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Abstract

Knapsack problems are among the most fundamental problems in optimization. In the MULTIPLE
KNAPSACK problem, we are given multiple knapsacks with different capacities and items with values
and sizes. The task is to find a subset of items of maximum total value that can be packed into the
knapsacks without exceeding the capacities. We investigate this problem and special cases thereof in the
context of dynamic algorithms and design data structures that efficiently maintain near-optimal knap-
sack solutions for dynamically changing input. More precisely, we handle the arrival and departure of
individual items or knapsacks during the execution of the algorithm with worst-case update time polylog-
arithmic in the number of items. As the optimal and any approximate solution may change drastically,
we only maintain implicit solutions and support certain queries in polylogarithmic time, such as the
packing of an item and the solution value.

While dynamic algorithms are well-studied in the context of graph problems, there is hardly any work
on packing problems and generally much less on non-graph problems. Given the theoretical interest in
knapsack problems and their practical relevance, it is somewhat surprising that KNAPSACK has not been
addressed before in the context of dynamic algorithms and our work bridges this gap.
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1 Introduction

Knapsack problems are among the most fundamental optimization problems, studied since the early days of
optimization theory. In its most basic form, there is given a knapsack with capacity S € N and a set of n
items, where each item j € [n| := {1,2,...,n} has asize s; € N and a value v; € N. The KNAPSACK
problem asks for a subset of items, P C [n], with maximal total value v(P) = > jep vj and with a total
size s(P) = > jep Sj that does not exceed the knapsack capacity S. In the more general MULTIPLE
KNAPSACK problem, we are given m knapsacks with capacities .S; for i € [m]. Here, the task is to select m
disjoint subsets Py, P, ..., P, C [n] such that subset P; satisfies the capacity constraint s(P;) < S; and
the total value of all subsets } ;¢ v(F) is maximized.

The decision variant of MULTIPLE KNAPSACK is strongly NP-complete, even for identical knapsack
capacities, as it is a special case of bin packing. The KNAPSACK problem, on the other hand, is only
weakly NP-complete in its decision variant — in fact, it is one of the 21 problems on Karp’s list of NP-
complete problems [49] — and it admits pseudo-polynomial time algorithms [5]. The first published pseudo-
polynomial time algorithm for KNAPSACK from the 1950s has run time O(n - S) [5].

As a consequence of these hardness results, each of the knapsack variants has been studied exten-
sively over the years through the lens of approximation algorithms. Of particular interest are approximation
schemes, families of polynomial-time algorithms that compute for each ¢ > 0 a (1 — ¢)-approximate so-
lution, i.e., a feasible solution with value within a factor of (1 — ) of the optimal solution value (see also
related work). The first approximation scheme for the KNAPSACK problem is due to Ibarra and Kim [38] and
initiated a long sequence of follow-up work, with the latest improvements appearing only recently [17,47].

MULTIPLE KNAPSACK is substantially harder and does not admit (1 — €)-approximate algorithms with
running time polynomial in % unless P = NP, even with two identical knapsacks [18]. However, some
approximations schemes with exponential dependency on % are known [18,50] as well as improved variants
where the dependency on f (%) for some function f is only multiplicative or additive [43,45]. The currently
fastest known algorithm has a runtime of 90(log"(1/e)/e) poly(n) [45]. All these algorithms are static in
the sense that the full instance is given to an algorithm and is then solved.

The importance for theory and practice is reflected by the two books on knapsack problems [52, 61].
Given the relevance of knapsack applications in practice and the ubiquitous dynamics of real-world in-
stances, it is natural to ask for dynamic algorithms that adapt to small changes in the packing instance while
spending only little computation time. More precisely, during the execution of the algorithm, items and
knapsacks arrive and depart and the algorithm needs to maintain an approximate knapsack solution with
an update time polylogarithmic in the number of items in each step. A dynamic algorithm is then a data
structure that implements these updates efficiently and supports relevant query operations. To the best of
our knowledge, we are the first to analyze knapsack problems in the context of dynamic algorithms.

Generally, dynamic algorithms constitute a vibrant research field in the context of graph problems. Refer
to surveys [15,24,34] for an overview on dynamic graph algorithms. Interestingly, only for a small number
of graph problems there are dynamic algorithms known with polylogarithmic update time, among them
connectivity problems [35,37], the minimum spanning tree [37], and vertex cover [10, 12]. Recently, this
was complemented by conditional lower bounds that are typically linear in the number of nodes or edges;
see, e.g., [2]. Over the last few years, the generalization of dynamic vertex cover to dynamic set cover gained
interest leading to near-optimal approximation algorithms with polylogarithmic update times [1,9,11,30].

For packing and, generally, for non-graph-related problems, dynamic algorithms with small update time
are much less studied. A notable exception is a result for bin packing that maintains a %—approximative
solution with O(log n) update time [40]. This lack of efficient dynamic algorithms is in stark contrast to the
aforementioned intensive research on computationally efficient algorithms for knapsack problems.

Besides the purely theoretical point of view, packing questions appear in many applications and efficient
algorithms for answering these questions are highly relevant in practice. One such example is estimating the



profit of scheduling jobs onto several server hosting centers. Cloud providers need to adhere to certain Ser-
vice Level Agreements while efficiently managing their resources. In recent years, it has become apparent
that the cost of powering large-scale computing infrastructures surpasses the hardware cost after only few
years. Thus, the task of dynamically migrating workload as virtual machines between several computing
clusters has evolved [6]. This allows the service provider to adapt the provided capacity, i.e., the currently
running computing clusters, to the current demand. Situations of this flavor are addressed in [13,21,58].

A framework for MULTIPLE KNAPSACK with efficient update times can be viewed as a first-stage
decision tool: In real-time, it can be determined whether the customer in question should be allowed into
the system based on the cost of potentially powering and using additional servers. As the service provider
has to decide immediately which request she wants to accept, she needs to obtain the information fast, i.e.,
sublinear in the number of requests already in the system.

Given the theoretical interest in knapsack problems and their practical relevance, it is surprising that
KNAPSACK has not been addressed in the context of dynamic algorithms. Our work bridges this gap initiat-
ing the design of data structures and algorithms that efficiently maintain near-optimal knapsack solutions.

Our Contribution

In this paper, we present dynamic algorithms for maintaining approximate knapsack solutions for three
problems of increasing complexity: KNAPSACK, MULTIPLE KNAPSACK with identical knapsack sizes, and
MULTIPLE KNAPSACK. Our algorithms are fully dynamic which means that in an update operation they
can handle both, the arrival or departure of an item and the arrival or departure of a knapsack. Further, we
consider the implicit solution or query model, in which an algorithm is not required to store the solution
explicitly in memory such that the solution can be read in linear time at any given point of the execution.
Instead, the algorithm may maintain the solution implicitly with the guarantee that a query about the packing
can be extracted in polylogarithmic time. Moreover, since KNAPSACK is already NP-hard even with full
knowledge of the instance, we aim at maintaining (1 — ¢)-approximate solutions.

We give worst-case guarantees for update and query times that are polylogarithmic in n, the number of
items currently in the input, and bounded by a function of € > 0, the desired approximation accuracy. For
some special cases, we can even ensure a polynomial dependency on % In others, we justify the exponential
dependency with NP-hardness results. Denote by vpax the currently largest item value and by v an upper
bound on vy, that is know in advance. Let Sy .« be the currently largest knapsack capacity.

e For MULTIPLE KNAPSACK, we design a dynamic algorithm maintaining a (1 — ¢)-approximate solu-
)0(1 /€)

logn
=2

tion with update time (% lognlogv and query time O( ) for single items. (Theorem 6.1)

e The exponential dependency on % in the update time for MULTIPLE KNAPSACK is indeed necessary,
even for two identical knapsacks. We show that there is no (1 — ¢)-approximate dynamic algorithm
with update time (2 log n)o(l), unless P = NP. (Theorem 3.3)

e For KNAPSACK, we give a (1 — ¢)-approximation algorithm with update time O(lﬁgﬂg’ﬂl) +
O(é log nlog ) and constant query times. (Theorem 4.1)

e For MULTIPLE KNAPSACK with m identical knapsacks, we maintain a (1 — €)-approximate solution
with update time (£ log n10g Umax 108 Simaz) ©M) and query time (Llogn) Wit m > 1 log® n. For
small m, we get an exponential dependency on % by extending the result for KNAPSACK.

In each update step, we compute only implicit solutions and provide queries for the solution value, the
knapsack of a queried item, or the complete solution. These queries are consistent between two update steps
and run efficiently, i.e., polynomial in logn and log ¥ and with a dependence on € and the output size. We
remark that it is not possible to maintain a solution with a non-trivial approximation guarantee explicitly



with only polylogarithmic update time (even amortized) since it might be necessary to change {2(n) items
per iteration, e.g., if a very large and very profitable item is inserted and removed in each iteration.

Related Work

Since the first approximation scheme' for KNAPSACK by Ibarra and Kim [38], running times have been
improved steadily [17,26,27,47,51,57,68] with O(n log % + (%)9/ 4) by Jin [47] being the currently fastest.
Recent work on conditional lower bounds [20, 56] implies that KNAPSACK does not admit an FPTAS with
runtime O((n + %)2*5), for any 0 > 0, unless (min, +)-convolution has a subquadratic algorithm [17,64].

A PTAS for MULTIPLE KNAPSACK was first discovered by Chekuri and Khanna [18] and an EPTAS
due to Jansen [43] is also known. The running time of the EPTAS is 20 (los(1/)/ ). poly(n). Jansen later
presented a second EPTAS [45] with an improved running time of 20(log"(1/2)/¢) 4 poly(n). The mentioned
algorithms are all static and assume full knowledge about the instance for which a complete solution has
to be found. Hence, directly applying such an approximation scheme on each update is prohibitive as a
single item arrival can change a packing solution completely requiring a full recomputation with running
time polynomial in the input size.

At the heart of the two EPTASes [43,45] lies a configuration integer linear program (ILP) for rounded
items and/or knapsacks of exponential size. Even though near-optimal solutions to the LP relaxations can be
found and rounded in time O(poly(n)), this is beyond the scope of the polylogarithmic update time we are
interested in. Additionally, the configuration ILPs still contain O(n) many constraints and variables which is
yet another obstacle when aiming for dynamically maintaining approximate solutions with polylogarithmic
running time. Hence, to sufficiently improve the running time, a more careful approach for rounding items
has to be developed before similar configuration ILPs can be applied.

The dynamic arrival and removal of items exhibits some similarity to knapsack models with incomplete
information. Somewhat related to our work are models in which the set of items that has to be packed is not
fully known. In the online knapsack problem [60] items arrive online one by one. When an item arrives,
an algorithm must accept or reject it before the next item arrives, and this decision is irrevocable. The goal
is to maintain a knapsack solution that has a value close to the optimal value achievable when all items are
known in advance. Contrary to our model, the available computational power is assumed to be unlimited
(though many known algorithms run in polynomial time) as the key difficulty lies in making irrevocable
packing decisions under uncertainty. Various problem variants have been studied, e.g., online knapsack
with resource augmentation [42], the removable online knapsack problem [19,31-33,41], in which items
can be discarded later, the online partially fractional knapsack problem [65], items arriving in a random
order [3,4], the stochastic online knapsack problem [53,54,60, 72], and online knapsack with advice [14].

Other models that take into account uncertainty in the item set or in the available knapsack capacity
include the stochastic knapsack problem [8,23,59] and various robust knapsack problems [16, 25, 62, 74].
While some models allow for an adjustment of the solution after the realization of a scenario, the major focus
lies on constructing a new packing of high value instead of the computational complexity of the update or
the data structures necessary to maintain (approximately) optimal packings.

Finally, we mention two other seemingly related research streams towards more adaptive online models
with a softened irrevocability requirement. Online optimization with recourse [29, 39, 63] or migration
[46, 70,71] allows to adapt previously taken decisions in a limited way. We are no aware of work on
knapsack problems and, again, the goal is to bound the amount of change needed to maintain good online
solutions regardless of the computational effort.

' An approximation scheme is a family of polynomial-time algorithms computing a (1 — €)-approximation for every & > 0.
Based on the dependency on ¢ of the respective running time, we distinguish Polynomial Time Approximation Schemes (PTAS)
with arbitrary dependency on €, EPTAS where arbitrary functions f(£) may only appear as a multiplicative factor, and FPTAS with
polynomial dependency on €.



2 Methodology and Roadmap

This section serves as a blueprint for our design of a dynamic algorithm for MULTIPLE KNAPSACK provid-
ing a high-level overview over the key components and technical challenges. While the improved algorithms
for some special cases have significance on their own, the used techniques further complement each other
and facilitate our main goal of handling arbitrary instances, which we discuss in Section 6.

