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P.C.: need to review dozens of papers in one month

Do it all yourself:
, Know what to expect
/ Give up social life and face

the consequences: alcohol,
divorce, depression. . .

Rely on others:
, Save your social life
/ Maybe they don’t want to
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A bit more formally

Two ways to get a review
Ï expensive: do it yourself
Ï cheap but uncertain: ask for a subreviewer

Objectives:
Ï Provide a model to describe this problem
Ï Design strategies which minimize the expected cost

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 3 / 23



Model

N papers to review
Ï Attempt to recruit a subreviewer costs 1
Ï Reviewing yourself paper j costs Cj ≫ 1

Review requests
Ï Usually rejected: probability pj
Ï pi ,j is monotonically increasing in i

Gather requests in rounds
Ï k rounds where several requests can be sent (R1, R2, . . . , Rk)
Ï 1 round to review the remaining papers yourself

Realistic (?) assumptions
Ï Reviews are accepted/rejected quickly (one round)
Ï Promised reviews are completed
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Outline

1 Optimal strategy for unbounded requests

2 Optimal strategy for bounded requests

3 Unknown rejection probability

4 Conclusion
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Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

First case: one request round

Framework
Ï Linearity of expectation: study papers independently

=⇒ Focus on one paper (rejection prob. p, self-reviewing cost C)
Ï R ∈R+: number of requests sent (noninteger allowed)
Ï Objective: find R minimizing the expected cost

Expected cost: E (R)= . . .

Optimal strategy
Ï if C ≤ 1

ln1/p : send R∗ = 0 requests for a cost of C

Ï else: send R∗ = ln1/p
(
C ln 1

p

)
requests, expected cost E∗ =R∗+ 1

ln1/p

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 7 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

First case: one request round

Framework
Ï Linearity of expectation: study papers independently

=⇒ Focus on one paper (rejection prob. p, self-reviewing cost C)
Ï R ∈R+: number of requests sent (noninteger allowed)
Ï Objective: find R minimizing the expected cost

Expected cost: E (R)=R + . . .

Optimal strategy
Ï if C ≤ 1

ln1/p : send R∗ = 0 requests for a cost of C

Ï else: send R∗ = ln1/p
(
C ln 1

p

)
requests, expected cost E∗ =R∗+ 1

ln1/p

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 7 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

First case: one request round

Framework
Ï Linearity of expectation: study papers independently

=⇒ Focus on one paper (rejection prob. p, self-reviewing cost C)
Ï R ∈R+: number of requests sent (noninteger allowed)
Ï Objective: find R minimizing the expected cost

Expected cost: E (R)=R +pR . . .

Optimal strategy
Ï if C ≤ 1

ln1/p : send R∗ = 0 requests for a cost of C

Ï else: send R∗ = ln1/p
(
C ln 1

p

)
requests, expected cost E∗ =R∗+ 1

ln1/p

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 7 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

First case: one request round

Framework
Ï Linearity of expectation: study papers independently

=⇒ Focus on one paper (rejection prob. p, self-reviewing cost C)
Ï R ∈R+: number of requests sent (noninteger allowed)
Ï Objective: find R minimizing the expected cost

Expected cost: E (R)=R +pRC

Optimal strategy
Ï if C ≤ 1

ln1/p : send R∗ = 0 requests for a cost of C

Ï else: send R∗ = ln1/p
(
C ln 1

p

)
requests, expected cost E∗ =R∗+ 1

ln1/p

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 7 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

First case: one request round

Framework
Ï Linearity of expectation: study papers independently

=⇒ Focus on one paper (rejection prob. p, self-reviewing cost C)
Ï R ∈R+: number of requests sent (noninteger allowed)
Ï Objective: find R minimizing the expected cost

Expected cost: E (R)=R +pRC

Optimal strategy
Ï if C ≤ 1

ln1/p : send R∗ = 0 requests for a cost of C

Ï else: send R∗ = ln1/p
(
C ln 1

p

)
requests, expected cost E∗ =R∗+ 1

ln1/p

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 7 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

Generalisation to k rounds

Note: if C ≤ 1
ln1/p then self-review immediately

Expression of the expected cost

E (R

∗

1 , ...,R

∗

k−1,R

∗

k )=R1 +pR1
(

R2 +·· ·+pRk−2
(

Rk−1 +pRk−1
(

Rk +pRk C

)

