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Breaking down the title

Hybrid Platforms
» Many CPUs + few accelerators (GPUs, Xeon Phis, ...)

Task Graphs (DAGs)
» Used in runtime schedulers (StarPU, OmpSs, XKaapi, ...)

Online Scheduling

> Unknown graph > Advantages vs offline
o tasks not submitted yet o quicker decisions
o depends on results o robust to inaccuracies

» Semi-online: partial information, e.g., bottom-levels (= critical path)

Main challenge: take binary decisions without knowing the future
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Model and toy example

Model

» m CPUs = k GPUs
> Graph of tasks T;: {E= CPU time ; pi= GPU time}

> Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

M @ @ time
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Related work

m CPUs, k GPUs
Existing offline algorithms (NP-Complete)

> Independent tasks:

° % + ?%k - approx [Bleuse, Kedad-Sidhoum, Monna, Mounié, Trystram 2015]
Expensive PTAS [Bonifaci, Wiese 2012]

o Low-complexity: 2-approx [Canon, Marchal, Vivien 2017]

3.41 - approx [Beaumont, Eyraud-Dubois, Kumar 2017]

» DAG: 6-approx (LP rounding) [Kedad-Sidhoum, Monna, Trystram 2015]

Existing online algorithms

> Independent tasks: 4-competitive [Imreh 2003]
3.85 - competitive [Chen, Ye, Zhang 2014]

» DAG: 4 % - compet. ER-LS [Amaris, Lucarelli, Mommessin, Trystram 2017]
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m CPUs, k GPUs

1. Lower bounds on online algorithms

> No online algorithm can be < /m/k - competitive

2. Propose improvements of ER-LS
» Competitive ratio
> Average performance
> Validation on simulations
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Lower bound

m CPUs, k GPUs

No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.

Phase 1 - k7t independent tasks {F;=‘r P pi= 1}: o needs a time T

Graph with
k=2,n=3
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Lower bound
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Theorem
No online algorithm «f is <+/m/k - competitive for any m, k.

Proof (where v =/m/k =3): graph built in nt phases.
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Generalized lower bounds

Recall previous lower bound: /m/k, for m CPUs, k GPUs

Precomputed information
> Bottom-level (= remaining critical path) does not help

» All descendants: non-constant LB =Q((m/k)1/4)

Powerful scheduler

> Kill + migrate does not help
> Preempt + migrate hardly helps

Note: allocation is difficult

> How to choose which tasks to speed-up?

> Fixed allocation: 3-competitiveness
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ER-LS algorithm (41/m/k-competitive, [Amaris et al.])

Main concept m CPUs, k GPUs

> Pick any available task T;
» Allocate T; to CPUs or GPUs
> Schedule it as soon as possible

Where to allocate an available task T;

If T; can be executed on GPU before time p;:
» put 7; on GPU

Otherwise:
> if ﬂs\/E: put it on CPU
pi k
> else : put it on GPU
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Our proposition: QA (Quick Allocation) algorithm
m CPUs, k GPUs

Main concept

> Pick any available task T;
» Allocate T; to CPUs or GPUs
> Schedule it as soon as possible

Where to allocate an available task T;

1 i (s
> put—F—on——GPY
Btherwise+

> if Es\/ﬂ: put it on CPU
pi k

> else : put it on GPU
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Our proposition: QA (Quick Allocation) algorithm
m CPUs, k GPUs

Main concept

> Pick any available task T;
» Allocate T; to CPUs or GPUs
> Schedule it as soon as possible

Where to allocate an available task T;

i ime—p;
> put—F—on——GPY
Btherwise+

> if Es\/ﬂ: put it on CPU
pi k

> else : put it on GPU

QA is 2y/m/k+1 - competitive. This ratio is (almost) tight.
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What about easy cases?

Problem with QA m CPUs, k GPUs

» Expect the worse: aim at ©(y/m/k)-competitiveness
» @ Poor performance on easy graphs

Well-known EFT algorithm (Earliest Finish Time)

» Terminate each T; as soon as possible;
» © Greedy version, works great on non-pathological cases
» ® Can be really bad: = (2 +2) OPT

Can we have both benefits? MIXEFT

» Run EFT and simulate QA;
When EFT is A times worse than QA: switch to QA;

» Tunable: A=0 - QA ; A=oco0 — EFT

» (+1)(2y/m/k +1)-competitive = — conjectured max(1,2y/m/k+1)
» Same idea as ER-LS but pushed to the extreme
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Simulations

m CPUs, k GPUs
Heuristics (makespan normalized by offline HEFT’s)
» EFT (= MIXEFT as EFT better than QA here)
» QA (switch at \/m/k)
» ER-LS (= QA + greedy rule: slightly more tasks on GPUs)
» QUICKEST (= QA with switch at 1: more tasks on GPUs)

» RATIO (= QA with switch at m/k: more tasks on CPUs)

Datasets for m=20 CPUs and k=2 GPUs

Cholesky 4 types of tasks
Synthetic STG set, 300 tasks, random GPU acceleration (u =0 =15)
Ad-hoc one chain & independent tasks
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Results for Cholesky graphs (lower is better)

m CPUs, k GPUs

Ratio to HEFT

100
Number of tasks

Algorithm -- EFT = MixEFT - QA -# ER-LS — RATIO & QUICKEST

m m CPU time
?—10 7~33 m € {28,26,11, R%-’ }

POTRF
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Results for synthetic graphs (lower is better)

Ratio to HEFT

layrpred

layrprob samepred

Graph generator

sameprob

Algorithm EJ EFT = MixEFT £5 QA £ ER-LS £ Ratio [ QUICKEST
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Results for 300-tasks ad-hoc graphs (lower is better)

Ratio to HEFT

Expected CPU cost p

Algorithm —e- EFT = MixEFT -~ QA -= ER-LS ~ RATIO & QUICKEST

OPT (left, 57 ~ p;) OPT (middle) OPT (right, B ~ p;)

CPU
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Conclusion

m CPUs, k GPUs
Summary

> No online algo. is <\/m/k-competitive
Additional knowledge or power hardly helps

» QA: (2/m/k+1)- competitive

MIXEFT: compromise effectiveness / guarantees

» Extended to multiple types of processors (not in this talk)

Perspectives
> Low-cost offline algorithm with constant ratio
» Communication times [Yesterday's talk by Alix Munier-Kordon]

» Parallel tasks
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