We accomplish this goal by partitioning the given knapsacks based on their respective capacity, creating
two subproblems of MULTIPLE KNAPSACK. This separation allows us to design algorithms that exploit
the structural properties specific to the respective problem. One subproblem consists of relatively few knap-
sacks, but they are the largest of the instance. While the small number of these special knapsacks offers more
algorithmic freedom, this freedom is necessary since great care has to be taken when computing a solution.
After all, there may be items of high value that only fit into special knapsacks. The second subproblem con-
tains almost all of the remaining smaller knapsacks. The sheer number of these ordinary knapsacks results
in an inverse problem, with the algorithmic handling of the numerous knapsacks being a major hurdle. On
the upside, mistakes are forgiven more easily allowing us to even discard a small fraction of knapsacks en-
tirely. Additionally, we create a third partition of knapsacks that lies in-between the two subproblems (w.r.t.
knapsack capacity). It consists of knapsacks that contribute negligible value to an optimal solution. This
property induces the precise partitioning and allows us to consider the knapsacks as empty extra knapsacks,
which we use to place leftover items not packed in the subproblems.

The major challenge with this divide-and-conquer approach is to decide which item is assigned to which
of the two subproblems. Clearly, for some — special — items this question is answered by their size as they
only fit into special knapsacks, unlike the remaining — ordinary — items. In fact, for them the allocation is so
problematic that we resort to downright putting a number of high-value ordinary items into extra knapsacks.
To handle the remainder, we guess the total size of ordinary items that are put into special knapsacks by
an optimal solution. We then add a virtual knapsack — with capacity equal to this guess — to the ordinary
subproblem and solve it with the not yet packed ordinary items as input. The input for the special subproblem
then consists of all special items together with bundles of the ordinary items packed in the virtual knapsack.

Special Knapsacks: The approach for the few (mg) special knapsacks can be divided itself into two parts
that consider high- and low-value items respectively. The corresponding partition is guessed so that the
high-value items contain the % most valuable items of an optimal solution, denoted by OPT, and the low-
value items the remaining items of OPT. For the important high-value items, a good solution is paramount,
so we employ an EPTAS for MULTIPLE KNAPSACK. It is run on a low-cardinality set of high-value candi-
date items together with “2* placeholders of equal size that reserve space for low-value items. The values
of placeholders are determined by filling them fractionally with the densest low-value items. We aim to
reserve a total space equal to that of all low-value items in OPT, which we guess up to a factor of (1 + ¢).
Thanks to the partitioning, we can charge cut items to the high-value items in OPT. This yields an update
time 2/(1/9) (2 log(nvmax) ) ° + O(2 log Tlog n), with f quasi-linear, query time O(log ’;‘—62) for individ-
ual items and time O(| P|) to output the solution P for all or a single knapsack. See Appendix B for the full
description and analysis of this algorithm.

Ordinary Knapsacks: Having the extra knapsacks available for resource augmentation enables us to
set up a configuration linear program (LP) for the ordinary knapsacks and place any fractional item
or configuration into the extra knapsacks. To solve the LP efficiently and achieve an update time

of (Llog n)o(l/ ) (log m 10g Siax 108 Umax)°(Y) we significantly decrease the number of ordinary items
with a new, dynamic approach to linear grouping.

Dynamic linear groupin?f; clusters a (sub)set of items into so-called item types of roughly the same size
and value in time (g log n) . Traditionally, linear grouping is applied in bin packing problems where
any feasible solution contains all items [22]. This property is crucial since the cardinality of the groups



depends on the number of packed items. In knapsack problems, however, a feasible solution may consist
of only a subset of items. We handle this uncertainty by simultaneously executing classical linear grouping
for O(log; . n) many guesses of its cardinality and, thus, simulate the possible choices of an optimum.

We call an item type small or big with respect to a particular knapsack if its size is at most or at least an -
fraction of the knapsack’s capacity, respectively. Based on this, we partition ordinary knapsacks further into
groups such that the classification into small, big or “does not fit” is consistent among knapsacks of a given
group. Note that these groups are not based on m and % but dynamically depend on the current set of items.
As the number of big items per knapsack is bounded, the LP explicitly assigns those via configurations to
knapsacks while it assumes that small items can be packed fractionally and, thus, those are only assigned by
number to the respective groups. This algorithm is described and analyzed in Appendix E.

To highlight major algorithmic ideas and technical contributions, we present algorithms for the following
more accessible special cases, which can — with some additional effort — be generalized to the subproblems
discussed above. Beyond that, they are of independent interest as they constitute relevant special cases of
MULTIPLE KNAPSACK and allow for significant improvements in the running time.

Single Knapsack: When the instance consists of only a single knapsack, the approach used for special
knapsacks allows for greatly improved update and query times. For KNAPSACK, we can replace the EPTAS
by a faster FPTAS and, additionally, we need only a single placeholder item. The remaining steps are
unchanged, yielding an update time of (9( 1&‘548’?&) + O(% log nlogv). Moreover, the single placeholder
enables us to compute its membership by comparing with a saved pivot element. Thus, we can access any
item in constant time and de facto compute explicit solutions. We present these results in Section 4.

Identical Knapsacks: As a special case of the second subproblem, we consider MULTIPLE KNAPSACK
with identical capacities, where an item is either big or small with respect to all knapsacks. As a con-
sequence, (i) this exponentially decreases the number of constraints, and (ii) it suffices to reserve some
capacity of the knapsacks for packing the densest small items instead of computing their exact number by
the configuration LP. Still, the number of variables is prohibitively large. Hence, we would like to apply the
Ellipsoid method with an approximate separation oracle to the dual problem similar to [48, 67, 69]. How-
ever, we cannot use their approaches directly due to two additional variables in the dual problem. Instead,
we add an objective function constraint to the dual and carefully exploit the connection between feasible and
infeasible dual solutions to obtain a basic feasible solution for the primal. This enables us to approximately
solve the LP and round a solution in time (% log n10g Vax log Smax) oa if m is sufficiently large.

3 Data Structures and Preliminaries

From the perspective of a data structure that implicitly maintains near-optimal solutions for MULTIPLE
KNAPSACK, our algorithms support several different update and query operations. These allow for the input
to MULTIPLE KNAPSACK to be changed, which causes the computation of a new solution, or for (parts of)
that solution to be output, respectively. The supported update operations are as follows.

e Insert Item: inserts an item into the input

¢ Remove Item j: removes item j from the input

o Insert Knapsack: inserts a knapsack into the input

¢ Remove Knapsack 2: removes knapsack ¢ from the input
These compute a new solution which can be output, entirely or in parts, using the following query operations.

e Query Item j: returns whether item j is packed in the current solution and if yes, additionally returns

the knapsack containing it
¢ Query Solution Value: returns the value of the current solution



e Query Entire Solution: returns all items in the current solution, together with the information in
which knapsack each such item was packed

In particular, these queries are consistent in-between two update operations. Nevertheless, the answers to
queries are not independent of each other but depend on the precise queries as well as their order.

To provide the above functionality, we require the use of additional auxiliary data structures and make
a few basic assumptions which we now discuss. First, while the model imposes no time bounds on the
computation of an initial solution, it can be easily seen that for all our algorithms such an initial solution can
be computed in time nearly linear in n and with additional dependencies on €, vy ax, and v as in the respective
algorithms. For simplicity, we assume that elementary operations such as addition, multiplication, and
comparison of two values can be handled in constant time. Clearly, this is not true as the parameters involved
can be as large as vmax and Spax 1= max S;. However, as the number of elementary operations is bounded,
their results do not grow arbitrarily large but are in fact bounded by a polynomial in logn, logm, Snax,
and v, ax and some function of % Thus, we do not explicitly state the size of the involved numbers. Lastly,
we make following standard assumptions on €. By appropriately decreasing e, we assume without loss of
generality that % € N. If m is sufficiently large, i.e., m > %, we also assume em € N.

Rounding Values A crucial ingredient to our algorithms is the partitioning of items into only few value
classes Vy consisting of items j for which (1+¢)* < v; < (1+¢)**L. Upon arrival of an item, we calculate
its value class Vy; and store j together with vj, s;, and £; in the appropriate data structures of the respective
algorithm. We assume all items in V} to have value (1 + ¢)* and, abusing notation, use V; to refer to both
the value class and the (rounded) value of its items. The following lemma justifies this assumption. Since
this technique is rather standard, we only state the lemma without providing a formal proof.

Lemma 3.1. (i) There are at most O(bgi’%) many value classes.
(ii) For optimal solutions OPT and OPT' for the original and rounded instance respectively, we
have v(OPT') > (1 —€) - v(OPT).

Data Structures The targeted running times do not allow for completely reading the instance in every
round but rather ask for carefully maintained data structures that allow us to quickly compute and store
implicit solutions. For access to the input, we maintain an array that for each item stores the item’s size, value
and value class, and similarly for knapsacks. Mainly, however, our dynamic algorithms rely on maintaining
sorted lists of up to n or m items or knapsacks respectively. For all sortings, break ties according to indices.

As our goal is to design algorithms with poly-logarithmic update times, it is crucial that the data struc-
tures enable accordingly efficient insertion, deletion and access times. Bayer and McCreight developed such
a data structure in 1972, the so-called B-trees that were later refined by Bayer to symmetric binary B-trees.
In contrast to this early work, we additionally store in each node k information such as the total size, the
total value, the total number of elements or the total capacity of the subtree rooted in k.

As observed by Olivié [66] and by Tarjan [73], updating the original symmetric binary B-trees can
be done with a constant number of rotations. For our dynamic variant of B-trees, this implies that only a
constant number of internal nodes are involved in an update procedure. In particular, if a subtree is removed
or appended to a certain node, only the values of this node and of his predecessors need to be updated. The
number of predecessors is bounded by the height of the tree which is logarithmic in the number of its leaves.
Hence, the additional values stored in internal nodes can be maintained in time O(logn) or O(logm).
Storing the additional values such as total size of a subtree in its root allows us to compute prefixes or the
prefix sum with respect to these values in time O(logn') as well. Prefix computation refers to finding the
maximal prefix of the sorted list such that the elements belonging to the prefix have values whose sum is
bounded by a given input. We return a prefix by outputting the index of its last element.



Lemma 3.2. There is a data structure maintaining a sorting of n’ elements w.r.t. to key value. Moreover,
(i) insertion, deletion, or search by key value or index of an element takes time O(logn'), and
(ii) prefixes and prefix sums with respect to additionally stored values can be computed in time O(logn').

Hardness of Computation To conclude this section, we provide a justification for the different running
times of our algorithms for MULTIPLE KNAPSACK depending on the number of knapsacks. It is known that
MULTIPLE KNAPSACK with m = 2 does not admit an FPTAS, unless P = NP [18]. For the dynamic setting,
this implies that there is no dynamic algorithm with running time polynomial in log n and % unless P = NP.
We show that a (1 — ¢)-approximate dynamic algorithm for MULTIPLE KNAPSACK with m < 31? with
update time polynomial in log n and % would imply that 3-PARTITION can be decided in polynomial time.
The proof of following theorem is given in Appendix G.1. Note that this result can be extended to a larger

number of knapsacks by adding an appropriate number of sufficiently small knapsacks.

Theorem 3.3. Unless P = NP, there is no fully dynamic algorithm for MULTIPLE KNAPSACK that main-
tains a (1 — e)-approximate solution in update time polynomial in logn and % Jorm < é

4 A Single Knapsack

The first problem we consider is KNAPSACK. We show how to take advantage of dealing with only a single
knapsack when maintaining (1 — €)-approximate solutions. Utilizing an FPTAS to pack a low-cardinality
set of high-value candidates as well as a placeholder for low-value items, we obtain the following result.

Theorem 4.1. For ¢ > 0, there is a fully dynamic algorithm for KNAPSACK that maintains (1 — ¢)-
approximate solutions with update time (9( IC’J—(?”‘&)) + (’)( log nlog®). Furthermore, single items and
the solution value can be accessed in time O(1).

