Resource Optimization for P.C. Members: A Subreview Article

Michael A. Bender¹ Samuel McCauley ¹ Bertrand Simon² Shikha Singh¹ Frédéric Vivien²

> 1: Stony Brook University, NY, USA. 2: INRIA, ENS Lyon and Univ. Lyon, FR.

8th International Conference on Fun with Algorithms June 2016

P.C.: need to review dozens of papers in one month

Do it all yourself:

- © Know what to expect
- Give up social life and face the consequences: alcohol, divorce, depression...

Rely on others:

- © Save your social life
- Maybe they don't want to

P.C.: need to review dozens of papers in one month

Do it all yourself:

- ③ Know what to expect
- Give up social life and face the consequences: alcohol, divorce, depression...

Rely on others:

- ☺ Save your social life
- Maybe they don't want to

P.C.: need to review dozens of papers in one month

Do it all yourself:

- C Know what to expect
- Give up social life and face the consequences: alcohol, divorce, depression...

Rely on others:

- Save your social life
- Solution Maybe they don't want to

A bit more formally

Two ways to get a review

- expensive: do it yourself
- cheap but uncertain: ask for a subreviewer

Objectives:

- Provide a model to describe this problem
- Design strategies which minimize the expected cost

N papers to review

- Attempt to recruit a subreviewer costs 1
- Reviewing yourself paper $j \operatorname{costs} C_j \gg 1$

Review requests

- Usually rejected: probability p_j
- *p_{i,j}* is monotonically increasing in *i*

Gather requests in rounds

- ▶ k rounds where several requests can be sent $(R_1, R_2, ..., R_k)$
- 1 round to review the remaining papers yourself

- Reviews are accepted/rejected quickly (one round)
- Promised reviews are completed

N papers to review

- Attempt to recruit a subreviewer costs 1
- Reviewing yourself paper $j \operatorname{costs} C_j \gg 1$

Review requests

- Usually rejected: probability p_j
- *p_{i,j}* is monotonically increasing in *i*

Gather requests in rounds

- ▶ k rounds where several requests can be sent $(R_1, R_2, ..., R_k)$
- 1 round to review the remaining papers yourself

- Reviews are accepted/rejected quickly (one round)
- Promised reviews are completed

N papers to review

- Attempt to recruit a subreviewer costs 1
- Reviewing yourself paper $j \operatorname{costs} C_j \gg 1$

Review requests

- Usually rejected: probability p_j
- *p_{i,j}* is monotonically increasing in *i*

Gather requests in rounds

- ▶ k rounds where several requests can be sent $(R_1, R_2, ..., R_k)$
- 1 round to review the remaining papers yourself

- Reviews are accepted/rejected quickly (one round)
- Promised reviews are completed

N papers to review

- Attempt to recruit a subreviewer costs 1
- Reviewing yourself paper $j \operatorname{costs} C_j \gg 1$

Review requests

- Usually rejected: probability p_{i,j} at round i
- *p_{i,j}* is monotonically increasing in *i*

Gather requests in rounds

- ▶ k rounds where several requests can be sent $(R_1, R_2, ..., R_k)$
- 1 round to review the remaining papers yourself

- Reviews are accepted/rejected quickly (one round)
- Promised reviews are completed

N papers to review

- Attempt to recruit a subreviewer costs 1
- Reviewing yourself paper $j \operatorname{costs} C_j \gg 1$

Review requests

- Usually rejected: probability p_{i,j} at round i
- *p_{i,j}* is monotonically increasing in *i*

Gather requests in rounds

- ▶ k rounds where several requests can be sent $(R_1, R_2, ..., R_k)$
- 1 round to review the remaining papers yourself

- Reviews are accepted/rejected quickly (one round)
- Promised reviews are completed

N papers to review

- Attempt to recruit a subreviewer costs 1
- Reviewing yourself paper $j \operatorname{costs} C_j \gg 1$

Review requests

- Usually rejected: probability p_{i,j} at round i
- *p_{i,j}* is monotonically increasing in *i*

Gather requests in rounds

- ▶ k rounds where several requests can be sent $(R_1, R_2, ..., R_k)$
- 1 round to review the remaining papers yourself

- Reviews are accepted/rejected quickly (one round)
- Promised reviews are completed in time

Optimal strategy for unbounded requests

Optimal strategy for bounded requests

3 Unknown rejection probability

Optimal strategy for unbounded requests

- Optimal strategy for bounded requests
- Unknown rejection probability
- 4 Conclusion

Framework

- ► Linearity of expectation: study papers independently ⇒ Focus on one paper (rejection prob. *p*, self-reviewing cost *C*)
- ▶ $R \in \mathbb{R}^+$: number of requests sent (noninteger allowed)
- Objective: find R minimizing the expected cost