)

)

Optimal Strategy

Ï R∗
k = ln1/p

(
C ln 1

p

)
Ï E∗

k =R∗
k + 1

ln1/p

Do you look at the deadline before accepting a review?
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Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

Monotonically increasing rejection probabilities

Generalization of the previous study: p1 ≤ p2 ≤ ·· · ≤ pk

For simplicity: assume C > 1
ln1/pk

so all Ri > 0

Number of requests per round in the optimal solution

Ï Rk = ln 1
pk

(
C ln 1

pk

)
Ï for 1≤ i < k: Ri = ln 1

pi

(
E∗

i+1 ln
1
pi

)
where E∗

i =Ri + 1
ln 1

pi

Ï R1 = ln 1
p1

(
lnp1
lnp2

(
1+ ln

(
lnp2
lnp3

(
1+ . . . ln

(
lnpk−1
lnpk

(
1+ ln

(
C ln 1

pk

)))
. . .

))))

OK, we optimized a function, but can you send 3.14159265 emails?
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Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

Optimal strategy for integral allocation

Principle: - compute backwards the noninteger optimal solution
- round to the best integer

Algorithm Backtrack
E ←C . E: expected cost of last rounds
for i from k to 1 do

Ri ←
⌊
ln 1

pi
(E ln 1

pi
)
⌋

if pRi
i E > 1+pRi+1

i E then Ri ←Ri +1

E ←Ri +pRi
i E

Expected cost of the last
round in function of R2

3 4

5

6

R2

cost

min

Instance: p1 = 1
4 , p2 = 1

2 , C = 16

Ï current solution: R1 = 0, R2 = 0 Ï cost: E = 16
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Optimal strategy for integral allocation

Principle: - compute backwards the noninteger optimal solution
- round to the best integer

Algorithm Backtrack
E ←C . E: expected cost of last rounds
for i from k to 1 do
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i E > 1+pRi+1

i E then Ri ←Ri +1

E ←Ri +pRi
i E

Expected cost of all
rounds in function of R1
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2

3

R1

cost

min

Instance: p1 = 1
4 , p2 = 1

2 , C = 16

Ï current solution: R1 = 1, R2 = 3 Ï cost: E = 5
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Simple and linear-time algorithm =⇒ optimal integral solution
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First case: constant probabilities and unbounded rounds

This section: allow only integral requests

Remark on optimal strategies
Ï Never send 2 requests in a round
Ï Determined by k∗ =#(rounds where you send 1 request)

Lemma (Optimal Strategy)
Ï if C < 1

1−p : k∗ = 0, review yourself
Ï if C > 1

1−p : k∗ =∞, keep requesting
Ï if C = 1

1−p : k∗ ∈N∪ {∞}, whatever
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Bounded rounds, constant probabilities

Framework
Ï Self-reviewing cost: C
Ï Budget of R requests
Ï Spread them among k rounds, with rejection prob. p

General algorithm
1. R∗ ← #requests sent by the solution of Backtrack
2. if R∗≤R: problem solved
3. else: find an optimal strategy which sends exactly R requests

Main idea: the way requests are spread does not depend on C

E (R1,R2, . . . ,Rk)=R1 +pR1R2 +pR1+R2R3 +·· ·+pRC

=⇒ find another C for which one optimal strategy sends R requests
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Supporting lemmas

Lemma
If R∗ >R, there exists an optimal strategy with R requests.

Lemma
When C increases, each Ri spans every integer in ascending order.

Remarks
Ï Continuous model: each Ri increases continuously with C
Ï Result: no rounding breaks this property

Lemma
There exists a value CR for which an optimal strategy sends R requests.
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Some intuition

Recall on the algorithm
Ï If one CR known =⇒ can compute OPT for C with R requests
Ï Difficulty: CR can be unique so hard to find

Example: three request rounds, p = 1/2
Ï C = 8

ü optimal strategies: R1 = 1, R2 ∈ {
1,2

}
, R3 ∈ {

2,3
}

ü use 4, 5 or 6 requests
Ï No other value of C induces 5 requests:

0

1
2
3
4
5
6

2 4 8 16
value of C

Ri in OPT

R1

R1 +R2 +R3

R2

R3
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Computing a self-reviewing cost CR from C