Definitions and Data Structures Denote by OPT the item set of an optimal solution and by OPT1 the é
most valuable items of OPT. In both cases, break ties by picking smaller items. Denote by V4, . and V¢ .
the highest resp. lowest value (class) of an element in OPT1 and let nyin = |OPT1 NV, ‘ < =. Further-
more, denote by V', the value of the items in OPT \ OPT1 rounded down to a power of (1 + e)

To efficiently run our algorithm we maintain several of the data structures from Section 3. We store
the items of each non-empty value class V; (at most log; , . Umax) in a data structure ordered by increasing
size. Second, for each possible value class V; (at most log; . ¥), we maintain a data structure ordered by
decreasing density that contains all items of value V} or lower. In particular, we maintain such a data structure
even if 1} is empty since initialization is prohibitively expensive in terms of run time. Instead we constantly
maintain all data structures leading to the additive term in the update time of O(lognlog; . v). We use
additional data structures to store our solution and support queries described in the proof of Lemma 4.2.

mdx

Algorithm The algorithm computes an implicit solution as follows.

and npin. IfFV, . > €21,

min

1) Compute a set /1 of high-value candldates Guess V..., V...
define H1 to be the set containing the = smallest items of each of the value classes ngmﬂ, oo s Vo
plus the nmm smallest items from V}_. . Otherwise, set H 1 to be the union of the = smallest items of
each of the value classes with values in €2V,

max ?

max ? Emax]

2) Create a placeholder item B: Guess V; and consider the data structure of items with value at
most V. sorted by decreasing density. Remove the n,;, smallest items of V; . until the next
update. For the remaining items, compute the minimal size of fractional items necessary to reach a
value Vr. Then B is given by vg = Vr, and with sp equal to the size of those low-value items.



3) Use an FPTAS: On the instance I, consisting of H1 and the placeholder item B, run an FPTAS
parameterized by € (we use the one by Jin [47]) to obtain a packing P.

4) Implicit solution: Among all guesses, keep the solution P with the highest value. Pack items
from H1 asin P and, if B € P, also pack the low-value items completely contained in B. While
used candidates can be stored explicitly, low-value items are given only implicitly by saving the cor-
rect guesses and computing membership in B on a query.

Analysis. The above algorithm attains an approximation ratio of (1 — 4¢) - v(OPT). One e-fraction
of v(OPT) is lost by using the FPTAS and additional one in each of the following three places. To obtain a
candidate set H1 of constant cardinality, we restrlct 1tem values to [e2 - Vp, ., V... ] Since |OPTL| = 1
this removes items with a total value of at most €2V, .. < e-OPT. Furthermore, due to guessing V;,
up to a power of (1 + ¢), We getvp =V > (1— e) v(OPT \ OPTL). Finally, the item cut fractionally in
Step 2) is charged to the < items of OPT1 which have a larger value.

The running time can be verified easﬂy by multlplymg the numbers of guesses for each value as well
as the running time of the FTPAS The latter is (’)( ), since we designed H1 to contain only a constant
number of items, namely (’)( ) many. For a detalled analysis, see Appendix A.

Queries We show how to efficiently handle the different types of queries and state their runtime.

e Single Item Query: If the queried item is contained in 1, its packing was saved explicitly. Other-
wise, if B is packed, we save the last —i.e., least dense — item contained entirely in B. By comparing
with this item, membership in B can be decided in constant time on a query.

e Solution Value Query: While the algorithm works with rounded values, we may set up the data
structure of Section 3 to additionally store the actual values of items. We store the actual solution
value in the update step by adding the actual values of packed candidates and determining the actual
value of items in B with a prefix computation. On query, we return the stored solution value.

e Query Entire Solution: Output the stored packing of candidates. If B was packed, iterate over items
in B in the respective density-sorted data structure and output them.

Lemma 4.2. The query times of our algorithm are as follows.
(i) Single item queries are answered in time O(1).
(ii) Solution value queries are answered in time O(1).
(iii) Queries of the entire solution P are answered in time O(P|).

5 Identical Knapsacks

5.1 Dynamic Linear Grouping

We describe our new dynamic approach to linear grouping for an item set .J’ C .J where any feasible solution
can pack at most n’ items of .J’. We consider J instead of .J because some of our dynamic algorithms only
use the dynamic linear grouping on a subset of items, e.g., big items.

Theorem 5.1. Given a set J' with |OpT N J'| < n’ for all optimal solutions OPT, there is an algorithm
) that reduces the items in J' to item types T with |T| < O(log;"l) and en-

with running time O(log;n,
sures v(OPTT) > %v(OPT). Here, OPTT is the optimal solution attainable by packing item

types T instead of items in J' and using J \ J' without any changes.



Algorithm In the following, we use the notation X' for a set X to refer to X N.J" while X" refers to X'\ .J'.
Recall that, upon arrival, item values of items in .J are rounded to natural powers of (1 + ¢) to create the
value classes V; where each item j € V} is of value (1 + ¢)*.

1) Let £iax be the guess for the highest value class with V/ N OPT % () and let £ := £y — RZE((?ZE)) W )

2) For each value class ¢ < ¢ < /{y.x and each guess n;, = (1 + g)l for 0 < I < logy,. n' do
the following: Consider the n, elements of V;/ with the smallest size and determine the % many
(almost) equal-sized groups G'1(ny), . .., G1/:(ng) of [eng] or [eng| elements. If eny ¢ N, ensure
that |G, (n¢)| < |G (ne)| < |Gr(ng)| + 1 for k < k. If 1 is not a natural power of (1 + €), we also
create the groups G1(1), ..., GI/E(%) where Gj,(1) contains the kth smallest item in V.

Let G1(ng), . .., Gy /(ne) be the corresponding groups sorted increasingly by the size of the items.
Let ji(ny) = max{j € Gi(ns)} be the last index belonging to group Gy (n;). After having deter-
mined ji(ny) for each possible value ny (including %) and foreach1 < k < %, the size of each item j
is rounded up to the size of the next large item ;" where j' = ji(ny) for some combination of & and n,.

3) Discard each item j with j € V] for £ < /.

Analysis Despite the new approach to apply linear grouping simultaneously to many possible values of n,
the analysis uses standard techniques. Thus, we only give a high-level overview of the proof here and refer
the reader to Appendix C for the technical details. We start by observing that the loss in the objective function
due to rounding item values to natural powers of (1 + ¢) is bounded by a factor of ﬁ by Lemma 3.1. As ¢

is chosen such that n’ items of value at most (1 4 £)* contribute less than an e-fraction of OPT’, the loss in
the objective function by discarding items in value classes V;/ with £ < ? is bounded by a factor (1 — ¢). By
taking only (1 + ¢) Uogi+e 2] jtems of V, instead of ny, we lose at most a factor of %Jra Observing that the
groups created by dynamic linear grouping are an actual refinement of the groups created by the classical
linear grouping for a fixed number of items, we pack our items as done in linear grouping: Not packing
the group with the largest items allows us to “shift” all rounded items of group G(n) to the positions of
the (not rounded) items in group G11(ny) at the expense of losing a factor of (1 — 2¢). Combining these
results then shows the following lemma.

Lemma 5.2. Let OPT and OPT be as defined above. Then, v(OPTT) > %U(OPT).

logn'/e logn’
log(1+e€) log(1+¢)
different values for ny = |OPT N V| suffices as explained above, the next lemma follows.

As T contains at most %([

| + 1) many different value classes and using |

W + 1 many

log? n’ )

Lemma 5.3. The algorithm reduces the number of item types to O(=%;

The crucial ingredient for the refined dynamic linear grouping are the carefully calculated indices that
indicate the largest item in a group for a value ny. These indices can be computed exactly once, depending
on the current value n’. Combining this observation with the bound in Lemma 5.3 and the access times
given in Lemma 3.2 is the main part of the proof of the next lemma.

4 .7
Lemma 5.4. For a given guess lnay, the set Tmax) can be determined in time (’)(logE ).

Proof of Theorem 5.1. Lemmas 3.1 and 5.2 bound the approximation ratio, Lemma 5.3 bounds the number
of item types, and Lemma 5.4 bounds the running time of the dynamic linear grouping approach. O



5.2 A Dynamic Algorithm for Many Identical Knapsacks

In this section, we give a dynamic algorithm that achieves an approximation guarantee of (1 — ¢) for MUL-
TIPLE KNAPSACK with identical knapsack sizes. The running time of the update operation is always poly-
nomial in logn and % In this section, we assume m < n as otherwise assigning the items in some con-
sistent order to the knapsacks is optimal. We focus on instances where m is large, i.e., m > i_—? log? n.
Form < i_—? log? n, we use the algorithm for few knapsacks presented in Appendix B.

Theorem 5.5. Let U = max{Sm, nvmax}. If m > ;—? log? n, there is a dynamic algorithm for the MUL-

TIPLE KNAPSACK problem with m identical knapsacks with approximation factor (1 — ¢) and update

(logU)O(l (loﬁ)o(l)
€ €

time ). Queries for single items and the solution value can be answered in time O

and O(1), respectively. The whole solution P can be returned in time | P| (10%)0(1).

Definitions and Data Structures We partition the items into two sets, Jp, the big items, and Jg, the
small items, with sizes s; > €S and s; < €5, respectively. For an optimal solution OPT, define OPTp :=
OprT N Jp and OPTg := OPT N Jg.

For this algorithm, we maintain three types of data structures: we store all items in one balanced binary
tree in order of their arrivals, i.e., their indices. In this tree, we store the size s; and the value v; of each
item j and additonally store the value class /; for big items. Big items are also stored in one balanced binary
tree per value class V; sorted by non-decreasing size while all small items are sorted by non-decreasing
density and stored in one tree. Overall, we have at most 2 + log; | . vinax many data structures to maintain.
Upon arrival of a new item, we insert it into the tree of all items and classify this item as big or small
according to s; > €5; or s; < £5;. If the item is small, we insert it into the tree of small items. Otherwise,
we determine its value class £ = [log; . v;]| and insert it into the corresponding tree.

Algorithm

1) Linear grouping of big items: Guess /,,,x, the index of the highest value class that belongs to OPTp
and use dynamic linear grouping with J' = Jp and n’ = min{"®,ng} to obtain 7T, the set of item
types t with their multiplicities n;.

2) Configurations: Create all possible configurations of at most % big items and store these configura-
tions in C. For ¢ € C let v, and s, denote the total value respectively size of the items in c.

3) Guessing the size of small items: First guess vg as estimate of v(OPTg). Let P be the maximal
prefix of small items (sorted by decreasing density) with v(P) < vg. Define sg := s(P).

4) Configuration ILP: Solve the following configuration ILP with variables vy, for ¢ € C for the current
guesses {max and sg. Here, y. counts how often a certain configuration c is used and ny. denotes the
number of items of type ¢ in configuration c.

max E YeVe

ceC
subject to Z YeSe < (1 —3e)Sm —sg

ceC

Z Ye < (1-3g)m (P)
ceC

Z YeNte < My forallt € T

ceC

Ye € Zxo forallc € C

10



The first inequality ensures that the configurations chosen by the ILP fit into (1 — 3¢)m knapsacks
while reserving sufficient space for the small items. The second constraint limits the total number of
configurations that are packed. The third inequality ensures that only available items are used.

5) Obtaining an integral solution: As m is large, we cannot solve the ILP optimally but need to relax
the integrality constraint and allow fractional solutions. Given such a fractional solution, we round this
fractional solution into an integral packing Pp using at most em additional knapsacks while ensuring
that v(Pg) > vrp, where vy p is the optimal solution value for the LP relaxation.

6) Packing small items: Consider the maximal prefix P of small items with v(P) < vg and let j be the
densest small item not in PP. Pack j into one of the knapsacks kept empty by Pp. Then, fractionally
fill up the (1 —2¢)m knapsacks used by Pp and place any “cut” item into the em additional knapsacks
that are still empty. We can guarantee that this packing is feasible.

Analysis The first step is to analyze the loss in the objective function value due to the linear grouping. To
this end, set J' = Jp and n’ = min{"2,n}. Moreover, let OPT7 be the optimal packing when using the
corresponding item types 7 obtained from applying dynamic linear rounding instead of the items in Jp.
Then, the next corollary immediately follows from Theorem 5.1.

Corollary 5.6. Let OPT and OPT be defined as above. Then, v(OPTT) > %’U(OPT).

In the next lemma, we show that there is a guess vg with the corresponding size sg such that vj; p+vs+v;
for the optimal solution value vjj p of (P) is a good guess for the optimal solution v(OPT). Here, j is the
densest small item not contained in P while P is the maximal prefix of small items with v(P) < vg. The
high-level idea of the proof is to restrict an optimal solution OPT7 to the (1 — 3¢)m most valuable knapsacks
and show that sg underestimates the size of small items in these (1 — 3¢)m knapsacks. Transforming these
knapsacks into configurations then comprises a feasible solution for the configuration ILP. See Appendix D.