Expected cost: $E(R) = \dots$

Optimal strategy

▶ if
$$C \le \frac{1}{\ln 1/p}$$
 : send $R^* = 0$ requests for a cost of C

Framework

- ► Linearity of expectation: study papers independently ⇒ Focus on one paper (rejection prob. *p*, self-reviewing cost *C*)
- ▶ $R \in \mathbb{R}^+$: number of requests sent (noninteger allowed)
- Objective: find R minimizing the expected cost

Expected cost: $E(R) = R + \dots$

Optimal strategy

▶ if
$$C \le \frac{1}{\ln 1/p}$$
 : send $R^* = 0$ requests for a cost of C

Framework

- ► Linearity of expectation: study papers independently ⇒ Focus on one paper (rejection prob. *p*, self-reviewing cost *C*)
- ▶ $R \in \mathbb{R}^+$: number of requests sent (noninteger allowed)
- Objective: find R minimizing the expected cost

Expected cost: $E(R) = R + p^R \dots$

Optimal strategy

▶ if
$$C \le \frac{1}{\ln 1/p}$$
 : send $R^* = 0$ requests for a cost of C

Framework

- ► Linearity of expectation: study papers independently ⇒ Focus on one paper (rejection prob. *p*, self-reviewing cost *C*)
- ▶ $R \in \mathbb{R}^+$: number of requests sent (noninteger allowed)
- Objective: find R minimizing the expected cost

Expected cost: $E(R) = R + p^R C$

Optimal strategy

• if
$$C \le \frac{1}{\ln 1/p}$$
 : send $R^* = 0$ requests for a cost of C

Framework

- ► Linearity of expectation: study papers independently ⇒ Focus on one paper (rejection prob. *p*, self-reviewing cost *C*)
- ▶ $R \in \mathbb{R}^+$: number of requests sent (noninteger allowed)
- Objective: find R minimizing the expected cost

Expected cost: $E(R) = R + p^R C$

Optimal strategy

• if
$$C \le \frac{1}{\ln 1/p}$$
 : send $R^* = 0$ requests for a cost of C

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

$$E(R_1, ..., R_{k-1}, R_k) = R_1 + p^{R_1} ($$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

$$E(R_1, ..., R_{k-1}, R_k) = R_1 + p^{R_1} (R_2 + \dots + p^{R_{k-2}} ())$$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

$$E(R_1, ..., R_{k-1}, R_k) = R_1 + p^{R_1} (R_2 + \dots + p^{R_{k-2}} (R_{k-1} + p^{R_{k-1}} ()))$$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

$$E(R_1, ..., R_{k-1}, R_k) = R_1 + p^{R_1} (R_2 + \dots + p^{R_{k-2}} (R_{k-1} + p^{R_{k-1}} (R_k + p^{R_k} C)))$$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

Expression of the expected cost

$$E(R_1, ..., R_{k-1}, R_k^*) = R_1 + p^{R_1} (R_2 + \dots + p^{R_{k-2}} (R_{k-1} + p^{R_{k-1}} (E_k^*)))$$

Optimal Strategy

•
$$R_k^* = \ln_{1/p} \left(C \ln \frac{1}{p} \right)$$

•
$$E_k^* = R_k^* + \frac{1}{\ln 1/p}$$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

Expression of the expected cost

$$E(R_1,...,R_{k-1}^*,R_k^*) = R_1 + p^{R_1}(R_2 + \dots + p^{R_{k-2}}(E_{k-1}^*))$$

Optimal Strategy

•
$$R_{k-1}^* = \ln_{1/p} \left(E_k^* \ln \frac{1}{p} \right) = \ln_{1/p} \left(1 + \ln(C \ln \frac{1}{p}) \right)$$

•
$$E_{k-1}^* = R_{k-1}^* + \frac{1}{\ln 1/p}$$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

Expression of the expected cost

$$E(R_1^*, ..., R_{k-1}^*, R_k^*) = E_1^*$$

Optimal Strategy

$$R_1^* = \ln_{1/p} \left(E_2^* \ln \frac{1}{p} \right) = \ln_{1/p} \left(1 + \ln \left(1 + \dots \ln \left(1 + \ln \left(C \ln \frac{1}{p} \right) \right) \dots \right) \right)$$

•
$$E_1^* = R_1^* + \frac{1}{\ln 1/p}$$

Note: if
$$C \le \frac{1}{\ln 1/p}$$
 then self-review immediately

Expression of the expected cost

$$E(R_1^*, ..., R_{k-1}^*, R_k^*) = E_1^*$$

Optimal Strategy

$$R_1^* = \ln_{1/p} \left(E_2^* \ln \frac{1}{p} \right) = \ln_{1/p} \left(1 + \ln \left(1 + \dots \ln \left(1 + \ln \left(C \ln \frac{1}{p} \right) \right) \dots \right) \right)$$

•
$$E_1^* = R_1^* + \frac{1}{\ln 1/p}$$

Do you look at the deadline before accepting a review?

