 = 0$ (standing front) as $h \to \beta/\alpha$ (both sides).

Question: what happens for $c_{\mathrm{cp}} \neq 0$? Idea, perturb away from $m{m}_0$! Focus on right-moving DWs, i.e. $s \ge 0$.

Theorem 1 (point-to-point). For any parameter set (α, β, h, μ) in case $\beta/\alpha \leq$ $h < h^*, h^* \coloneqq \beta/\alpha - 2\mu - 2\mu/\alpha^2$, or $h > h^*$ with $\mu < 0$, m_0 lies in a smooth family $m{m}_{c_{ ext{cp}}}$ of DWs, where in the first case these are locally unique near $m{m}_0$ and (s,Ω) are functions of parameters close to (s_0,Ω_0) . Moreover, if $c_{\rm cp}=0$ and $(s,\Omega) \neq (s_0,\Omega_0)$, or $c_{\rm cp} \neq 0$, these are inhomogeneous flat DWs.³

Theorem 2 (point-to-cycle). In case $h=h^*$ with $\mu<0$, consider m_0 for parameters satisfying $\Omega=s^2/2+eta/lpha$ and varying $(c_{
m cp},s,h).$ Flat DWs occur at most on a surface in the $s,h,c_{
m cp}$ parameter space and, for eta
eq 0, satisfy $|s_{\varepsilon}|^2 + |h_{\varepsilon}|^2 = \mathcal{O}(|c_{\rm cp}|^3)$, more precisely (1). Otherwise DWs are non-flat, in particular all DWs not equal to m_0 for $c_{cp} = 0$ or $\beta = 0$ are non-flat.³

Remark 1: For $h = h^*$, existence of 'Energy' at target state $\theta = \pi$, i.e. $m_3 = -1$ \Rightarrow right asymptotic limit $(\xi o \infty)$ of perturbed (in $c_{
m cp}$) heteroclinic is either perturbed equilibrium or periodic orbit. Hence variation does not have a limit in general, but energy does and difference between perturbed equilibrium and heteroclinic at $\theta = \pi$, w.r.t. energy:

$$(1) \quad \frac{(1+\alpha^2)\pi^2}{\alpha\rho^2\mu\sqrt{-\mu}}\left(-\frac{\mu(1+\alpha^2)(4+\alpha^2)}{\alpha}\overline{s}^2 - \frac{2\sqrt{-\mu}(2+\alpha^2)}{\alpha}\overline{s}\overline{h} + \overline{h}^2\right) + \text{h.o.t.},$$

where $\overline{s} = s - s_0$, $\overline{h} = h - h_0$, $\rho = \exp(\pi/\alpha) - \exp(-\pi/\alpha)$.

Remark 2: Existence results also valid for left-moving walls, hence $\forall h \in \mathbb{R}$. Moreover, also in case $\beta = 0$, i.e., for the (well-known) **LLG** equation.

Numerical Continuation

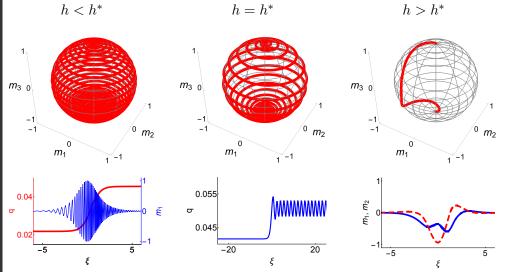
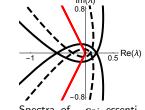


Figure 2. DWs on \mathbb{S}^2 (uppper panel), computed by continuation up to $c_{\rm cp}=0.5$ for $\alpha=0.5$, $\beta=0.1$, $\mu=-1$ fixed. Left column: $h=0.5,\,s=0.112,\,\Omega=0.447$ and zoom-in on m_1 (blue) and q (red) component (lower left). Note change of frequency of m_1 . Center column (**point-to-cycle**): $h = h^* = 10.2$, s=4 , $\Omega=8.2$ and zoom-in on q component (lower center). Right column: h=50 , s=19.92 , $\Omega=40.4$ and zoom-in on m_1 (blue solid) and m_2 (red dashed) component (lower right).

Propagation

Perturbations tangential to sphere, asymptotic state e_3 $(\xi \to -\infty)$ for $s \ge 0$ is L^2 -stable for $h > \beta^+/\alpha + \mu$, while $-e_3$ ($\xi \to +\infty$) stable for $h < \beta^-/\alpha - \mu$ and unstable for $h > \beta^-/\alpha - \mu$ with $\beta^{\pm} \coloneqq \beta/(1 \pm c_{\rm cp})$ (Hopf-type instability with frequency $\beta^-/\alpha)^2$. Assume $\frac{c_{\rm cp}\beta/\alpha}{1-c_{\rm cp}^2} > \mu$.

Due to explicitly known absolute spectrum of fronts (pulled invasion into $-e_3$), (linear) spreading speed for $\beta^-/\alpha - \mu \le h$ is



al (solid black), weighted $(\eta = -\alpha s^*/6)$ essential (dashed black), absolute (solid red). $\alpha = 0.5, \beta =$ $0.1, \mu = -1, c_{\rm cp} = 0, h =$

$$s^* = 2\sqrt{\frac{h + \mu - \boldsymbol{\beta}^-/\alpha}{1 + \alpha^2}} \ .$$

Remark 3: Selection of (linear) spreading frequency numerically observed to be $\Omega^* = (s^*)^2/2 + \beta^-/\alpha$, hence selection of **non-flat** DWs (see **Theorem 2**). Note that frequency does not effect real part of spectra.

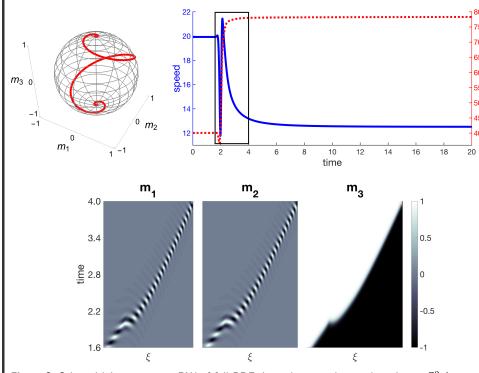


Figure 3. Selected inhomogeneous DW of full PDE dynamics over time projected onto \mathbb{S}^2 (upper left) with freezing of speed and frequency (upper right). Perturbed homogeneous DW as initial data with $lpha\,=\,0.5, eta\,=\,0.1, \mu\,=\,-1, h\,=\,50, c_{
m cp}\,=\,0.$ Selected spreading speed $s^*\,=\,12.5$ and frequency $\Omega^*=78.28.$ Snapshot of non-freezed components (lower row) in transition (from t=1.6 to t=4, cf.

³Siemer, L., & Ovsyannikov, I., & Rademacher, J. (Preprint). Inhomogeneous domain walls in spintronic nanowires.

¹Goussev, A., & Robbins, J., & Slastikov, V. (2010). Domain-Wall motion in ferromagnetic nanowires driven by arbitrary time-dependent fields: An exact result. In Physical review letters, 104(14):147202

²Melcher, C., & Rademacher, J. (2017). Pattern formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations. In Journal of Nonlinear Science 27.5: 1551-1587