1-3¢
1+e

Lemma 5.7. Let vj; p and OPTT be defined as above. There are vs and ss with vj; p +vg >
Moreover, for P and j as defined above, v(P) + vj > vg.

v(OPTT).

Next, we explain how to approximately solve the LP relaxation of the configuration ILP (P) and round
the solution to an integral packing in slightly more knapsacks. As any basic feasible solution of (P) has at
most O (|T|) strictly positive variables, solving its dual problem with the Grotschel-Lovasz-Schrijver [28]
variant of the Ellipsoid method determines the relevant variables.

The separation problem is a KNAPSACK problem, which we only solve approximately in time poly-
nomial in logn and % This approximate separation oracle correctly detects infeasibility while a solution
that is declared feasible may only be feasible for a closely related problem causing a multiplicative loss in
the objective function value of at most (1 — ). We cannot use the approaches by Plotkin, Shmoys, and
Tardos [67] and Karmarkar and Karp [48] directly as our configuration ILP contains two extra constraints
which correspond to additional variables in the dual and, thus, to two extra terms in the objective function.
Instead, we add an objective function constraint to the dual and test for feasibility for a set of geometrically
increasing guesses of the objective function value. Given the maximal guess for which the dual is infeasible,
we use the variables corresponding to constraints added by the Ellipsoid method to solve the primal. The
multiplicative gap between the maximal infeasible and the minimal feasible such guess allows us to obtain
a fractional solution with objective function value at least }—jri See Appendix D for the technical details.

Lemma 5.8. Let U = max{Sm, nvmax}. Then, there is an algorithm that finds a feasiblle solution for the

LP relaxation of (P) with value at least }%ULP with running time bounded by (@)

11



Having found a feasible solution with the Ellipsoid method, we use Gaussian elimination to obtain a
basic feasible solution with no worse objective function value. By rounding down each variable in this
solution, we obtain a feasible integral solution to the configuration ILP. For each configuration subjected to
rounding, we place one additional configuration into one knapsack. As basic feasible solutions have at most
O(|T|) non-vanishing variables, the assumptions ? log?n < mand m < n imply ;—9 log? m < m which in
turn guarantees O(|7|) < em. Hence, the rounded solution uses at most (1 — 2¢)m knapsacks and achieves
a value of at least v p; see Appendix C.1.

Lemma 5.9. If i—? log?n < m, any feasible solution of the LP relaxation of (P) can be rounded to an
integral solution using at most (1 — 2e)m knapsacks with total value at least vy p.

Next, we bound the value achieved by our algorithm in terms of the optimal solution.
Lemma 5.10. Let Pr be the solution returned by our algorithm and let OPT be a current optimal solution.

It holds that v(Py) > U020 (0pr),

Proof. The solution found by our algorithm achieves the maximal value over all combinations of vg, guesses
of the value contributed by small items, and /., the highest value class of a big item. Thus, it suffices
to find a combination of vg and /. such that P, the corresponding packing, is feasible and satisfies
v(P) > G5 op).

Let OPTp be the set of big items in OPT and let £y,.x := max{¢ : V;NOPTg # (}. For this guess {iax,
let Ps U {j} be the set of small items of Lemma 5.7 such that vj; p + v(Ps) + vj; > llffv(OPTT). By
Lemma 5.9, there is a set of big items Pp with a feasible packing into (1 — 2¢)m knapsacks with total value
at least %UILP. Packing j on its own and Pg in a FIRST FIT manner, we extend this to a feasible packing

of P U Pg U {j}into (1 +¢)(1 —2e)m + 1 < m knapsacks; see Lemma C.5. With Lemma 5.7,

1—¢ Y vet >(1—5)(1—35)
v v Uy —_—
14e LPTESTH = (1+¢)?

where OPT7 is the most valuable packing after linear grouping. With Corollary 5.6 we get

v(Pr) > v(P) >

v(OPTT),

(1—¢)%(1 —2¢)(1 - 3¢)
(1+4¢)*

v(Pp) > v(OPT). (1)

O

The next lemma bounds the running time of our algorithm. The proof follows from the fact that the algo-

IOg(nUmax) log VUmax
52

rithm considers at most O ( ) many rounds, the running time for dynamic linear grouping

bounded in Lemma 5.4, and the running time for solving the configuration ILP as described in Lemma 5.8.

o)
Lemma 5.11. Let U := max{Sm, nvmax }. The running time of our algorithm is bounded by (M%U> .

Queries We show how to efficiently answer different queries and give their runtime. In contrast to the
previous section, for transforming an implicit solution into an explicit packing it does not suffice to know
whether an item is packed or not but the query operation has to compute the knapsack where item j is packed.
Since we do not explicitly store the packing of any item, we define and update pointers for small items and
for each item type that dictate the knapsacks where the corresponding items are packed. Therefore, to stay
consistent for the precise packing of a particular item between two update operations, we additionally cache
query answers for the current round in the data structure that store items.

12



o Single Item Query: If the queried item is small, we check if it belongs to the prefix of densest items
that is part of our solution. In this case, the pointer for small items determines the knapsack. If the
queried item is big, we retrieve its item type and check if it belongs to smallest items of this type that
are packed by the implicit solution. In this case, the pointer for this item type dictates the knapsack.

e Solution Value Query: As the algorithm works with rounded values, after having found the current
solution, we use prefix computation on the small items and on any value class of big items, to calculate
and store the actual solution value. On query, we return the stored solution value.

e Query Entire Solution: We use prefix computation on the small items as well as on the value classes
of the big items to determine the packed items. Then, we use the Single Item Query to determine their
respective knapsacks.

For a detailed analysis of the queries and the proof of the following lemma, see Appendix D.

Lemma 5.12. The solution determined by the query algorithms is feasible and achieves the claimed total
value. The query times of our algorithm are as follows.
(i) Single item queries can be answered in time (9( max { log
(ii) Solution value queries can be answered in time O(1)
(iii) Queries of the entire solution P are answered in time (9(|P| max { log

' e

logn 1 )

logn’ ; )

Proof of Theorem 5.5. In Lemma 5.10, we calculate the approximation ratio achieved by our algorithm. For
calculating the update time and the time needed for answering queries, observe that |C’| depends on m.
Then, Lemma 5.11 gives the desired bounds on the update time while Lemma 5.12 bounds the time needed
for answering a query. Lemma 5.12 also guarantees that the query answers are correct. O

6 Solving MULTIPLE KNAPSACK

Having laid the groundwork with the previous two sections, we finally show how to maintain solutions for
arbitrary instances of the MULTIPLE KNAPSACK problem, and give the main result of this paper. A detailed
proof can be found in Appendix F.

Theorem 6.1. For ¢ > 0, there exists a dynamic algorithm for MULTIPLE KNAPSACK that maintains

an (1—e¢)-approximate solution in update time ( log(nvmax))f( /e)—i—O( logTlogn), with f4quasz -linear.
Item queries are served in time O(log") and the whole solution P can be output in time O (log 2| P|).

As mentioned in Section 2, we obtain this result by partitioning the knapsacks into three sets, special,
extra and ordinary knapsacks, and solving the respective subproblems. This has similarities to the approach
in [43]; however, there it was sufficient to have only two groups of knapsacks. In Appendices B and E
we show the following two theorems. They solve the special and ordinary subproblems by applying the
algorithmic techniques developed in Sections 4 and 5 respectively.

Theorem 6.2. For e > 0, there is a dynamic algorithm for MULTIPLE KNAPSACK with m knapsacks that
achieves an approximation factor of (1— &) with update time 2/ (/%) (2 log(nvmax))° + O(L log vlog n),
with f quasi-linear. Moreover, item queries are answered in time O(log %2) solution value queries in
time O(1) and queries of a single knapsack or the entire solution in time linear in the size of the output.

Theorem 6.3. There is a dynamic algorithm for MULTIPLE KNAPSACK that, when given L = (10%)0(1/ €)
additional knapsacks as resource augmentation, achieves an approximation factor (1 — &) with update
time (log n)o(l/‘f) (log Smax log vmax)o(l) where Syax 1= max{S; : i € [m|}. Item queries are answered
in time O(logn) and a solution P can be output in time O (| P|=5 log 51,
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Definitions and Data Structures. We assume that m > (%)4/ ¢ . L. Otherwise, we apply Theorem 6.3.
Consider % groups of knapsacks with sizes 8% fori € {0,1,... ,% — 1} such that the first group (: = 0)
consists of the L largest knapsacks, the second (i = 1) of the 5% next largest, and so on. In OPT, one of
these groups contains items with total value at most € - OPT. Let k € {0,1,..., % — 1} be the index of such
a group and let Lg := Zf:_ol E% Based on k and Lg, we partition the knapsacks into three groups that
increase in knapsack capacity but decrease in cardinality. We refer to them as special, extra and ordinary
knapsacks, with the special knapsacks being the L g largest ones. The extra knapsacks are the 63% > % +L
next largest, and the ordinary knapsacks the remaining ones.

Call an item ordinary if it fits into the largest ordinary knapsack and special otherwise. Denote by Jp
and Jg the set of ordinary and special items respectively and by So the total size, rounded down to a power
of (1 + ¢), of ordinary items that OPT places in special knapsacks.

Since we use the algorithms from Appendices B and E as subroutines, we require the maintenance of
the corresponding data structures. This causes the additive term (’)(% logTlogn) in the update time.

Algorithm.

1) Dynamic linear grouping: Compute (9(105#) item types as in Section 5.1 (using J' = J and

n’ = n). Guess k and determine whether items of a certain type are ordinary or special.

2) High-value ordinary items: Place each of the % most valuable ordinary items in an empty extra

knapsack. On a tie choose the larger item. Denote the set of such items by Jg.

3) Virtual ordinary knapsack: Guess Sp and add a virtual knapsack with capacity So to the ordinary
subproblem. In the LP (P) of Appendix E, that is used to solve the ordinary subproblem, only consider
variables z, ; for this knapsack but no configurations.

4) Solve ordinary instance: Remove until the next update, from data structures used in the ordinary
subproblem, the set Jg of items placed in extra knapsacks in Step 2). Solve the subproblem with the
virtual knapsack as in Appendix E and use extra knapsacks for resource augmentation. When rounding

up variables, fill the (9(105%) rounded items from the virtual knapsack into extra knapsacks.

5) Create bundles Consider the items that remain on the virtual ordinary knapsack after rounding. Sort
them by type (e.g., first value, then size) and cut them fractionally to form L?S bundles of equal size.
Denote by B this set of bundles and, for each bundle, remember how many items of each type are
placed entirely inside it. Place fractionally cut items into extra knapsacks. Consider each B € B as
an item of size and value equal to the fractional size respectively value of items placed entirely in B.

6) Solve special instance: Temporarily insert the bundles in B into the data structures used in the
special subproblem. Solve this subproblem as detailed in Appendix B.

7) Implicit solution: Among all guesses, keep the solution Pr with the highest value. Store items in Jg
and their placement explicitly. Revert the removal of Jg from the ordinary data structures only during
the next update. For the remaining items, the solutions are given as in the respective subproblem,
see Appendices B and E with the exception of items packed in the virtual ordinary knapsack. The
solution on these items is stored implicitly by deciding membership in a bundle on a query.

Queries For handling queries, we essentially use the same approach as in Appendices B and E for the
ordinary and special subproblem respectively. However, special care has to be taken with items in the
virtual knapsack. In the ordinary subproblem, we assume that items of a certain type which are packed in
the virtual knapsack are the first, i.e., smallest, of that type. We can therefore decide in constant time whether
or not an item is contained in the virtual knapsack and, if this is the case, fill it into the free space in special
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knapsacks reserved by bundles. We do this efficiently by using a first fit algorithm on the knapsacks with

reserved space. Since items on extra knapsacks are stored explicitly, they can be accessed in constant time.
logn

Note that the number of special knapsacks is in (—)O(l/ ¢), so the function g in Appendix B is in O (é)

£

Lemma 6.4. The query times of our algorithm are as follows.
(i) Single item queries are answered in time (’)(1052”).
(ii) Solution value queries are answered in time O(1).

4
(iii) Queries of the entire solution P are answered in time O(bg—gn |P]).

7 Conclusion

We have presented a robust dynamic framework for KNAPSACK and MULTIPLE KNAPSACK with item
and knapsack arrivals and departures and queries on solution size and item presence in the solution. By
having n items arrive one by one, any dynamic algorithm can be turned into a non-dynamic framework with
incurring an additional linear term in the running time. Hence, the performance of any dynamic framework
is subject to the same lower bounds as non-dynamic approximation schemes. Our results on KNAPSACK
and MULTIPLE KNAPSACK with identical capacities are tight in the sense that their runtime is a form of
FPTAS (resp. EPTAS), matching the known results for the approximation algorithms.

