
ski

Bertrand Simon

part of a joint work with:
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018

Bertrand Simon ski 1 / 20



Cache-efficient skip lists

Bertrand Simon

part of a joint work with:
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018

Bertrand Simon Cache-efficient skip lists 2 / 20



Skip lists External Memory External-memory skip list

Outline

1 Skip lists

2 External Memory

3 External-memory skip list

Bertrand Simon Cache-efficient skip lists 3 / 20



Skip lists External Memory External-memory skip list

The problem we want to solve

Dictionary problem on N
I Insert i
I Delete i
I Search i
I Range Query (i , k elements)

Example
Insert 26; Insert 8; Insert 4;
Insert 17; Insert 42; Insert 1664;
Delete 4; Search 26; Delete 26;
Insert 58; Insert 2; Search 26;
RQ(8, 4)→ [8; 17; 42; 58];

Performance we seek (n elements in the set)
I Insert, Delete, Search:

O (log n)

I Range Query:

O (k + log n)

Famous data structures solve this
I Self-balancing binary search trees (AVL, Red-black tree...)

Bertrand Simon Cache-efficient skip lists 4 / 20



Skip lists External Memory External-memory skip list

The problem we want to solve

Dictionary problem on N
I Insert i
I Delete i
I Search i
I Range Query (i , k elements)

Example
Insert 26; Insert 8; Insert 4;
Insert 17; Insert 42; Insert 1664;
Delete 4; Search 26; Delete 26;
Insert 58; Insert 2; Search 26;
RQ(8, 4)→ [8; 17; 42; 58];

Performance we seek (n elements in the set)
I Insert, Delete, Search: O (log n)
I Range Query: O (k + log n)

Famous data structures solve this
I Self-balancing binary search trees (AVL, Red-black tree...)

Bertrand Simon Cache-efficient skip lists 4 / 20



Skip lists External Memory External-memory skip list

The problem we want to solve

Dictionary problem on N
I Insert i
I Delete i
I Search i
I Range Query (i , k elements)

Example
Insert 26; Insert 8; Insert 4;
Insert 17; Insert 42; Insert 1664;
Delete 4; Search 26; Delete 26;
Insert 58; Insert 2; Search 26;
RQ(8, 4)→ [8; 17; 42; 58];

Performance we seek (n elements in the set)
I Insert, Delete, Search: O (log n)
I Range Query: O (k + log n)

Famous data structures solve this
I Self-balancing binary search trees (AVL, Red-black tree...)

Bertrand Simon Cache-efficient skip lists 4 / 20



Skip lists External Memory External-memory skip list

What’s the use of skip lists?

Red-black trees also solve this problem but. . .
I Red-Black tree invented in 1972 [Bayer]

Improved in 1993, 1999, 2001, 2008, 2011
I Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”
– W. Pugh, 1989.

Advantage: history independence
I Reveals nothing on the past: deletes, searches, order of operations...

More
I Easy concurrency
I fun, elegant, teaches probabilities. . .

Bertrand Simon Cache-efficient skip lists 5 / 20



Skip lists External Memory External-memory skip list

What’s the use of skip lists?

Red-black trees also solve this problem but. . .
I Red-Black tree invented in 1972 [Bayer]

Improved in 1993, 1999, 2001, 2008, 2011
I Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”
– W. Pugh, 1989.

Advantage: history independence
I Reveals nothing on the past: deletes, searches, order of operations...

More
I Easy concurrency
I fun, elegant, teaches probabilities. . .

Bertrand Simon Cache-efficient skip lists 5 / 20



Skip lists External Memory External-memory skip list

What’s the use of skip lists?

Red-black trees also solve this problem but. . .
I Red-Black tree invented in 1972 [Bayer]

Improved in 1993, 1999, 2001, 2008, 2011
I Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”
– W. Pugh, 1989.

Advantage: history independence
I Reveals nothing on the past: deletes, searches, order of operations...

More
I Easy concurrency
I fun, elegant, teaches probabilities. . .

Bertrand Simon Cache-efficient skip lists 5 / 20



Skip lists External Memory External-memory skip list

What’s the use of skip lists?

Red-black trees also solve this problem but. . .
I Red-Black tree invented in 1972 [Bayer]

Improved in 1993, 1999, 2001, 2008, 2011
I Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”
– W. Pugh, 1989.

Advantage: history independence
I Reveals nothing on the past: deletes, searches, order of operations...

More
I Easy concurrency
I fun, elegant, teaches probabilities. . .