Algorithm ComputeCr

1: R ← #requests sent by Backtrack for a self-reviewing cost of C
2: [L,U]← [ 1

1−p ,C ] . we maintain CR ∈ [L,U] via binary search
3: Reduce [L,U] until every round satisfies Ri (U) ∈ {

Ri (L),Ri (L)+1
}

4: while ∑
i Ri (L)<R do

5: Find analytically how much to increase L to send 1 more request

0

1
2
3
4
5
6

2 4 8 16
value of C

Ri in OPT

R1

R1 +R2 +R3

R2

R3
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Lost regularity

Considered instance: 2 request rounds, p1 = 1/4, p2 = 1/2

Optimal distribution depends on C
Ï 2 requests

ü C = 16: (R1,R2)= (2,0)
ü C = 8: (R1,R2)= (1,1)

R1 can decrease while budget increases
Ï C = 16

ü 2 requests: (R1,R2)= (2,0)
ü 3 requests: (R1,R2)= (1,2)
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Results

A single paper
Ï Greedy algorithm: (k +1)-approximation
Ï Idea: assume you know Eopt

ü at round i , send Ri (Eopt)=
⌊

Eopt
/ ∏

j<i
pRj

j

⌋
until budget reached

Ï “Guess” Eopt by binary search
ü reduce an interval [L,U] ensuring:

E(
{
Ri (L)

}
)≥ (k +1)L & E(

{
Ri (U)

}
)≤ (k +1)U

ü FUN fact: Eopt might be outside the final interval

N papers sharing a common budget
Ï Solved by dynamic programming in O(NkR2)
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Unknown but constant rejection probability

Unbounded rounds
Ï Send 1 request during C rounds
Ï 2-approximation (≈ ski rental problem)

Two rounds

Ï send
⌈√

C
lnC

⌉
requests

Ï 4
(√

C
lnC +2

)
-approximation

Bounded rounds
Ï send

⌈
C

i
k+1

⌉
requests at round i

Ï (k +1)(C
1

k+1 +1)-approximation
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How to preserve your health and relationship if you have:

Many many friendly colleagues [unbounded requests]
Ï Splittable ones [non-integral requests]: exact formula
Ï Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]
Ï Insensible to deadlines [constant rejection prob.]: optimal algorithm
Ï Busy colleagues: ≈ k-approx or expensive dynamic programming

‘Unpredictable but stable’ colleagues [unknown prob.]
Ï ≈ kC1/k -approximation

Moral
Build a proper set of colleagues and study them closely

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 23 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

How to preserve your health and relationship if you have:

Many many friendly colleagues [unbounded requests]
Ï Splittable ones [non-integral requests]: exact formula
Ï Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]
Ï Insensible to deadlines [constant rejection prob.]: optimal algorithm
Ï Busy colleagues: ≈ k-approx or expensive dynamic programming

‘Unpredictable but stable’ colleagues [unknown prob.]
Ï ≈ kC1/k -approximation

Moral
Build a proper set of colleagues and study them closely

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 23 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

How to preserve your health and relationship if you have:

Many many friendly colleagues [unbounded requests]
Ï Splittable ones [non-integral requests]: exact formula
Ï Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]
Ï Insensible to deadlines [constant rejection prob.]: optimal algorithm
Ï Busy colleagues: ≈ k-approx or expensive dynamic programming

‘Unpredictable but stable’ colleagues [unknown prob.]
Ï ≈ kC1/k -approximation

Moral
Build a proper set of colleagues and study them closely

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 23 / 23



Optimal strategy for unbounded requests Optimal strategy for bounded requests Unknown rejection probability

How to preserve your health and relationship if you have:

Many many friendly colleagues [unbounded requests]
Ï Splittable ones [non-integral requests]: exact formula
Ï Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]
Ï Insensible to deadlines [constant rejection prob.]: optimal algorithm
Ï Busy colleagues: ≈ k-approx or expensive dynamic programming

‘Unpredictable but stable’ colleagues [unknown prob.]
Ï ≈ kC1/k -approximation

Moral
Build a proper set of colleagues and study them closely

M. A. Bender, S. McCauley, B. Simon, S. Singh, F. Vivien Scheduling Subreviewers 23 / 23


	Optimal strategy for unbounded requests
	Optimal strategy for bounded requests
	Constant rejection probabilities
	Monotonically increasing rejection probabilities

	Unknown rejection probability