Clearly, further generalizing the results beyond MULTIPLE KNAPSACK remains an interesting open
question. A straightforward generalization is d-dimensional KNAPSACK where each item comes with d dif-
ferent sizes corresponding to d dimensions, each knapsack has d different capacities, and a feasible packing
of a subset of items must meet the capacity constraint in each dimension. Using the reduction to the 1-
dimensional setting developed by [22], allows us to generalize our results for KNAPSACK and MULTIPLE
KNAPSACK with identical knapsacks to the d-dimensional setting at the loss of a factor d in the approxima-
tion guarantee. A result by [55] shows that, unless W[1] = FPT, 2-dimensional knapsack does not admit a
dynamic algorithm maintaining a (1 — ¢)-approximation in worst-case update time f (%)no(l). Designing
a dynamic framework with a better guarantee than é remains open.

We hope to foster further research within the dynamic algorithm framework for other packing, schedul-
ing and, generally, non-graph problems. For bin packing and for scheduling to minimize the makespan on
uniformly related machines, we notice that existing PTAS techniques from [48] and [36,44] combined with
rather straightforward data structures can be lifted to a fully dynamic framework for the respective problems.
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Appendices

A Proofs for Single Knapsack

In this section we give the detailed analysis of our algorithm for KNAPSACK in Section 4. We consider the
iteration in which the guesses Vp, .., Vi nmin and Yy, are correct and show that the obtained solution has
a value of at least (1 — 4¢) - v(OPT).

Let P; be the set of solutions respecting: (i) packed items not in H1 have a value of at most V¢, but
are not part of the n,i, smallest items of the value class V;_. , and (11) the total value of these items lies

in [V, (1 +¢)VL]. Denote by OPT; the solution of highest value in P;.

min ?

Lemma A.1. Consider OPT; defined as above. Then, v(OPT;) > (1 —¢) - v(OPT).

Proof. Let OPT* be the packmg obtained from OPT by removmg all items belonging to OPT1 whose value
is strictly smaller than €2V}, .. Since OPTL 1 consists of L - many items, the total value of removed items is
atmost 1 -2V, < e-OPT. We show that OPT € 771

Con51der an item j in OPT1 of value v; > A% Ifvj ="V . ,thenj € H L by definition of Ny,
and OPTL, spec1ﬁcally, due to the tie- -breaking rules. Assume now that v; > ngm and j ¢ H1. Recall
that H1 contains the < smallest items of value v;, and |OPT 1| = l Thus, there exists an item of value vj,
smaller than J, which belongs to H L but not to OPTL. Exchangmg j for this item contradicts the definition
of OPT. Therefore, j € H: and Condmon (1) 1s satlsﬁed Condition (ii) follows directly from the definition
of Vr, and therefore OPT* € ‘P1, concluding the proof. O

max *

Lemma A.2. Let OPT2 be the optimal solution of the instance I on which the FPTAS is run at Step 3).
Then, v(OPT3) > (1 —¢) - v(OPTY).

Proof. Consider the fractional solution OPT] for I that is obtained from OPT; as follows. Place items
from H1 as in OPT; and additionally place the placeholder item B. Denote by .Jy, the set of items packed
by OPT1 that are not in H 1, i.e., the low-value items. By definition of B, we have vp = Vp > (1 —

e)v(Jr). Further, since B consists of the densest low-value items, it must be the case, that sp < s(JL).
Therefore, OPT] is a feasible solution for I and the statement follows. O

Lemma A.3. For the solution Pr of the algorithm, we have v(Pp) > (1 — 4¢) - v(OPT).

Proof. The solution Ppprag returned by the FPTAS in Step 3) has a value of at least (1 — ) - v(OPTg). The
solution Pr is obtained from Prprag by replacing the placeholder with the corresponding low-value items,
except possibly the fractional item j. Since there are - L items in OPT that are of higher value than 5, namely
the ones in OPT1, this implies

v(Pp) > v(Prpras) — € - v(OPT).
Using Lemmas A.1 and A.2, we obtain:
v(Pr) > v(Prpras) — € - v(OPT)
> (1 —¢)? v(OPTy) — £ - v(OPT)
(1 —¢)*-v(OPT) — £ - v(OPT)
(1 —4e) - v(OPT).

Lemma A.4. The algorithm has update time (’)( -logn - log(n - Umay) - log? vmax).
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Proof. In the first step, guessing Vp,_ . and V;_. , and therefore enumerating over all possible values, leads
to (’)(Ei2 . log2 Umax ) Many iterations. Guessing nyi, adds an additional factor of %

In the second step, again guessing V;, adds a factor to the runtime, specifically O(L log(n - vmax)).
Temporarily removing the 7, < 2 elements from the data structure costs a total of O(< logn), as does
adding back removed items from a previous iteration. Computing the size of B can be done by querying the
prefix of value just above Vy, in time O(log n), see Section 3.

For Step 3) note that the set H 1 spans value classes ranging from &2 Vi ..
are rounded to powers of (1 + 5) we consider at most log; ;. = 2L many. Hence, H?1 is composed of (’)( 5)

items and the FPTAS runs in time O ( (=7 e 3/2 + )/2Q \ 1°g(1/5))) = (9(5%)

Recall, that we need to maintain one data structure for every existing and one for each possible value
class, that is, (9(% log ) many data structures in total. Maintenance of these, i.e., insertion or deletion of an
item, takes time (’)(% logwlogn) in total. O

or higher to V,___. As values

max *

B Few Different Knapsacks

It is not very difficult to extend the approach from Section 4 to the case of multiple but few knapsacks. While
theoretically applicable for any number of knapsacks, the runtime is reasonable when m = (% log n)of(l).
The main difference to Section 4 comes from the fact that to reserve space for low-value items, a single
placeholder is no longer sufficient. Instead, we utilize several smaller placeholders. And since guessing the
size of low-value items for every knapsack would lead to a runtime exponential in m, we instead employ a
sufficiently large number of placeholder items, namely “* many.

This leads to additional changes as there are more fractionally cut items, i.e., one per placeholder. To be
able to charge them as before in Lemma A.3, we now consider the 3 most profitable items in OPT. This in
turn leads to a larger candidate set of size 73. Furthermore, since we cons1der multiple knapsacks, we need
to utilize an EPTAS instead of an FPTAS. Besides these changes, the algorithm remains unchanged.

Theorem 6.2. For e > 0, there is a dynamic algorithm for MULTIPLE KNAPSACK with m knapsacks that
achieves an approximation factor of (1 — &) with update time 2/(*/#) (Z 10g(nVmax)) M + O(Llogvlogn),
with f quasi-linear. Moreover, item queries are answered in time O(log ?—;) solution value queries in
time O(1) and queries of a single knapsack or the entire solution in time linear in the size of the output.

Definitions and Data Structures Let OPT be the set of items used in an optimal solution and OPTz the
set containing the 3 most valuable items of OPT; in both cases, break all ties by picking smaller-size 1tems
Further, denote by ngax and Vy, . the highest and lowest value (class) of an element in OPT 2 respectively
and by npi, the number of elements of OPTm with value V,_. . Let )V, be the total Value of the items
in OPT \ OPTz , rounded down to a power of (1 +¢). The data structures used are identical to those of
Section 4.

Algorithm

1) Compute high-value candidates /1 : Guess the three values V., V. and npin. IF Ve, -m >

- Voo then define H m to be the set that contains the 77 smallest items of each of the value
classes Vorint1s - Voo plus the nyin smallest items from V.

Otherwise, we set H ;n to be the union of the Z; smallest items of each of the value classes with values

in (£ Vi Vi

max’

ma.
max ? maxl ‘

2) Create bundles of low-value items as placeholders: Guess the value V;, and consider the data
structure containing all the items of value at most V;, . sorted by decreasing density. Remove from

min
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it (temporarily) the ny,i, smallest items of value V,_. . Insert them back into the data structure right
before the next full update. From the remaining items, compute the size of fractional items necessary
to reach a value of V. That is, sum the sizes of the densest items until the total value exceeds V',
and, if necessary, cut the last item fractionally Cut this range of items again fractionally to obtain
bundles B;, Bo, .. Bm of equal size . - V. The value of a bundle is determined by the fractional
value of the contamed items.

3) Use an EPTAS: Consider the instance I consisting of the items in H= and the placeholder bun-
dles By, Ba, ..., Bm. Run the EPTAS designed by Jansen [43, 45], parametenzed by €, to obtain a
packing P for this instance.

4) Implicit Solution: Among all guesses, keep the feasible solution P with the highest value. Then,
for any knapsack, place into the knapsack items from Hrm as in P and, if By is placed in P on this
knapsack, also place the low-value items that constitute Bk, except possibly items cut fractionally.
While used candidates can be stored explicitly, low-value items are given only implicitly by saving
the correct guesses and recomputing By on a query.

Analysis. The analysis is almost identical with that of Section 4 with only slight changes to accommodate
the alterations described above. For completeness, we give the full proofs. We consider the iteration in
which all guesses (Vy,,...., Vi,....» "min, V1) are correct, and show that the obtained solution has a value of at
least (1 — 6¢) - v(OPT). To this end, we consider intermediate results to analyze the impact of each step.
Let Py be the set of solutions respecting: (i) items not in Hm have a value of at most V;, . ~but are
not part of the nyi, smallest items of the value class Vp_. , and (i1) the total value of these items lies

in [Vr; (1 + ¢)V.]. Denote by OPT; the solution of highest value in P;.
Lemma B.1. Consider OPT; defined as above. Then, v(OPT1) > (1 — ) - v(OPT).

Proof. Let OPT* be the packing obtained from OPT by removing all items belonging to OPT = whose value
is strictly smaller than - Vinax. Since OPT m m consists of I many items, the total value of removed items
is at most = = % . VmaX < g - OPT. We show that O:FT S 771

Cons1der an item j in OPTm of value v; > % * Vimax. Ifv; = V. ,then j € H m by definition
of nyin and OPTm m ; spec1ﬁcally, due to the tie-breaking rules. Assume now that v; >V} _. and j ¢ Hm m .
Recall that Hm contams the 73 smallest items of value v;, and |OPT m | = 23 Thus, there exists an item of
value vj, smaller than j, wh1ch belongs to H = but not to OPT = Exchangmg 7 for this item contradicts the
definition of OPT. Therefore, j € Hm m and Cond1t10n (1) is sat1sﬁed Condition (ii) follows directly from
the definition of V7, and therefore OPT € P1, concluding the proof. O

Lemma B.2. Let OPTy be the optimal solution of the instance I on which the EPTAS is run at Step 3).
Then, v(OPT2) > (1 — 2¢) - v(OPTY).

Proof. Consider the fractional solution OPT] for [ that is obtained from OPT; as follows. First, place items
from Hr as in OPT;. Next, consider the placeholder bundles By, Bs, . . Bm in any order, and place them
fractlonally into the remaining space. That is, place remaining bundles in the first non-full knapsack. If a
bundle does not fit, fill the current knapsack with a fraction of the bundle and place the remaining fraction
in the next non-full knapsack using the same process. Finally, discard the fractionally cut bundles.

Denote by Jy, the set of items packed by OPT; that are not in Hm s i.e., the low-value items. Since the
bundles consists of the densest low-value items, it must be the case, that 7" ne18(By) < s(Jp). There-
fore, OPT] is a feasible solution for I and the statement follows.

By definition of the bundles, we have Y ;" v(By) = Vi > (1 — ¢)v(Jg). Further, since there
are == bundles of equal value and at most m of them are cut fractionally and discarded, we conclude
that v(OPT]) > (1 — 2¢) - v(OPTY). O
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Lemma B.3. For the solution Pr of the algorithm, we have v(Pr) > (1 — 6¢) - v(OPT).

Proof. The solution Pgprag returned by the EPTAS in Step 3) has a value of at least (1 — ¢) - v(OPT2).
The solution Pr is obtained from PgpTtag by replacing the placeholder bundles with the corresponding
low-value items with the exception of fractionally cut ones, of which there are at most “* many. Since there
are 73 items in OPT that are of higher value than these items, namely the ones in OPTE%, this implies

v(Pp) > v(Pepras) — € - v(OPT).

Using Lemmas B.1 and B.2, we obtain:

v(Pr) > v(Pepras) — € - v(OPT)

I\/I

(1 —2¢)?-v(0OPT}) — € - v(OPT)
> (1 —2¢)%- (1 —¢)-v(OPT) — ¢ - v(OPT)
>(1—4e)-(1—¢)—¢)-v(OPT)
> (1 —6¢) - v(OPT),
where the second to last equation follows from Bernoulli’s inequality. O

Lemma B.4. The algorithm has an update time of 2°(=18"(2) . (2 log(nvmax)) M + O(2 log vlog n).