Bertrand Simon Cache-efficient skip lists 5 / 20



Skip lists External Memory External-memory skip list

From a simple list to skip lists

Properties
I Maintain a sorted list of the elements
I Support operations in O (log n) in expectation and with high

probability (≈ worst-case analysis)

Definition of O (log n) with high probability
I ∀c large, with proba 1− n−Ω(c), all operations cost < c log n
I Ex: n = 1000, 1− 10−9 < 3 log n

Description of ideal skip lists without updates

On the board

Bertrand Simon Cache-efficient skip lists 6 / 20



Skip lists External Memory External-memory skip list

From a simple list to skip lists

Properties
I Maintain a sorted list of the elements
I Support operations in O (log n) in expectation and with high

probability (≈ worst-case analysis)

Definition of O (log n) with high probability
I ∀c large, with proba 1− n−Ω(c), all operations cost < c log n
I Ex: n = 1000, 1− 10−9 < 3 log n

Description of ideal skip lists without updates

On the board

Bertrand Simon Cache-efficient skip lists 6 / 20



Skip lists External Memory External-memory skip list

From a simple list to skip lists

Properties
I Maintain a sorted list of the elements
I Support operations in O (log n) in expectation and with high

probability (≈ worst-case analysis)

Definition of O (log n) with high probability
I ∀c large, with proba 1− n−Ω(c), all operations cost < c log n
I Ex: n = 1000, 1− 10−9 < 3 log n

Description of ideal skip lists without updates

On the board

Bertrand Simon Cache-efficient skip lists 6 / 20





Skip lists External Memory External-memory skip list

Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i
I Search i , delete i from all lists

Insert i
I Search i , insert i at the bottom list
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I . . .

Do you see something missing?

Bertrand Simon Cache-efficient skip lists 8 / 20



Skip lists External Memory External-memory skip list

Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i
I Search i , delete i from all lists

Insert i
I Search i , insert i at the bottom list
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I . . .

Do you see something missing?

Bertrand Simon Cache-efficient skip lists 8 / 20



Skip lists External Memory External-memory skip list

Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i
I Search i , delete i from all lists

Insert i
I Search i , insert i at the bottom list
I Toss a coin: Head → Return() — Tail → insert i one level higher

I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I . . .

Do you see something missing?

Bertrand Simon Cache-efficient skip lists 8 / 20



Skip lists External Memory External-memory skip list

Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i
I Search i , delete i from all lists

Insert i
I Search i , insert i at the bottom list
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher

I Toss a coin: Head → Return() — Tail → insert i one level higher
I . . .

Do you see something missing?

Bertrand Simon Cache-efficient skip lists 8 / 20



Skip lists External Memory External-memory skip list

Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i
I Search i , delete i from all lists

Insert i
I Search i , insert i at the bottom list
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I . . .

Do you see something missing?

Bertrand Simon Cache-efficient skip lists 8 / 20



Skip lists External Memory External-memory skip list

Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i
I Search i , delete i from all lists

Insert i
I Search i , insert i at the bottom list
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I Toss a coin: Head → Return() — Tail → insert i one level higher
I . . .

Do you see something missing?

Bertrand Simon Cache-efficient skip lists 8 / 20



Skip lists External Memory External-memory skip list

Some probabilities

Theorem
A skip list has O (log n) levels whp.

Proof.

P (> c log n levels) ≤ n · P (Insert gets > c log n promotions)

≤ n ·
(
1
2

)c log n

≤ n1−c

Bertrand Simon Cache-efficient skip lists 9 / 20



Skip lists External Memory External-memory skip list

Some probabilities

Theorem
A search costs O (log n) whp.

Lemma
To obtain c log n Heads, we need Θ (log n) coin flips whp.

Proof.
Analyze it backwards (from bottom to top-left)
I if the node was promoted: go up (proba. 1/2)
I otherwise: go left (proba. 1/2)
I we stop after < c log n “up” moves

Whp, after how many moves do we stop?
Answer:

Θ (log n)

Bertrand Simon Cache-efficient skip lists 10 / 20



Skip lists External Memory External-memory skip list

Some probabilities

Theorem
A search costs O (log n) whp.

Lemma
To obtain c log n Heads, we need Θ (log n) coin flips whp.

Proof.
Analyze it backwards (from bottom to top-left)
I if the node was promoted: go up (proba. 1/2)
I otherwise: go left (proba. 1/2)
I we stop after < c log n “up” moves

Whp, after how many moves do we stop?
Answer:

Θ (log n)

Bertrand Simon Cache-efficient skip lists 10 / 20



Skip lists External Memory External-memory skip list

Some probabilities

Theorem
A search costs O (log n) whp.

