Online Scheduling of Task Graphs

on Hybrid Platforms

Louis-Claude Canon Loris Marchal Bertrand Simon
Frédéric Vivien

Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1, LIP UMR5668,
F-69342, LYON Cedex 07, France.

Aussois — April 2018

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Breaking down the title

Hybrid Platforms
» Many CPUs + few accelerators (GPUs, Xeon Phis, ...)

Task Graphs (DAGs)
» Used in runtime schedulers (StarPU, OmpSs, XKaapi, ...)

Online Scheduling

> Unknown graph > Advantages vs offline
o tasks not submitted yet o quicker decisions
o depends on results o robust to inaccuracies

» Semi-online: partial information, e.g., bottom-levels (= critical path)

Main challenge: take binary decisions without knowing the future

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

M @ @ time

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

CPU

GPU

@00 i

i

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

M @ @ time

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

@ @ @ time

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

®® 6

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

T
Ty

GPU
@ time

CPU

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

@ T1 | I
@ @ tir‘ne

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Related work

m CPUs, k GPUs
Existing offline algorithms (NP-Complete)

> Independent tasks:

° % + ?%k - approx [Bleuse, Kedad-Sidhoum, Monna, Mounié, Trystram 2015]
Expensive PTAS [Bonifaci, Wiese 2012]

o Low-complexity: 2-approx [Canon, Marchal, Vivien 2017]

3.41 - approx [Beaumont, Eyraud-Dubois, Kumar 2017]

» DAG: 6-approx (LP rounding) [Kedad-Sidhoum, Monna, Trystram 2015]

Existing online algorithms

> Independent tasks: 4-competitive [Imreh 2003]
3.85 - competitive [Chen, Ye, Zhang 2014]

» DAG: 4 % - compet. ER-LS [Amaris, Lucarelli, Mommessin, Trystram 2017]

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

m CPUs, k GPUs

1. Lower bounds on online algorithms

> No online algorithm can be < /m/k - competitive

2. Propose improvements of ER-LS
» Competitive ratio
> Average performance
> Validation on simulations

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Phase 1 - k7t independent tasks {F;=‘r P pi= 1}: o needs a time T

Graph with
k=2,n=3

000000

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs

Theorem
No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Phase 1 - k7t independent tasks {F;=‘r P pi= 1}: o needs a time T

Phase 2 - same as phase 1, but are successors of the last task

Graph with
k=2,n=3

00QO00
oo

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs

Theorem
No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Phase 1 - k7t independent tasks {F;=‘r P pi= 1}: o needs a time T

Phase 2 - same as phase 1, but are successors of the last task
Phase 3 - same as phase 2, but are successors of the last task

Graph with

k=2, n=3 e

0000

00QO00
(0)¢)

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs

Theorem
No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Phase 1 - k7t independent tasks {F,-=‘r P pi= 1}: o needs a time T

Phase 2 - same as phase 1, but are successors of the last task
Phase 3 - same as phase 2, but are successors of the last task

Phase x - ...
= Makespan obtained by <f: nt2

@) @)
Graph with O O oNO
k=2,n=3 O O o \\o v

O
@)
©)
nt |

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs
Theorem

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Graph with
k=2,n=3

0)e)
0)0)

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs
Theorem

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Graph with
k=2,n=3

0)e)
0)0)

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs
Theorem

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

" phases =
CPU = T

OPT = 27
o = 12 -
1 1 1
Lower bound: it Gy =
O
Graph with (@] o\ O
k=2,n=3 O O \NO o
O
o
T
nt D

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

m CPUs, k GPUs
Theorem

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

27 phases
OPT = 31
o = 212

CPU

Lower bound: %r

O
Graph with (@)
k=2,n=3 (@)
O
o

nt |

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Lower bound

m CPUs, k GPUs
Theorem

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

nt phases c
OPT = (n+1)r PU
o = nt?
Lower bound: 227 GPU

O
Graph with (@)
k=2,n=3 (@)
O
o

nt |

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Generalized lower bounds

Recall previous lower bound: /m/k, for m CPUs, k GPUs

Precomputed information
> Bottom-level (= remaining critical path) does not help

» All descendants: non-constant LB =Q((m/k)1/4)

Powerful scheduler

> Kill + migrate does not help
> Preempt + migrate hardly helps

Note: allocation is difficult

> How to choose which tasks to speed-up?

> Fixed allocation: 3-competitiveness

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

ER-LS algorithm (41/m/k-competitive, [Amaris et al.])