Generalization of the previous study: $p_1 \le p_2 \le \cdots \le p_k$

For simplicity: assume $C > \frac{1}{\ln 1/p_k}$ so all $R_i > 0$

Number of requests per round in the optimal solution

$$R_{k} = \ln_{\frac{1}{p_{k}}} \left(C \ln_{\frac{1}{p_{k}}} \right)$$

$$for \ 1 \le i < k: \ R_{i} = \ln_{\frac{1}{p_{i}}} \left(E_{i+1}^{*} \ln_{\frac{1}{p_{i}}} \right) \text{ where } E_{i}^{*} = R_{i} + \frac{1}{\ln \frac{1}{p_{i}}}$$

$$R_{1} = \ln_{\frac{1}{p_{1}}} \left(\frac{\ln p_{1}}{\ln p_{2}} \left(1 + \ln \left(\frac{\ln p_{2}}{\ln p_{3}} \left(1 + \dots \ln \left(\frac{\ln p_{k-1}}{\ln p_{k}} \left(1 + \ln \left(C \ln \frac{1}{p_{k}} \right) \right) \right) \dots \right) \right) \right)$$

Generalization of the previous study: $p_1 \le p_2 \le \cdots \le p_k$

For simplicity: assume $C > \frac{1}{\ln 1/p_k}$ so all $R_i > 0$

Number of requests per round in the optimal solution

Generalization of the previous study: $p_1 \le p_2 \le \cdots \le p_k$

For simplicity: assume
$$C > \frac{1}{\ln 1/p_k}$$
 so all $R_i > 0$

Number of requests per round in the optimal solution

Generalization of the previous study: $p_1 \le p_2 \le \cdots \le p_k$

For simplicity: assume
$$C > \frac{1}{\ln 1/p_k}$$
 so all $R_i > 0$

Number of requests per round in the optimal solution

$$R_{k} = \ln_{\frac{1}{p_{k}}} \left(C \ln_{\frac{1}{p_{k}}} \right)$$

$$for \ 1 \le i < k: \ R_{i} = \ln_{\frac{1}{p_{i}}} \left(E_{i+1}^{*} \ln_{\frac{1}{p_{i}}} \right) \text{ where } E_{i}^{*} = R_{i} + \frac{1}{\ln \frac{1}{p_{i}}}$$

$$R_{1} = \ln_{\frac{1}{p_{1}}} \left(\frac{\ln p_{1}}{\ln p_{2}} \left(1 + \ln \left(\frac{\ln p_{2}}{\ln p_{3}} \left(1 + \dots \ln \left(\frac{\ln p_{k-1}}{\ln p_{k}} \left(1 + \ln \left(C \ln \frac{1}{p_{k}} \right) \right) \right) \dots \right) \right) \right)$$

OK, we optimized a function, but can you send 3.14159265 emails?

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Algorithm BACKTRACK $E \leftarrow C \Rightarrow E$: expected cost of last rounds for *i* from *k* to 1 do $R_i \leftarrow \left\lfloor \ln_{\frac{1}{p_i}} (E \ln \frac{1}{p_i}) \right\rfloor$ if $p_i^{R_i} E > 1 + p_i^{R_i + 1} E$ then $R_i \leftarrow R_i + 1$ $E \leftarrow R_i + p_i^{R_i} E$

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Instance: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16

• current solution: $R_1 = 0$, $R_2 = 3$

▶ cost: *E* = 16

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Instance: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16

• current solution: $R_1 = 0$, $R_2 = 3$

▶ cost: *E* = 16

• cost: E = 5

Optimal strategy for integral allocation

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Instance: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16

• current solution: $R_1 = 0$, $R_2 = 3$

 \blacktriangleright cost: E = 5

Optimal strategy for integral allocation

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Instance: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16

• current solution: $R_1 = 1$, $R_2 = 3$

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Instance: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16

• current solution: $R_1 = 1$, $R_2 = 3$

► cost: *E* = 5

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

- **Instance:** $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16
- current solution: $R_1 = 1$, $R_2 = 3$

► cost: *E* = 2.25

- Principle: compute backwards the noninteger optimal solution
 - round to the best integer