Proof. 1In the first step, guessing Vy, . and V; . leads to (’)( ! log Umax) many iterations. Guessing Nmin
adds an additional factor of Z3. In the second step, guessing VL leads to O(2 log(nvmax)) many additional
iterations, so the factor due to guessing is (9(?5 log? Vmax log(nvmax))

Temporarily removing the n,;, < a% elements from the data structure costs a total of O(E% logn), as
does adding back removed items from a previous iteration. Computing the size of the bundles can be done
by querying the prefixes of value just above Vy,, so in time O(log n). Computing the cut items of the bundles

takes time “* log n.

max max

correspond to powers of (1 + ¢), this means we consider at most log; . ’s many. Since each of them

The set H m spans value classes ranging from V;, . to a value at least % - Vi . As the value classes

contains at most 73 items, Hm contains (’)( ) items in total. Thus, in the third step, the EPTAS, used on

O(?G) many 1tems, runs in time 20(: 108" (¢ )) + (%) O(1), Together, this gives the desired update time.
Recall, that we need to maintain one data structure for every existing and one for each possible value
class, that is, O(% log ¥) many data structures in total. Maintaining these takes time O(% logwlogn). O

Queries We show how to efficiently handle the different types of queries and state their runtime.

e Single Item Query: If the queried item is contained in H, its packing was saved explicitly. For
low-value items, we save the first and last element entirely 1ns1de a bundle and on query of an item
decide its membership in a bundle by comparing its density with those pivot elements.

e Solution Value Query: While the algorithm works with rounded values, we may set up the data
structure of Section 3 to additionally store the actual values of items and enable prefix computation
on the actual values. We can compute and store the actual solution value after an update by summing
the actual values of packed candidates and determining the actual value of items in B using prefix
computations while subtracting the values of discarded fractional bundles and items. On query, we
return the stored solution value.

o Single Knapsack Query: Output the saved packing of all candidates packed in the knapsack. Then,
in the respective density sorted data structure, iterate over items in bundles that were packed in the
queried knapsack and output them. As above, this is possible since the first and last item of a bundle
were saved during the update step.
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e Query Entire Solution: Output saved packing of all candidates and iterate over items in packed
bundles in the respective density sorted data structure as above.

Lemma B.S. The query times of our algorithm are as follows.

(i) Single item queries are answered in time O(log ?—62)

(ii) Solution value queries are answered in time O(1).
(iii) Queries of a single knapsack Py are answered in time O( Pk|).
(iv) Queries of the entire solution P are answered in time O(P)|).

Proof. (1): Since the packing of candidates is stored explicitly, each of the packed candidates can be output
in time O(1). The part of the solution corresponding to low-value items is stored implicitly, by saving the
correct guesses and the first and last items of each bundle. The latter are stored in a tree sorted by density first
and item index second, as in the data structure that was used to compute the bundles. Also save a pointer to
and from the respective adjoining bundles of these items. This preparation is done during an update. When
a low-value item is queried, use these pivot items to determine whether it is contained in packed bundles and
if s0 in which it lies. This takes time O(log ).

(i1): The computations for this query are done during an update of the instance, with the update clearly
dominating the runtime. Thus, on a query, the answer can be given in constant time.

(iii): As in (i), the packing of candidates in Px can be output in time O(1). For low-value items we
create, during an update, pointers from bundles to the first, i.e., densest, item contained in them. On a query,
we then simply consider each bundle in Pk and iterate over the density sorted data structure used to find
and output all items of the bundle.

(iv): We use the approach from (iii) on all knapsacks. ]

C Proofs for Dynamic Linear Grouping

In this section, we give the technical details of the analysis of the dynamic linear grouping approach devel-
oped in Section 5.1. We start by analysing the approximation ratio, i.e., by formally proving Lemma 5.2.
We restate it here for convenience.Recall that OPT is the optimal solution and OPT is the optimal solution
attainable by packing item types 7 instead of items in J' and using J \ J’ without any changes.

Lemma 5.2. Let OPT and OPTT be as defined above. Then, v(OPTT) > %U(OPT).

The loss in the objective function due to rounding item values to natural powers of (14 ¢) is bounded by
a factor of (1 — €) by Lemma 3.1. As already pointed out, the analysis of the approximation ratio consists
of three steps. In Lemma C.1 we show that the loss in the objective function value when restricting the
items in J’ to the value classes with £ < ¢ < (. is bounded by a factor of (1 — ¢). If an optimal solution
contains ny items of V, it is feasible to pack the n, smallest such items. Then, Lemma C.2 shows that we
do not need ny exactly but it suffices to guess ny up to a factor of (1 + ). Finally, in Lemma C.3, we argue
that using the introduced dynamic linear grouping approach costs at most a factor (1 — 2¢). In Lemma 5.3,
we show that the number of item types within one value class is reduced to O(beg—;‘,). In Lemma 5.4, we
bound the running time of the algorithm.

Let Py be the set of solutions that (i) may use all items in J” and (ii) uses items in .JJ’ only of the value
classes V; with £ < ¢ < {,.x. Let OPT; be an optimal solution in P;. The following lemma bounds the
value of OPT; in terms of OPT.

Lemma C.1. Let OPT; be defined as above. Then, v(OPT1) > (1 — ¢)v(OPT).
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Proof. Given {pax, it follows that v(OPT) > (1 + g)fmax, As n' is an upper bound on the cardinality of
OPT/, the items in the value classes with | < ¢ contribute at most n’ — 1 items to OPT’ while the value of one
item is bounded by (1 + )¢. Thus, the total value of items in Vj, . . ., V; contributing to OPT’ is bounded by

_ Crnax— ’VM-‘
n'(1+ 5)5 =n'(1+¢) log(1+2)

Lo — log(n' /)
+ 5) log(1+¢)

(1
_ n/( +€)€max(1 +5) logy 4. (n'/e)
(

Let .J; be the items in OPT’ restricted to the value classes with £ < ¢ < /... Clearly, J; and OPT” can
be feasibly packed. Hence,

v(OPTy) > v(J1) + v(OPT”) > v(OPT') — ev(OPT) + v(OPT”) > (1 — &)v(OPT).
O

From now on, we only consider packings in Py, i.e., we restrict to the value classes V; with (<1< /lpax
for the items in J'. Let V; be a value class contributing to OPT). As explained above, knowing n, = [V, N
OpT} | would be sufficient to determine the items of V; contributing to OPT, i.e., to determine V;/ N OPT;.
In the following lemma we show that we can additionally assume that n, = (1 + 6)’” for some k, € Nj.
To this end, let Py contain all the packings in P; where the number of big items of each value class V; is a
natural power of (1 + ¢). Let OPT2 be an optimal packing in P,.

Lemma C.2. Let OPTy be as defined above. Then, v(OPTy) > (1%5)

v(OPTY).
Proof. Consider OPTy, the optimal packing in P;. We set OPT) := OPT; N J’ and OPT =0pTy \ J' =
OprT; N J”. We construct a feasible packing in P that achieves the desired value of (=) + yY v(OPTY).

Let J> be the subset of OPT] where each value class V} is restricted to the smallest (1 + ¢) Llogy4e 7e
items in V}/ if V, N OpT] # 0.

Fix one value class V; with V, N OPT) # (). Restricting to the first (1 + £)l°81+c ") jtems in V, N OPT)
implies

v(Vy N Jy) = (14 e)logr=mel (1 4 )

(e (14 e)f

1 ¢
= 1
1+€( +e)'n
1
= V, N OPT,).
1+€U(£ 1)

Clearly, J> U OPTY is a feasible packing in P;. Observe that v(OPT}) = 3 ™ v(V, N OPT}). Hence,

v(OPTy) > v(Ja) + v(OPT]) > mU(OPTll) +v(OPTY) > T EU(OPTl).
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From now on, we only consider packings in P,. This means, we restrict the items in J’ to value
classes V, with ¢ < # < lyayx and assume that ny = (1 + ¢)*¢ for ny € Ng or ny = 0. Even with ny
being of the form (1 + £)*¢, guessing the exponent for each value class V/ independently is intractable in
time polynomial in logn and % To resolve this, the dynamic linear grouping creates groups that take into
account all possible guesses of ny. This rounding is done for each value class individually and results in
item types 7, for the set V. Let Pr be the set of all feasible packings of items in 7, for 0 < 0 < lax
and any subset of items in J”. That is, instead of the original items in J’ the packings in Pr pack the
corresponding item types. Note that packings in Py are not forced to pack natural powers of (1 4 €) many
items per value class. Let OPT be the optimal solution in P7. The next lemma shows that v(OPT7) is at
most a factor (1 — 2¢) less than v(OPT2), the optimal solution in Ps.

Lemma C.3. Let OPT3 be defined as above. Then, v(OPTT) > (1 — 2¢)v(OPTy).

Proof. We construct a feasible packing J3 in Py based on the optimal packing OPTs. Let OPT), := J' N
OPT, and OPTY := J” N OPT. We let J§ := OPT} be the items of J” in our new packing J5. These
items will be packed exactly where they are packed in OPT,. For items in J’, we consider each value
class V; N OPTY individually and carefully construct the set J3, the items of Vel contributing to J3. Then,
we show that the items in J; 3 can be packed into the knapsacks where the items in V; N OPT} are placed
while ensuring that v(.J; 3) > (1 — 2¢)v(V; N OPTS).

If V; N OPT, = (), we set Jiz = (). Then, both requirements are trivially satisfied. Consider the case
where [V N OPTy| < L. Then, we set J;3 := V/ N OPTY. Clearly, v(Jp3) > (1 — 2¢)v(V; N OPTY).

For packing J; 3, we observe that 7; actually contains the smallest % items as item types. Hence, their
sizes are not affected by the rounding procedure and whenever OPT5 packs one of these items, we can pack
the same item into the same knapsack.

Let ¢ be a value class with ny := |V; N OPTH| > % Let G1(ng), ..., Gy/-(ng) be the correspond-
ing % groups of |eng| or [eny| many items created by the (traditional) linear grouping for n,. We
set Jg73 = Gl(ng) U...uJ Gl/s,l(ng). As U(Gl/e(ng)) = (Enﬂ(l + E)e < Qéng(l + E)e = 25115’2,
we have v(Jp3) > (1 — 2e)v(V/ N OPT,). For packing these items, we observe that the item types
created by our algorithm are a refinement of G'1(n¢), ..., Gy /c(n¢). As the dynamic linear grouping en-
sures |Gy /e ()| > |G1je—1(ne)| = ... > [G1(ng)| and that the item sizes are increasing in the group index,
we can pack the items of group G (n;) where OPT; packs the items of group G4 (ng) for 1 < k < 1.

We conclude

v(OPTT) > v(J3) + v(OPTy) > (1 — 2¢)v(OPTH) + v(OPTy) > (1 — 2¢)v(OPTy).

Next, we formally prove the bound on the running time, i.e., Lemma 5.4.

4 .7
Lemma 5.4. For a given guess (nay, the set Tm=x) can be determined in time O( 10%; ).

Proof. Remember that n’ is an upper bound on the number of items in J' in any feasible solution. Observe
that the boundaries of the linear grouping created by the algorithm per value class are actually independent
of the value class and only refer to some kth item in class V,. Hence, the algorithm first computes the
different indices needed in this round. We denote the set of these indices by I’ = {ji,...} sorted in an
increasing manner. There are at most |log, . | many possibilities for n,. Thus, the algorithm needs to
compute at most %(logl +.n + 1) many different indices. This means that these indices can be computed
and stored in time O(bsg—{‘/) while each index is bounded by 7.

Given the guess /.« and ¢, fix a value class V; with ¢ < | < f,,.. We want to bound the time the
algorithm needs to transform the big items in V} into the modified item set 7,. We will ensure that the
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dynamic algorithms in the following sections maintain a balanced binary search for each value class V} that
stores the items in J’ sorted by increasing size. Hence, the sizes of the items corresponding to .J' can be
. . 3 / . . . . . .
accessed in time (’)(log%). These sizes correspond to the item size s; for an item type ¢ € 7,. Given an item

type t € Ty, ny = jy — ji—1, Which can again be pre-computed independently of the value class. Thus, 7,
log® n’/ )

can be computed in time O (=25

/ . .
As there are (9(108%) many value classes that need to be considered for a given guess 1,ax, calculating

4
the set 7 (fmax) needs (’)(log?”l) many computation steps. O

C.1 Integrally Packing Fractional Solutions

One of the main ingredients to the dynamic algorithms in this section is a configuration ILP. As solving
general ILPs is NP-hard, in a first step, we relax the integrality constraints and accept fractional solutions
before rounding the obtained solution to an integral one. The first lemma of this section describes how
to obtain an integral solution with slightly more knapsacks given a fractional solution to a certain class of
packing ILPs. Even after rounding, the configuration ILPs only take care of integrally packing big items,
i.e., items with s; > ¢S5;. Therefore, the second lemma focuses on packing small items integrally given an
integral packing of big items that reserves enough space for packing these items fractionally using resource
augmentation.