Main concept m CPUs, k GPUs

> Pick any available task T;
» Allocate T; to CPUs or GPUs
> Schedule it as soon as possible

Where to allocate an available task T;

If T; can be executed on GPU before time p;:
» put 7; on GPU

Otherwise:
> if ﬂs\/E: put it on CPU
pi k
> else : put it on GPU

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Our proposition: QA (Quick Allocation) algorithm
m CPUs, k GPUs

Main concept

> Pick any available task T;
» Allocate T; to CPUs or GPUs
> Schedule it as soon as possible

Where to allocate an available task T;

1 i (s
> put—F—on——GPY
Btherwise+

> if Es\/ﬂ: put it on CPU
pi k

> else : put it on GPU

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Our proposition: QA (Quick Allocation) algorithm
m CPUs, k GPUs

Main concept

> Pick any available task T;
» Allocate T; to CPUs or GPUs
> Schedule it as soon as possible

Where to allocate an available task T;

i ime—p;
> put—F—on——GPY
Btherwise+

> if Es\/ﬂ: put it on CPU
pi k

> else : put it on GPU

QA is 2y/m/k+1 - competitive. This ratio is (almost) tight.

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

What about easy cases?

Problem with QA m CPUs, k GPUs

» Expect the worse: aim at ©(y/m/k)-competitiveness
» @ Poor performance on easy graphs

Well-known EFT algorithm (Earliest Finish Time)

» Terminate each T; as soon as possible;
» © Greedy version, works great on non-pathological cases
» ® Can be really bad: = (2 +2) OPT

Can we have both benefits? MIXEFT

» Run EFT and simulate QA;
When EFT is A times worse than QA: switch to QA;

» Tunable: A=0 - QA ; A=oco0 — EFT

» (+1)(2y/m/k +1)-competitive = — conjectured max(1,2y/m/k+1)
» Same idea as ER-LS but pushed to the extreme

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Simulations

m CPUs, k GPUs
Heuristics (makespan normalized by offline HEFT’s)
» EFT (= MIXEFT as EFT better than QA here)
» QA (switch at \/m/k)
» ER-LS (= QA + greedy rule: slightly more tasks on GPUs)
» QUICKEST (= QA with switch at 1: more tasks on GPUs)

» RATIO (= QA with switch at m/k: more tasks on CPUs)

Datasets for m=20 CPUs and k=2 GPUs

Cholesky 4 types of tasks
Synthetic STG set, 300 tasks, random GPU acceleration (u =0 =15)
Ad-hoc one chain & independent tasks

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

Results for Cholesky graphs (lower is better)

m CPUs, k GPUs

Ratio to HEFT

100
Number of tasks

Algorithm -- EFT = MixEFT - QA -# ER-LS — RATIO & QUICKEST

m m CPU time
?—10 7~33 m € {28,26,11, R%-’ }

POTRF

Online Scheduling of Task Graphs on Hybrid Platforms

Results for synthetic graphs (lower is better)

Ratio to HEFT

layrpred

layrprob samepred

Graph generator

sameprob

Algorithm EJ EFT = MixEFT £5 QA £ ER-LS £ Ratio [QUICKEST

L.-C. Canon, L. Marchal, B. Simon, F. Vivien

Online Scheduling of Task Graphs on Hybrid Platforms

Results for 300-tasks ad-hoc graphs (lower is better)

Ratio to HEFT

Expected CPU cost p

Algorithm —e- EFT = MixEFT -~ QA -= ER-LS ~ RATIO & QUICKEST

OPT (left, 57 ~ p;) OPT (middle) OPT (right, B ~ p;)

CPU

L.-C. Canon, L. Marchal, B. Simon, F. Vivien

Online Scheduling of Task Graphs on Hybrid Platforms

Conclusion

m CPUs, k GPUs
Summary

> No online algo. is <\/m/k-competitive
Additional knowledge or power hardly helps

» QA: (2/m/k+1)- competitive

MIXEFT: compromise effectiveness / guarantees

» Extended to multiple types of processors (not in this talk)

Perspectives
> Low-cost offline algorithm with constant ratio
» Communication times [Yesterday's talk by Alix Munier-Kordon]

» Parallel tasks

L.-C. Canon, L. Marchal, B. Simon, F. Vivien Online Scheduling of Task Graphs on Hybrid Platforms

	Lower bounds
	Competitive algorithms
	Simulations