Lemma
To obtain c log n Heads, we need Θ (log n) coin flips whp.

Proof.
Analyze it backwards (from bottom to top-left)
I if the node was promoted: go up (proba. 1/2)
I otherwise: go left (proba. 1/2)
I we stop after < c log n “up” moves

Whp, after how many moves do we stop?
Answer:

Θ (log n)

Bertrand Simon Cache-efficient skip lists 10 / 20



Skip lists External Memory External-memory skip list

Some probabilities

Theorem
A search costs O (log n) whp.

Lemma
To obtain c log n Heads, we need Θ (log n) coin flips whp.

Proof.
Analyze it backwards (from bottom to top-left)
I if the node was promoted: go up (proba. 1/2)
I otherwise: go left (proba. 1/2)
I we stop after < c log n “up” moves

Whp, after how many moves do we stop?
Answer: Θ (log n)

Bertrand Simon Cache-efficient skip lists 10 / 20



Skip lists External Memory External-memory skip list

Outline

1 Skip lists

2 External Memory

3 External-memory skip list

Bertrand Simon Cache-efficient skip lists 11 / 20



Skip lists External Memory External-memory skip list

Forget everything you know

Classic RAM model used to evaluate algorithm
I Memory access (read, write)
I Computation (compare, add, multiply. . . )

}
cost 1

Problem when dealing with large data

fig/memory.jpg

Bertrand Simon Cache-efficient skip lists 12 / 20



Skip lists External Memory External-memory skip list

Forget everything you know

Classic RAM model used to evaluate algorithm
I Memory access (read, write)
I Computation (compare, add, multiply. . . )

}
cost 1

Problem when dealing with large data

fig/memory.jpg

Bertrand Simon Cache-efficient skip lists 12 / 20



Skip lists External Memory External-memory skip list

A new model
Change of view
I Classic complexity (RAM model): focus on computations
I Disk-Access Model [Aggarwal’88] : focus on communications

Model
I Two layers of memory: a main RAM of size M and an infinite disk
I Data needs to be on RAM to be processed
I Can exchange contiguous blocks of size B for 1 I/O

I Complexity of an algorithm: worst-case I/O number

Bertrand Simon Cache-efficient skip lists 13 / 20



Skip lists External Memory External-memory skip list

A new model
Change of view
I Classic complexity (RAM model): focus on computations
I Disk-Access Model [Aggarwal’88] : focus on communications

Model
I Two layers of memory: a main RAM of size M and an infinite disk
I Data needs to be on RAM to be processed
I Can exchange contiguous blocks of size B for 1 I/O

I Complexity of an algorithm: worst-case I/O number

Bertrand Simon Cache-efficient skip lists 13 / 20



Skip lists External Memory External-memory skip list

A new model
Change of view
I Classic complexity (RAM model): focus on computations
I Disk-Access Model [Aggarwal’88] : focus on communications

Model
I Two layers of memory: a main RAM of size M and an infinite disk
I Data needs to be on RAM to be processed
I Can exchange contiguous blocks of size B for 1 I/O
I Complexity of an algorithm: worst-case I/O number

Bertrand Simon Cache-efficient skip lists 13 / 20



Skip lists External Memory External-memory skip list

Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time
I RAM: 100 ns
I Disk: 10 ms = 10 000 000 ns

I Analogy: Ram speed
Disk speed ≈

escape velocity from Earth
speed of a turtle

DAM model: totally forget computations

Bertrand Simon Cache-efficient skip lists 14 / 20



Skip lists External Memory External-memory skip list

Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time
I RAM: 100 ns
I Disk: 10 ms = 10 000 000 ns

I Analogy: Ram speed
Disk speed ≈

escape velocity from Earth
speed of a turtle

DAM model: totally forget computations

Bertrand Simon Cache-efficient skip lists 14 / 20



Skip lists External Memory External-memory skip list

New bounds
Classic bounds

RAM DAM (I/Os)

Scan N

N
B

Search logN

logB N

Merge-Sort N logN

N
B logM/B

N
B

External memory Search tree: B-tree

Bertrand Simon Cache-efficient skip lists 15 / 20



Skip lists External Memory External-memory skip list

New bounds
Classic bounds

RAM DAM (I/Os)

Scan N N
B

Search logN

logB N

Merge-Sort N logN

N
B logM/B

N
B

External memory Search tree: B-tree

Bertrand Simon Cache-efficient skip lists 15 / 20



Skip lists External Memory External-memory skip list

New bounds
Classic bounds

RAM DAM (I/Os)