We consider a packing problem of items into a given set of knapsacks K with capacities Sy and multi-
plicities my. The objective is to maximize the total value without violating any capacity constraint. Each
item j has a certain type ¢, i.e., value v; = v; and size s; = s, and in total there are n; items of type ¢. Items
can either be packed as single items or as part of configurations. A configuration ¢ has value v, = > jecVj
and size s, = ) jec Sj- Then, the set £ represents the items and the configurations that we are allowed to
use for packing. Without loss of generality, we assume that for each element e € E there exists at least one
knapsack ¢ where this element can be stored.

Let 0 < 8 < 1and s > 0. Intuitively, later we will choose 5 = 1 — O(e) since we will leave an
O(e)-fraction of the knapsacks unused. Consider the packing ILP for the above described problem with
variables z, j, that may additionally contain constraints of the form

Z Seze,kﬁﬁzmksk—sand Z Ze,kéﬂzmk,

ecE keK’ keK' e€E keK’ keK'

i.e., the elements assigned to a subset of knapsacks K’ do not violate the total capacity of a S-fraction of the
knapsacks in K’ while reserving a space of size s and use at most a 3-fraction of the available knapsacks.
The configuration ILPs used for multiple identical knapsacks and multiple different knapsacks with resource
augmentation fall into this class of problems.

Let v(z) be the value attained by a certain solution z and let n(z) be the number of non-zero variables
of z. The high-level idea of the proof of the following lemma is to round down each non-zero variable z j
and pack the corresponding elements as described by z, ;.. For packing enough value, we additionally place
one exftra element e into the knapsacks given by resource augmentation for each variable 2. that was
subjected to rounding.

More precisely, for each element e and each knapsack type k, let i ; = |z k] and 2} == [ze =2 ;|-
Note that z’ + z” may require more items of a certain type than are available. Hence, for each item type ¢
that is now packed more than n; times, we reduce the number of ¢ in z’ + z” by either adapting the chosen
configurations if ¢ is packed in a configuration or by decreasing the variables of type z; j if items of type ¢
are packed as single items in knapsacks of type k. Let 2’ and z” denote the solution obtained by this
transformation. For some elements e, 2, , + 2/, may now pack more or less elements than z j due to the
just described reduction of items. 7 7
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Lemma C.4. Any fractional solution z to the above described packing ILP can be rounded to an integral
solution with value at least v(z) using at most n(z) additional knapsacks.

Proof. Consider a particular item type t. If 2/ 4+ z” packs at most n; items of this type, then the value
achieved by z for this particular item type is upper bounded by the value achieved by 2’ + 2”. If an item type
was subjected to the modification, then 2’ + z” packs exactly n; items of this type while z packs at most n;
items. This implies that v(z" + 2”) > v(2).

It remains to show how to pack z’ + z (and, thus, 2z’ + 2”) into the knapsacks defined by K and
potentially n(z) additional knapsack. Clearly, z’ can be packed exactly as z was packed. If z.; = 0
fore € Eand k € K, then Z, . = 0. Hence, the number of non-zero entries in z” is bounded by n(z).
Consider one element e € E and a knapsack type k with z;, = 1 and let &’ be a knapsack where e fits.
Pack e into &'

As reducing the number of packed items of a certain type only decreases the size of the corresponding
configuration or only decreases the number of individually packed elements, 2’ + 2z can be packed exactly
as described for z’ + z”. Then, we need at most n(z) extra knapsacks to pack z” which concludes the
proof. O

After having successfully rounded an ILP solution, we explain how to pack small items, i.e., items
with s; < €95, using resource augmentation given an integral packing of big items. More precisely, let K
be a set of knapsacks and let J§ C Jg be a subset of items that are small with respect to any knapsack in K.
Let J;; C Jp be a set of big items admitting an integral packing into m = | K| knapsacks that preserves a
space of at least s(.J) in these m knapsacks. We develop a procedure to extend this packing to an integral
packing of all items Jj; U J§ in (1 + €)m knapsacks where the em additional knapsacks can be chosen to
have the smallest capacity of knapsacks in K.

We use a packing approach similar to NEXT FIT for the problem BIN PACKING. That is, consider an
arbitrary order of the small items and an arbitrary order of the knapsacks filled with big items. If the current
small item j still fits into the currently open knapsack, we place it there and decrease the remaining capacity
accordingly. If it does not fit anymore, we pack this item as “cut” item into the next empty slot of the em
additional knapsacks, close the current knapsack and open the next one for packing small items.

Lemma C.5. Let K, Jg, and Jy be as defined above. The procedure described above feasibly packs all
items Ji3 U Jg in (1+¢)m knapsacks where the em additional knapsacks can be chosen to have the smallest
capacity of knapsacks in K.

Proof. Clearly, the packing created by the procedure is integral and feasible. It remains to bound the number
of additional knapsacks. Observe that each item that we packed into the resource augmentation while an
original knapsack was still available, implied the closing of the current knapsack and the opening of a new
one. Hence, for each original knapsack at most one small item was placed into the additional knapsacks.
Thus, at most m small items are packed into the additional knapsacks. As at least % items fit into one
additional knapsack, we only need em extra knapsacks for such items. We complete the proof by showing
that all items in .J§ are indeed packed. Assume that there is a small item j left after all knapsacks, original
and opened extra knapsacks, were closed while packing small items. As a knapsack is only closed if the
current small item does not fit anymore, this implies that the volume of all items that are packed so far have
a total volume at least as large as the total capacity of knapsacks in K. Hence, the total volume of all items
in Jj; U Jg is strictly larger than the total capacity of knapsacks in K as j is left unpacked after all knapsacks
have been closed. This contradicts the assumption imposed on J; and on J§. U
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D Proofs for Identical Knapsacks

In this section we give the technical details of some of the lemmas used in Section 5.2. We start by proving
Lemma 5.7. Recall that v7; p refers to an optimal, integral solution to ILP (P) and that OPT is an optimal
solution to the current instance when packing item types 7 instead of the big items Jp. Further, P is the
maximal prefix of small items (ordered by non-decreasing density) with v(P) < vg and j is the densest
small item not in P.

Lemma 5.7. Let vj; p and OPTT be defined as above. There are vs and ss with vj; p +vg > 11;_3;1)(OPTT).
Moreover, for P and j as defined above, v(P) + v; > vg.

Proof. Let OPTg 7 := OPTT N Jp and OPTg 7 := OPTT N Jg. We construct again a candidate set Jyp
of items that are feasible for (P) and obtain a value of at least (1 — 3¢)v(OPTp,7). To this end, take
the optimal packing for the items in OPTs and consider the (1 — 3¢)m most valuable knapsacks in this
packing. Let Jp 7 and Jg 7 consist of the big and small, respectively, items in these knapsacks. Then,

v(Jp,) +v(Js,r) = (1 — 3)v(OPTT).
Create the variable values y. corresponding to the number of times configuration c is used by the items
in Jp 7. As Jg 7 U Jg 7 can be feasibly packed into (1 — 3¢)m knapsacks, we have

Zyc_ (1-3e)m

ceC

and

> yese +5(Jg3) < (1—3¢)Sm,

ceC

As we guess the value of the small items in the dynamic algorithm up to factors of (1 + ¢) there will
be one guess vg satisfying vg < v(Jg7) < (1 4 €)vg. Let P be the maximal prefix of small items

with v(P) < vg and let j be the densest small item not in P. Then, v(P) + v; > vg > ?U(JS,T).

As P contains the densest small items, this implies sg := s(P) < s(Jg,7). Thus,
Zycsc <(1-3¢)Sm —s(Js1) < (1 —3e)Sm — sg.
ceC

Hence, the just created y,. are feasible for the ILP with the guess sg and

1
1+e¢

1 1-—
> (1 - 3e¢) (v(OPTB,T) + 1 +€U(OPT577~)) > BEEU(OPTT).

vip + 0(P) +v; > v(Jp 1) + v(Js,7)

Proof of Lemma 5.8 In this part, we provide the full proof of our approach to solving the LP relaxation of
the configuration ILP when m satisfies % logZn < m. In the following, we abuse notation and also refer
to the LP relaxation of (P) by (P):
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max E YeUe

ceC
subject to Z YeSe < (1 —3e)Sm — sg
ceC
Z Ye < (1-3e)m (P)
ceC
Z Yete < My for all ¢ € T (bmax)
ceC
Ye e >0 forallc € C

Let v and 3 be the dual variables of the capacity constraint and the number of knapsacks constraint,
respectively. We set 7 := T (émax) for simplicity. Let oy for t € T be the dual variables of the constraint
ensuring that only n; items of type ¢ are packed. Then, the dual is given by the following linear program.

min (1 =3e)mB + ((1 — 3¢)Sm — sg)v + Z e
teT
subjectto B+ sey + Z N > w, forallceC (D)
teT
oy > 0 forallte T
By > 0.

As discussed above, for applying the Ellipsoid method we need to solve the separation problem effi-
ciently. The separation problem decides if the current solution (a*, 5*,~*) is feasible or finds a violated
constraint. As verifying the first constraint of (D) corresponds to solving a KNAPSACK problem, we do not
expect to optimally solve the separation problem in time polynomial in logn and % Instead, we apply a
dynamic program (DP) for the single knapsack problem after restricting the item set further and rounding
the item values as follows.

Let v; := vy —af —*s; fort € T. If there exists an item type with o, > $*, we return the configuration
using only this item. Otherwise, we define ¥; := Lgfé*J - ¢44*. By running the dynamic program for the
KNAPSACK problem on the item set 7~ with multiplicities min{%, n} and values 7;, we obtain a solution z*
where x} indicates how often item type ¢ is packed. If ), - x77; > /3%, we return the configuration defined
by x* as separating hyperplane. Otherwise, we return DECLARED FEASIBLE for the current solution.

The next lemma shows that this algorithm approximately solves the separation problem by either cor-
rectly declaring infeasibility or by finding a solution that is almost feasible for (D). The slight infeasibility
for the dual problem translates to a slight decrease in the optimal objective function value of the primal
problem. In the proof we use that z* is optimal for the rounded values ¥; to show that (a*, 8*,~*) is almost
feasible if ZtET x;v; < B*. Noticing that v; > v then concludes the proof.

Lemma D.1. Given (a*, *,~*), there is an algorithm with running time O <1°§20"> which either finds a

configuration c € C such that 3* + s.v* + 3, e afge < v or guarantees that 3* 4 s.y* + 3, cr e >
(1 —€)ve holds forall c € C.

Proof. Fix a configuration c and recall that s, = ZteT N¢eSt and v, = ZteT ngcvy. Then, checking 5* +
57"+ D e e > v, for all configurations ¢ € C is equivalent to showing maxcec ) ;7 (ve — of —
v*s¢)nte < [*. This problem translates to solving the following ILP and comparing its objective function
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value to 3*.
max Z(vt —af — Y sy

teT
s.t. Z Sttt § S (S)
teT
Ty < n; forallte T
Tt € Zx>o

This ILP is itself a (single) KNAPSACK problem. Hence, the solution #* found by the algorithm is indeed
feasible for (S).

We start by bounding the running time of the algorithm. Recall that, foreach ¢t € T, vy := v, —af —v*s;
and 7, == L%J -£*B*. Observe that T only contains big items. Hence, it suffices to consider min{n, %}

items per value class in the DP. It can be checked in time O( lofi ), if o, < B* is violated for one ¢t € T.
Otherwise, ¥; < @y and ¥y — ¥y < €*$* hold. Thus, the running time of the DP is bounded by O (z——f) =
O (1051”> [38].