Instance: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, C = 16

• current solution: $R_1 = 1$, $R_2 = 3$

► cost: *E* = 2.25

Principle: - compute backwards the noninteger optimal solution

• current solution: $R_1 = 1$, $R_2 = 3$

Outline

Optimal strategy for unbounded requests

- Optimal strategy for bounded requests
 - Constant rejection probabilities
 - Monotonically increasing rejection probabilities
- Onknown rejection probability

4 Conclusion

First case: constant probabilities and unbounded rounds

This section: allow only integral requests

Remark on optimal strategies

- Never send 2 requests in a round
- Determined by $k^* = #$ (rounds where you send 1 request)

Lemma (Optimal Strategy)

• if
$$C < \frac{1}{1-p}$$
: $k^* = 0$, review yourself

• if
$$C > \frac{1}{1-p}$$
: $k^* = \infty$, keep requesting

• if
$$C = \frac{1}{1-p}$$
: $k^* \in \mathbb{N} \cup \{\infty\}$, whatever

Bounded rounds, constant probabilities

Framework

- Self-reviewing cost: C
- Budget of *R* requests
- Spread them among k rounds, with rejection prob. p

General algorithm

- 1. $R^* \leftarrow \#$ requests sent by the solution of BACKTRACK
- 2. if $R^* \leq R$: problem solved
- 3. else: find an optimal strategy which sends exactly R requests

Main idea: the way requests are spread does not depend on *C*

$$E(R_1, R_2, \dots, R_k) = R_1 + p^{R_1} R_2 + p^{R_1 + R_2} R_3 + \dots + p^R C$$

 \implies find another C for which one optimal strategy sends R requests

Bounded rounds, constant probabilities

Framework

- Self-reviewing cost: C
- Budget of *R* requests
- Spread them among k rounds, with rejection prob. p

General algorithm

- 1. $R^* \leftarrow \#$ requests sent by the solution of BACKTRACK
- 2. if $R^* \leq R$: problem solved
- 3. else: find an optimal strategy which sends exactly R requests

Main idea: the way requests are spread does not depend on C

$$E(R_1, R_2, \dots, R_k) = R_1 + p^{R_1} R_2 + p^{R_1 + R_2} R_3 + \dots + p^R C$$

 \implies find another C for which one optimal strategy sends R requests

Supporting lemmas

Lemma

If $R^* > R$, there exists an optimal strategy with R requests.

Lemma

When C increases, each R_i spans every integer in ascending order.

Remarks

- Continuous model: each R_i increases continuously with C
- Result: no rounding breaks this property

emma

There exists a value C_R for which an optimal strategy sends R requests.

Supporting lemmas

Lemma

If $R^* > R$, there exists an optimal strategy with R requests.

Lemma

When C increases, each R_i spans every integer in ascending order.

Remarks

- Continuous model: each R_i increases continuously with C
- Result: no rounding breaks this property

Lemma

There exists a value C_R for which an optimal strategy sends R requests.

Some intuition

Recall on the algorithm

- If one C_R known \implies can compute OPT for C with R requests
- ▶ Difficulty: C_R can be unique so hard to find

Example: three request rounds, p = 1/2

- ► C = 8
 - ▶ optimal strategies: $R_1 = 1, R_2 \in \{1, 2\}, R_3 \in \{2, 3\}$
 - ➡ use 4, 5 or 6 requests
- ▶ No other value of *C* induces 5 requests:

Some intuition

Recall on the algorithm

- If one C_R known \implies can compute OPT for C with R requests
- ▶ Difficulty: C_R can be unique so hard to find

Example: three request rounds, p = 1/2

- ► C = 8
 - ▶ optimal strategies: $R_1 = 1$, $R_2 \in \{1, 2\}$, $R_3 \in \{2, 3\}$
 - ➡ use 4, 5 or 6 requests
- ► No other value of *C* induces 5 requests:

Computing a self-reviewing cost C_R from C

Algorithm COMPUTECR

- 1: $R \leftarrow \#$ requests sent by BACKTRACK for a self-reviewing cost of C
- 2: $[L, U] \leftarrow [\frac{1}{1-p}, C]$ \triangleright we maintain $C_R \in [L, U]$ via binary search
- 3: Reduce [L, U] until every round satisfies $R_i(U) \in \{R_i(L), R_i(L) + 1\}$
- 4: while $\sum_{i} R_{i}(L) < R$ do
- 5: Find analytically how much to increase L to send 1 more request

