ski

Bertrand Simon

part of a joint work with:
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018

Cache-efficient skip lists

Bertrand Simon

part of a joint work with:
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018

Outline

(1) Skip lists

(2) External Memory

(3) External-memory skip list

The problem we want to solve

Dictionary problem on \mathbb{N}

- Insert i
- Delete i
- Search i
- Range Query (i,k elements)

Example

Insert 26; Insert 8; Insert 4; Insert 17; Insert 42; Insert 1664; Delete 4; Search 26; Delete 26; Insert 58; Insert 2; Search 26; $R Q(8,4) \rightarrow[8 ; 17 ; 42 ; 58] ;$

Performance we seek (n elements in the set)

- Insert, Delete, Search:
- Range Query:

The problem we want to solve

Dictionary problem on \mathbb{N}

- Insert i
- Delete i
- Search i
- Range Query (i,k elements)

Example

Insert 26; Insert 8; Insert 4; Insert 17; Insert 42; Insert 1664; Delete 4; Search 26; Delete 26; Insert 58; Insert 2; Search 26; $R Q(8,4) \rightarrow[8 ; 17 ; 42 ; 58] ;$

Performance we seek (n elements in the set)

- Insert, Delete, Search: $\mathcal{O}(\log n)$
- Range Query: $\mathcal{O}(k+\log n)$

The problem we want to solve

Dictionary problem on \mathbb{N}

- Insert i
- Delete i
- Search i
- Range Query (i, k elements)

Example

Insert 26; Insert 8; Insert 4; Insert 17; Insert 42; Insert 1664; Delete 4; Search 26; Delete 26; Insert 58; Insert 2; Search 26; $R Q(8,4) \rightarrow[8 ; 17 ; 42 ; 58] ;$

Performance we seek (n elements in the set)

- Insert, Delete, Search: $\mathcal{O}(\log n)$
- Range Query: $\mathcal{O}(k+\log n)$

Famous data structures solve this

- Self-balancing binary search trees (AVL, Red-black tree...)

What's the use of skip lists?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]

Improved in 1993, 1999, 2001, 2008, 2011

- Who can implement right now a red-black tree?

What's the use of skip lists?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer] Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

> "Skip lists are simpler, faster and use less space"
> - W. Pugh, 1989.

What's the use of skip lists?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer] Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

$$
\begin{array}{r}
\text { "Skip lists are simpler, faster and use less space" } \\
- \text { W. Pugh, } 1989 .
\end{array}
$$

Advantage: history independence

- Reveals nothing on the past: deletes, searches, order of operations...

What's the use of skip lists?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer] Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

$$
\begin{array}{r}
\text { "Skip lists are simpler, faster and use less space" } \\
- \text { W. Pugh, } 1989 .
\end{array}
$$

Advantage: history independence

- Reveals nothing on the past: deletes, searches, order of operations...

More

- Easy concurrency
- fun, elegant, teaches probabilities...

From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in $\mathcal{O}(\log n)$ in expectation and with high probability (\approx worst-case analysis)

From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in $\mathcal{O}(\log n)$ in expectation and with high probability (\approx worst-case analysis)

Definition of $\mathcal{O}(\log n)$ with high probability
\forall large, with proba $1-n^{-\Omega(c)}$, all operations cost $<c \log n$

- Ex: $n=1000, \quad 1-10^{-9}<3 \log n$

From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in $\mathcal{O}(\log n)$ in expectation and with high probability (\approx worst-case analysis)

Definition of $\mathcal{O}(\log n)$ with high probability
$-\forall c$ large, with proba $1-n^{-\Omega(c)}$, all operations cost $<c \log n$
\rightarrow Ex: $n=1000, \quad 1-10^{-9}<3 \log n$

Description of ideal skip lists without updates
On the board

Searching in lg n linked lists

Example: Search(72)

Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Delete i

- Search i, delete i from all lists

Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Delete i

- Search i, delete i from all lists

Insert i

- Search i, insert i at the bottom list
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher

Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Delete i

- Search i, delete i from all lists

Insert i

- Search i, insert i at the bottom list
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher

Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Delete i

- Search i, delete i from all lists

Insert i

- Search i, insert i at the bottom list
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher

Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Delete i

- Search i, delete i from all lists

Insert i

- Search i, insert i at the bottom list
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() - Tail \rightarrow insert i one level higher

Do you see something missing?

Some probabilities

Theorem

A skip list has $\mathcal{O}(\log n)$ levels whp.

Proof.

$$
\begin{aligned}
\mathcal{P}(>c \log n \text { levels }) & \leq n \cdot \mathcal{P}(\text { Insert gets }>c \log n \text { promotions }) \\
& \leq n \cdot\left(\frac{1}{2}\right)^{c \log n} \\
& \leq n^{1-c}
\end{aligned}
$$

Some probabilities

Theorem
A search costs $\mathcal{O}(\log n)$ whp.

Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Proof.
Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- otherwise: go left (proba. 1/2)
- we stop after <c log n "up" moves

Whp, after how many moves do we stop?
Answer:

Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

_emma

To obtain $c \log n$ Heads, we need $\Theta(\log n)$ coin flips whp.

Proof.

Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- otherwise: go left (proba. 1/2)
- we stop after <c log n "up" moves

Whp, after how many moves do we stop?
Answer:

Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

_emma

To obtain $c \log n$ Heads, we need $\Theta(\log n)$ coin flips whp.

Proof.

Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- otherwise: go left (proba. 1/2)
- we stop after <c log n "up" moves

Whp, after how many moves do we stop?
Answer: $\Theta(\log n)$

Outline

(1) Skip lists

(2) External Memory
(3) External-memory skip list

Forget everything you know

Classic RAM model used to evaluate algorithm

- Memory access (read, write)
- Computation (compare, add, multiply...) $\}$ cost 1

Forget everything you know

Classic RAM model used to evaluate algorithm

- Memory access (read, write)
- Computation (compare, add, multiply...) $\}$ cost 1

Problem when dealing with large data

A new model

Change of view

- Classic complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal'88] : focus on communications

A new model

Change of view

- Classic complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal'88] : focus on communications

Model

- Two layers of memory: a main RAM of size M and an infinite disk
- Data needs to be on RAM to be processed
- Can exchange contiguous blocks of size B for $1 \mathrm{I} / \mathrm{O}$

A new model

Change of view

- Classic complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal'88] : focus on communications

Model

- Two layers of memory: a main RAM of size M and an infinite disk
- Data needs to be on RAM to be processed
- Can exchange contiguous blocks of size B for $1 \mathrm{I} / \mathrm{O}$
- Complexity of an algorithm: worst-case I/O number

Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time

- RAM: 100 ns
- Disk: $10 \mathrm{~ms}=10000000 \mathrm{~ns}$

Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time

- RAM: 100 ns
- Disk: $10 \mathrm{~ms}=10000000 \mathrm{~ns}$
- Analogy: $\frac{\text { Ram speed }}{\text { Disk speed }} \approx \frac{\text { escape velocity from Earth }}{\text { speed of a turtle }}$

DAM model: totally forget computations

New bounds

Classic bounds

	RAM	DAM (I/Os)
Scan	N	
Search	$\log N$	
Merge-Sort	$N \log N$	

New bounds

Classic bounds

	RAM	DAM (I/Os)
Scan	N	$\frac{N}{B}$
Search	$\log N$	
Merge-Sort	$N \log N$	

New bounds

Classic bounds

	RAM	DAM (I/Os)
Scan	N	$\frac{N}{B}$
Search	$\log N$	$\log _{B} N$
Merge-Sort	$N \log N$	

External memory Search tree: B-tree

New bounds

Classic bounds

	RAM	DAM (I/Os)
Scan	N	$\frac{N}{B}$
Search	$\log N$	$\log _{B} N$
Merge-Sort	$N \log N$	$\frac{N}{B} \log _{M / B} \frac{N}{B}$

External memory Search tree: B-tree

Outline

(1) Skip lists

(2) External Memory
(3) External-memory skip list

Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N)$ I/Os

Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N)$ I/Os
- We want the same as B-tree:

$$
\mathcal{O}\left(\log _{B} N\right) \mathrm{I} / \mathrm{Os} \quad-\mathrm{RQ}: \mathcal{O}\left(\log _{B} N+k / B\right) \mathrm{I} / \mathrm{Os}
$$

Any idea to improve locality? (\& keep history-independence)

Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N)$ I/Os
- We want the same as B-tree:

$$
\mathcal{O}\left(\log _{B} N\right) \mathrm{I} / \mathrm{Os} \quad-\mathrm{RQ}: \mathcal{O}\left(\log _{B} N+k / B\right) \mathrm{I} / \mathrm{Os}
$$

Any idea to improve locality? (\& keep history-independence)

- Block together elements between 2 promoted ones
- Change the promotion probability

What should be the promotion probability?

If $p>1 / B$

- Range queries are not efficient

What should be the promotion probability?

If $p>1 / B$

- Range queries are not efficient

If $p<1 / B$

- Searches have to span several blocks

What should be the promotion probability?

If $p>1 / B$

- Range queries are not efficient

If $p<1 / B$

- Searches have to span several blocks

If $p=1 / B$ [Golovin'2010]

- OK on average

What should be the promotion probability?

If $p>1 / B$

- Range queries are not efficient

If $p<1 / B$

- Searches have to span several blocks

If $p=1 / B$ [Golovin'2010]

- OK on average
- Whp: \sqrt{N} series of $B \log N$ non-promoted elements
- For $>\sqrt{N}$ elements, a search costs $\Omega(\log N) \mathrm{I} / \mathrm{Os}$

Towards our skip list

Promotion probability

$>\frac{\log B}{B}<p<B^{-0.5}\left(\mathrm{ex}: p=B^{-0.7}\right) \longrightarrow$ searches OK on average
\rightarrow largest series: $<B \log _{B} N$ whp $\longrightarrow O\left(\log _{B} N\right)$ I/Os for searches

Blocking strategy

- Block between doubly-promoted elements \longrightarrow Range Queries
- Reserve buffers between promoted elements \longrightarrow Updates

More

- Some tricks to ensure all bounds whp \& history independence

Example of our skip list for $B=3$ and $p=1 / 2$

