Online Scheduling of Task Graphs on Hybrid Platforms

Louis-Claude Canon Loris Marchal Bertrand Simon Frédéric Vivien

Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1, LIP UMR5668, F-69342, LYON Cedex 07, France.

Aussois - April 2018

Hybrid Platforms

Many CPUs + few accelerators (GPUs, Xeon Phis, ...)

Task Graphs (DAGs)

Used in runtime schedulers (StarPU, OmpSs, XKaapi, ...)

Online Scheduling

- Unknown graph
 - tasks not submitted yet
 - depends on results

- Advantages vs offline
 - quicker decisions
 - robust to inaccuracies
- ► Semi-online: partial information, e.g., bottom-levels (≈ critical path)

Main challenge: take binary decisions without knowing the future

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i: \{\overline{p_i} = \text{CPU time}; \underline{p_i} = \text{GPU time}\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i: \{\overline{p_i} = \text{CPU time}; \underline{p_i} = \text{GPU time}\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i: \{\overline{p_i} = \text{CPU time}; \underline{p_i} = \text{GPU time}\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i: \{\overline{p_i} = \text{ CPU time }; \underline{p_i} = \text{ GPU time} \}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i: \{\overline{p_i} = \text{CPU time}; \underline{p_i} = \text{GPU time}\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Related work

Existing offline algorithms (NP-Complete)

- Independent tasks:
 - $\frac{4}{3} + \frac{1}{3k}$ approx Expensive PTAS
 - Low-complexity: 2 approx
 - 3.41 approx

DAG: 6 - approx (LP rounding)

[Canon, Marchal, Vivien 2017]

[Bonifaci, Wiese 2012]

[Beaumont, Eyraud-Dubois, Kumar 2017]

[Bleuse, Kedad-Sidhoum, Monna, Mounié, Trystram 2015]

[Kedad-Sidhoum, Monna, Trystram 2015]

Existing online algorithms

Independent tasks: 4 - competitive

3.85 - competitive

[Imreh 2003]

[Chen, Ye, Zhang 2014]

DAG: $4\sqrt{\frac{m}{k}}$ - compet. ER-LS

[Amarís, Lucarelli, Mommessin, Trystram 2017]

1. Lower bounds on online algorithms

• No online algorithm can be $<\sqrt{m/k}$ - competitive

2. Propose improvements of ER-LS

Competitive ratio

Outline

- Average performance
- Validation on simulations

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ Phase 2 - same as phase 1, but are successors of the last task

Graph with k = 2, n = 3

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ Phase 2 - same as phase 1, but are successors of the last task Phase 3 - same as phase 2, but are successors of the last task

kτ

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ Phase 2 - same as phase 1, but are successors of the last task Phase 3 - same as phase 2, but are successors of the last task Phase $\times - \ldots$

 \implies Makespan obtained by \mathscr{A} : $n\tau^2$

Graph with k = 2, n = 3

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Graph with k = 2, n = 3

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Graph with k = 2, n = 3

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Graph with k = 2, n = 3

Generalized lower bounds

Recall previous lower bound: $\sqrt{m/k}$, for *m* CPUs, *k* GPUs

Precomputed information

- ▶ Bottom-level (≈ remaining critical path) does not help
- All descendants: non-constant LB = $\Omega((m/k)^{1/4})$

Powerful scheduler

- Kill + migrate does not help
- Preempt + migrate hardly helps

Note: allocation is difficult

- How to choose which tasks to speed-up?
- Fixed allocation: 3 competitiveness

ER-LS algorithm $(4\sqrt{m/k}$ -competitive, [Amarís et al.])

Main concept

m CPUs, k GPUs

- Pick any available task T_i
- Allocate T_i to CPUs or GPUs
- Schedule it as soon as possible

Where to allocate an available task T_i If T_i can be executed on GPU before time $\overline{p_i}$: \blacktriangleright put T_i on GPU Otherwise: \blacktriangleright if $\frac{\overline{p_i}}{\underline{p_i}} \le \sqrt{\frac{m}{k}}$: put it on CPU \blacktriangleright else : put it on GPU

Our proposition: QA (Quick Allocation) algorithm

Main concept

m CPUs, k GPUs

- Pick any available task T_i
- Allocate T_i to CPUs or GPUs
- Schedule it as soon as possible

Where to allocate an available task T_i

If T_i can be executed on GPU before time $\overline{p_i}$:

put T; on GPU

Otherwise:

- if $\frac{\overline{p_i}}{p_i} \le \sqrt{\frac{m}{k}}$: put it on CPU
- > else : put it on GPU

Our proposition: QA (Quick Allocation) algorithm

Main concept

m CPUs, k GPUs

- Pick any available task T_i
- Allocate T_i to CPUs or GPUs
- Schedule it as soon as possible

Where to allocate an available task T_i

If T_i can be executed on GPU before time $\overline{p_i}$:

put T; on GPU

Otherwise:

• if
$$\frac{\overline{p_i}}{p_i} \leq \sqrt{\frac{m}{k}}$$
: put it on CPU

> else : put it on GPU

Theorem

QA is $2\sqrt{m/k} + 1$ - competitive. This ratio is (almost) tight.

What about easy cases?

Problem with **QA**

m CPUs, k GPUs

- Expect the worse: aim at $\Theta(\sqrt{m/k})$ -competitiveness
- Sector Poor performance on easy graphs

Well-known EFT algorithm (Earliest Finish Time)

- Terminate each T_i as soon as possible;
- Greedy version, works great on non-pathological cases
- ▶ ⓒ Can be really bad: $\geq (\frac{m}{k} + 2)$ OPT

Can we have both benefits? MIXEFT

- Run EFT and simulate QA;
 When EFT is λ times worse than QA: switch to QA;
- ► Tunable: $\lambda = 0 \rightarrow QA$; $\lambda = \infty \rightarrow EFT$
- $(\lambda + 1)(2\sqrt{m/k} + 1)$ -competitive conjectured max $(\lambda, 2\sqrt{m/k} + 1)$
- Same idea as ER-LS but pushed to the extreme

Simulations

m CPUs, k GPUs

Heuristics (makespan normalized by offline HEFT's)

- ▶ EFT (= MIXEFT as EFT better than QA here)
- QA (switch at $\sqrt{m/k}$)
- ER-LS (= QA + greedy rule: slightly more tasks on GPUs)
- QUICKEST (= QA with switch at 1: more tasks on GPUs)
- **RATIO** (= QA with switch at m/k: more tasks on CPUs)

Datasets for m = 20 **CPUs and** k = 2 **GPUs**

Cholesky 4 types of tasks Synthetic STG set, 300 tasks, random GPU acceleration ($\mu = \sigma = 15$) Ad-hoc one chain & independent tasks

10/14

Results for Cholesky graphs (lower is better)

Results for synthetic graphs (lower is better)

Results for 300-tasks ad-hoc graphs (lower is better)

Conclusion

Summary

- ► No online algo. is <√m/k competitive Additional knowledge or power hardly helps
- QA: $(2\sqrt{m/k}+1)$ competitive MIXEFT: compromise effectiveness / guarantees
- Extended to multiple types of processors (not in this talk)

Perspectives

- Low-cost offline algorithm with constant ratio
- Communication times

[Yesterday's talk by Alix Munier-Kordon]

Parallel tasks