Scan N N
B

Search logN logB N

Merge-Sort N logN

N
B logM/B

N
B

External memory Search tree: B-tree

Bertrand Simon Cache-efficient skip lists 15 / 20



Skip lists External Memory External-memory skip list

New bounds
Classic bounds

RAM DAM (I/Os)

Scan N N
B

Search logN logB N

Merge-Sort N logN N
B logM/B

N
B

External memory Search tree: B-tree

Bertrand Simon Cache-efficient skip lists 15 / 20



Skip lists External Memory External-memory skip list

Outline

1 Skip lists

2 External Memory

3 External-memory skip list

Bertrand Simon Cache-efficient skip lists 16 / 20



Skip lists External Memory External-memory skip list

Skip lists and external memory

Why it does not work straight away
I RAM Insert: any memory slot
I Each operation requires Θ(logN) I/Os

I We want the same as B-tree:
O (logB N) I/Os — RQ: O (logB N + k/B) I/Os

Any idea to improve locality? (& keep history-independence)
I Block together elements between 2 promoted ones
I Change the promotion probability

Bertrand Simon Cache-efficient skip lists 17 / 20



Skip lists External Memory External-memory skip list

Skip lists and external memory

Why it does not work straight away
I RAM Insert: any memory slot
I Each operation requires Θ(logN) I/Os
I We want the same as B-tree:

O (logB N) I/Os — RQ: O (logB N + k/B) I/Os

Any idea to improve locality? (& keep history-independence)

I Block together elements between 2 promoted ones
I Change the promotion probability

Bertrand Simon Cache-efficient skip lists 17 / 20



Skip lists External Memory External-memory skip list

Skip lists and external memory

Why it does not work straight away
I RAM Insert: any memory slot
I Each operation requires Θ(logN) I/Os
I We want the same as B-tree:

O (logB N) I/Os — RQ: O (logB N + k/B) I/Os

Any idea to improve locality? (& keep history-independence)
I Block together elements between 2 promoted ones
I Change the promotion probability

Bertrand Simon Cache-efficient skip lists 17 / 20



Skip lists External Memory External-memory skip list

What should be the promotion probability?

If p > 1/B
I Range queries are not efficient

If p < 1/B
I Searches have to span several blocks

If p = 1/B [Golovin’2010]
I OK on average
I Whp:

√
N series of B logN non-promoted elements

I For >
√
N elements, a search costs Ω(logN) I/Os

Bertrand Simon Cache-efficient skip lists 18 / 20



Skip lists External Memory External-memory skip list

What should be the promotion probability?

If p > 1/B
I Range queries are not efficient

If p < 1/B
I Searches have to span several blocks

If p = 1/B [Golovin’2010]
I OK on average
I Whp:

√
N series of B logN non-promoted elements

I For >
√
N elements, a search costs Ω(logN) I/Os

Bertrand Simon Cache-efficient skip lists 18 / 20



Skip lists External Memory External-memory skip list

What should be the promotion probability?

If p > 1/B
I Range queries are not efficient

If p < 1/B
I Searches have to span several blocks

If p = 1/B [Golovin’2010]
I OK on average

I Whp:
√
N series of B logN non-promoted elements

I For >
√
N elements, a search costs Ω(logN) I/Os

Bertrand Simon Cache-efficient skip lists 18 / 20



Skip lists External Memory External-memory skip list

What should be the promotion probability?

If p > 1/B
I Range queries are not efficient

If p < 1/B
I Searches have to span several blocks

If p = 1/B [Golovin’2010]
I OK on average
I Whp:

√
N series of B logN non-promoted elements

I For >
√
N elements, a search costs Ω(logN) I/Os

Bertrand Simon Cache-efficient skip lists 18 / 20



Skip lists External Memory External-memory skip list

Towards our skip list

Promotion probability
I log B

B < p < B−0.5 (ex: p = B−0.7) −→ searches OK on average
I largest series: < B logB N whp −→ O(logB N) I/Os for searches

Blocking strategy
I Block between doubly-promoted elements −→ Range Queries
I Reserve buffers between promoted elements −→ Updates

More
I Some tricks to ensure all bounds whp & history independence

Bertrand Simon Cache-efficient skip lists 19 / 20



Skip lists External Memory External-memory skip list

Example of our skip list for B = 3 and p = 1/2
Fr
on

t

1 8 9 12 17 18 20 21 23 26 32 33 39 42 45 52 53

1 8 17 21 23 32 39 52

1 23 52

23

glued buffers buffers

internal array

search path
for key 18
gap

Bertrand Simon Cache-efficient skip lists 20 / 20


	Skip lists
	External Memory
	External-memory skip list