Outline

Optimal strategy for unbounded requests

Optimal strategy for bounded requests

• Constant rejection probabilities

Monotonically increasing rejection probabilities

Unknown rejection probability

4 Conclusion

Lost regularity

Considered instance: 2 request rounds, $p_1 = 1/4$, $p_2 = 1/2$

Optimal distribution depends on C

- 2 requests
 - ▶ C = 16: $(R_1, R_2) = (2, 0)$
 - ▶ C = 8: $(R_1, R_2) = (1, 1)$

R_1 can decrease while budget increases

- ► *C* = 16
 - ▶ 2 requests: $(R_1, R_2) = (2, 0)$
 - ▶ 3 requests: $(R_1, R_2) = (1, 2)$

Results

A single paper

- Greedy algorithm: (k+1)-approximation
- Idea: assume you know E_{OPT}

→ at round *i*, send $R_i(E_{OPT}) = \left| E_{OPT} / \prod_{i < i} p_j^{R_j} \right|$ until budget reached

Guess" E_{OPT} by binary search
 reduce an interval [L, U] ensuring:
 E({R_i(L)}) ≥ (k+1)L & E({R_i(U)}) ≤ (k+1)U

• FUN fact: E_{OPT} might be outside the final interval

N papers sharing a common budget

• Solved by dynamic programming in $O(NkR^2)$

Results

A single paper

- ▶ Greedy algorithm: (*k*+1)-approximation
- ► Idea: assume you know *E*_{OPT}

→ at round *i*, send
$$R_i(E_{OPT}) = \left| E_{OPT} / \prod_{j < i} p_j^{R_j} \right|$$
 until budget reached

Guess" E_{OPT} by binary search
 reduce an interval [L, U] ensuring:
 E({R_i(L)}) ≥ (k+1)L & E({R_i(U)}) ≤ (k+1)U

• FUN fact: E_{OPT} might be outside the final interval

N papers sharing a common budget

• Solved by dynamic programming in $O(NkR^2)$

Results

A single paper

- Greedy algorithm: (k+1)-approximation
- ► Idea: assume you know *E*_{OPT}

→ at round *i*, send
$$R_i(E_{OPT}) = \left[E_{OPT} / \prod_{j < i} p_j^{R_j} \right]$$
 until budget reached

> FUN fact: E_{OPT} might be outside the final interval

N papers sharing a common budget

• Solved by dynamic programming in $O(NkR^2)$

Outline

- Optimal strategy for unbounded requests
- Optimal strategy for bounded requests
- 3 Unknown rejection probability
- ④ Conclusion

Unknown but constant rejection probability

Unbounded rounds

- Send 1 request during C rounds
- ► 2-approximation (≈ ski rental problem)

Two rounds

► send
$$\left[\sqrt{\frac{C}{\ln C}}\right]$$
 requests
► $4\left(\sqrt{\frac{C}{\ln C}} + 2\right)$ -approximation

Bounded rounds

▶ send [Cⁱ/k+1] requests at round i
 (k+1)(C¹/k+1)-approximation

Outline

- Optimal strategy for unbounded requests
- Optimal strategy for bounded requests
- Onknown rejection probability
- 4 Conclusion

Many many friendly colleagues [unbounded requests]

- Splittable ones [non-integral requests]: exact formula
- Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]

- ▶ Insensible to deadlines [constant rejection prob.]: optimal algorithm
- ► Busy colleagues: ≈ k-approx or expensive dynamic programming

'Unpredictable but stable' colleagues [unknown prob.]

• $\approx kC^{1/k}$ -approximation

Moral

Many many friendly colleagues [unbounded requests]

- Splittable ones [non-integral requests]: exact formula
- Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]

- Insensible to deadlines [constant rejection prob.]: optimal algorithm
- ▶ Busy colleagues: ≈ *k*-approx or expensive dynamic programming

'Unpredictable but stable' colleagues [unknown prob.]

• $\approx kC^{1/k}$ -approximation

Moral

Many many friendly colleagues [unbounded requests]

- Splittable ones [non-integral requests]: exact formula
- Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]

- Insensible to deadlines [constant rejection prob.]: optimal algorithm
- ► Busy colleagues: ≈ *k*-approx or expensive dynamic programming

'Unpredictable but stable' colleagues [unknown prob.]

• $\approx kC^{1/k}$ -approximation

Moral

Many many friendly colleagues [unbounded requests]

- Splittable ones [non-integral requests]: exact formula
- Regular ones: optimal rounding algorithm

Limited colleagues [bounded requests]

- Insensible to deadlines [constant rejection prob.]: optimal algorithm
- ► Busy colleagues: ≈ *k*-approx or expensive dynamic programming

'Unpredictable but stable' colleagues [unknown prob.]

• $\approx kC^{1/k}$ -approximation

Moral