It remains to show that the solution 2™ either defines a configuration with 3* 4 s.7* 4>, .1 aynge < ve
or ensures that 3* 4 s.v* + >, ajng > (1 —€)v. holds forall ¢ € C. If Y, . xfv; > 8%, it holds

Z.’L‘:’T}t > Z@k@t > 5*

teT teT

and, thus, =™ defines a separating hyperplane.
Suppose now that ), - z;0; < 3*. We assume for the sake of contradiction that there is a configuration
, defined by packing x; items of type ¢, such that

th((l — v — af —v¥s) > B

teT

As T contains only big item types, we have that ), - z; < é This implies that there exists at least one
item type t' in 7 with 2y > 1 and (1 — €)vy — o}, —v*spy > €f*. Moreover,

p=v—of —v'si > (1—e)vy —aj —y sy
holds for all item types ¢ € 7. This implies for ¢’ that v > ¢3*. Hence,

> wity > expty + Y ai((1—e)vr — af —"st) > evy + B > (1+ 2B,
teT teT
By definition of @, we have oy — o7 < e** and >, 24(v; — ¥;) < €33*. This implies
Zwtﬁt = th’[)t + Zl’t(@t — 'lN)t) > (1 + 52)6* — 635* Z ,8*,
teT teT teT

where the last inequality follows from £ < 1. By construction of the DP, x* is the optimal solution for the
values ¥ and achieves a total value less than or equal to 5*. Hence,

pg* > ZZL‘:'Dt > Zfﬁt@t > 3%

teT teT

a contradiction. O]
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We now present the proof of Lemma 5.8, which we restate for convenience.

Lemma 5.8. Let U = max{Sm, nvyax}. Then, there is an algorithm that finds a feasible solution for the

LP relaxation of (P) with value at least %—jrivu) with running time bounded by <1°§U>

Proof. As discussed above, the high-level idea is to solve (D), the dual of (P), with the Ellipsoid method and
to consider only the variables corresponding to constraints added by the Ellipsoid method for solving (P).

As (S) is part of the separation problem for (D), there is no efficient way to exactly solve the separation
problem unless P = NP. Lemma D.1 provides us with a way to approximately solve the separation problem.
As an approximately feasible solution for (D) cannot be directly used to determine the important variables
in (P), we add an upper bound r on the objective function as a constraint to (D) and search for the largest r
such that the Ellipsoid method returns infeasible. This implies that r is an upper bound on the objective
function of (D) which in turn guarantees a lower bound on the objective function value of (P) by weak
duality.

Of course, testing all possible values for 7 is intractable and we restrict the possible choices for r.
Observe that vLp € [Umax, MVmax] Where vpp is the optimal value of (P). Thus, for all [log . Umax| < k <
[10g; 1 (N¥max) |, we use r = (1 + €)¥ as upper bound on the objective function. That is, we test if (D)
extended by the objective function constraint (1 — 3¢)mfB3 + ((1 — 3¢)Sm — s5)y + >, crniay < 1is
declared feasible by the Ellipsoid method with the approximate separation oracle for (S). We refer to the
feasibility problem by (D;.).

For a given solution (a*, 3*,~*) of (D,) the separation problem asks for one of the two: either the
affirmation that the point is feasible or a separating hyperplane that separates the point from any feasible
point. It can be checked in time O(|7T|) < O((loEan)2) that o, 8%, and +* are non-negative. In case of a
negative answer, the corresponding non-negativity constraint is a feasible separating hyperplane. Similarly,
the objective function constraint (1 — 3¢)3 + (1 — 3¢)(Sm — sp)y + >_,c7 ey < 7 can be checked in
time O(|7|) where the numbers are bounded by log U and added as a new inequality if necessary. In case
the non-negativity and objective function constraints are not violated, the separation problem is given by
the knapsack problem in (S). The algorithm in Lemma D.1 either outputs a configuration that yields a valid
separating hyperplane or declares (o, 3%, v*) feasible. Thatis 3* + s.v* + >, a;ng > (1 — €)v. holds
for all ¢ € C. This implies that (a*, 5*,v*) is feasible for the following LP. (Note that we changed the right
hand side of the constraints when compared to (D).)

min (1 —3)8+ ((1—3¢)Sm — sg)y+ Y myoy

teT
st B4 sey+ Z QNye > (1—¢)v, forallceC (D(1-9))
teT
o > 0 forallt € T
B, =

Let r* be minimal such that (D,) is declared feasible for » = r*. Let vgfe) denote the optimal solution

value of (D1 ~9)). As (a*, B*,~*) is feasible and has an objective value of at most r*, it follows {1 <r*
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Let v(17) denote the optimal solution value of its dual, i.e., of the following LP.

max Zyc(l —€)Uc

ceC
subject to Z YeSe < (1-3¢)Sm — sg
ceC
> e < (1-3)m (P1-9))
ceC
Z YeNte < my for all ¢ € T (lmax)
ceC
Ye € Z>o forall c € C.

Then, y = 0 is feasible for (P('~2)) and by weak duality, we have

(178 = vg_e) < r*.

Note that (P) and (P(“E)) have the same feasible region and their objective functions only differ by the
factor (1 — ¢). This implies that

p(1=2) r*

< .
l—¢ 7 1—c¢
Because of the relation between wvrp and r* it suffices to find a feasible solution for (P) with objective
function value close to 7* in order to prove the lemma.

To this end, let C,- be the configurations that correspond to the inequalities added by the Ellipsoid method
while solving (D,.) for r = 1’”—;5 Consider the problems (P) and (D) restricted to the variables y,. for ¢ € C,
and to the constraints for ¢ € C,, respectively, and denote these restricted LPs by (P') and (D’). Let v’ and v/,
be their respective optimal values.

It holds that v, > r as the Ellipsoid method also returns infeasibility for (D’) when run on (D’) extended
by the objective function constraint for . As y = 0 is feasible for (P’) and @ = 0, f = max.ec, Ve,
and v = 0 are feasible for (D’), their objective function values coincide, i.e., v = Ub > r. Since (P’) only
has few variables, an optimal solution for (P’) can be found fast. Clearly, this solution is also feasible for (P)
and achieves an objective function value

2

ULp =

*

1—¢
>
14+e ™~ 1+¢

v >

uLP

where we used Equation (2) for the last inequality.

It remains to show that the Ellipsoid method can be applied to the setting presented here and that the
running time of the just described algorithm is indeed bounded by a polynomial in log n, %, and logU. As
the details are rather technical and contain no new insights, we refer to Appendix D.

Recall that U is an upper bound on the absolute values of the denominators and numerators ap-
pearing in (D), i.e., on Sm and nvmax. Observe that by Lemma D.1, the separation oracle runs in

time O (105120” + lofz" log S'log m); the additive term is due to checking non-negativity and the objec-

tive function constraint as first step of the separation problem. The number of iterations of the Ellipsoid
method will be bounded by a polynomial in logU and n € O (105#) Here, 7 is an upper bound on the
number of variables in the problems (D,) (and (D(}~))).

The feasible region of (D;) is a subset of the feasible region of (D(I_E)), even when the objective function
constraint is added to the latter LP. The Ellipsoid method usually is applied to full-dimensional, bounded

polytopes that guarantee two bounds: (i) if the polytope is non-empty, then its volume is at least v and (ii)
the polytope is contained in a ball of volume at most V. As shown in Chapter 8 of [7], these assumption
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can also be ensured and the parameters v and V' can be chosen as polynomial functions of 7 and U. As we
cannot check feasibility of (D,.) directly, we choose the parameters v and V' described in Chapter 8 of [7] for
the problem (D(1~9)) extended by the objective function constraint for r. Then, after N = O(72log(V/v))
iterations, the modified Ellipsoid method either finds a feasible solution to (D(*~%)) with objective function
value at most 7 or correctly declares (D,.) infeasible. Chapter 8 of [7] shows that the number of iterations N
satisfies N = O(7* log(Al)) and that the overall running time is polynomially bounded in 7 and log U.
Hence, (P'), the problem (P) restricted to the constraints added by the Ellipsoid method, has at most N
variables and, thus, any polynomial time algorithm for linear programs can be applied to (P’) to obtain an
optimal solution. O

Answering Queries The remainder of this section is concerned with proving the results stated for answer-
ing queries. For convenience, we restate the corresponding lemmas.

Note that, throughout the course of the dynamic algorithm, we only implicitly store solutions. In the
remainder of this section we explain how to answer the queries stated in Section 3 and bound the running
times of the corresponding algorithms. We refer to the time frame between two updates as a round and
introduce a counter 7 that is increased after each update and denotes the current round. As our answers
to queries have to stay consistent within a round, we cache existing query answers by aditionally storing a
round ¢(j) and a knapsack k() for each item in the search tree for items where ¢(j) stores the last round in
which item j has been queried and k() points to the knapsack of j in round ¢(j). If j was NOT SELECTED
in t(j), we store this with k(j) = 0. Storing (j) is necessary since resetting the cached query answers after
each update takes too much running time.

Let 4., ¢ € C, be the packing for the big items in terms of the variables of the configuration ILP. During
the run of the algorithm the set C’' := {c € C : §. > 1} was constructed. We assume that this set is ordered
in some way and stored in one list. In the following we use the position of ¢ € C’ in that list as the index of
c. For assigning 7, distinct knapsacks to configuration ¢ € C’ we use the ordering of the configurations and
map the knapsacks 35" 7. + 1,...,3%_, Je to configuration c.

For small items, we store all items in a balanced binary search tree sorted by decreasing density.
Let1,...,5* be the items selected by the implicit solution as guess for the size of small items in the current
solution. Item j* + 1 is packed into its own knapsack. Any item j < j* is either packed regularly into the
empty space of a knapsack with a configuration or it is packed into a knapsack designated for packing “cut”
small items. Therefore, we maintain two pointers: k" points to the next knapsack where a small item is
supposed to go if it is packed regularly and x° points to the position where the next cut small item is packed.
To determine if an item is packed regularly or as cut item, we store in p the remaining capacity of x".

For each type ¢ of big items, we maintain a pointer ; to the knapsack where the next queried item of
type t is supposed to be packed. Moreover, the counter 7, stores how many slots «; still has for items of
type t. Let n; denote the number of items of type ¢ belonging to solution . We will only pack the first 7,
items of type t.

Answering Item Queries.

1) Check cache. Let 7 be the current round and let j be the queried item. If ¢(j) = 7, return k().

2) Answer queries for non-cached items. Set t(j) = 7. If s; < &S, item j is small. Otherwise, j is
big.

Small items. If j > j* + 1, return NOT SELECTED and set k(j) = 0.
If j = j* + 1, return k(j) = m.

Otherwise, determine if j is packed regularly or as cut item: If s; < p, return k(j) = " and update p

accordingly. Otherwise, return k(j) = k° Increase x° to the next position for fractional items.
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Increase «" by one and update p accordingly to reflect the empty space in «".

Big items. Determine the value class V; of j. If / < /i, return NOT SELECTED. Otherwise,
determine the item type t of j by retracing the steps of the dynamic linear grouping.

If j is not among the first 72, items of type ¢, return NOT SELECTED and set k(j) = 0.

Otherwise, return k(j) = k; and decrease 7; by one. If 7, = 0, increase k; to the next knapsack for
type ¢ and update 7; accordingly. If no such knapsack exists, set ; = 0.

Answering the Solution Value Query.
1) Value of small items. Calculate vg = Z;;ﬁl v; with prefix computation.

2) Value of big items. For each item type ¢, calculate vp; the value of the first 72; items of type ¢ using
prefix computation.

3) Value. Return vg + >, .7 VB,
Answering the Solution Query.
1) Small items. Query each item j = 1,...j* 4+ 1 and return the solution.
2) Big items. For each type t € T, query the first 7; items and return the solution.

We prove the parts of the following lemmas individually.

Lemma 5.12. The solution determined by the query algorithms is feasible and achieves the claimed total
value. The query times of our algorithm are as follows.
(i) Single item queries can be answered in time (’)( max { log
(ii) Solution value queries can be answered in time O(1)
(iii) Queries of the entire solution P are answered in time O(|P\ max { log

logn 1 )

e e

logn 1 )

e e

Lemma D.2. The solution determined by the query algorithms is feasible and achieves the claimed total
value.

Proof. By construction of ¢(j) and k(j), the answers to queries happening between two consecutive updates
are consistent.

For small items, observe that 1,...,75* + 1 are the densest small items in the current instance.
By Lemma C.5, the packing obtained by our algorithms is feasible for these items. In Lemma 5.10 we
argue that these items contribute enough value to our solution.

For big items, the algorithms correctly pack the first i; items of type t. A knapsack with configura-
tion ¢ € C’ correctly obtains n., items of type t. Moreover, each configuration ¢ € C’ gets assigned ¥,
knapsacks. Hence, the algorithms pack exactly the number of big items as dictated by the implicit solu-
tion . [

!
Lemma D.3. The data structures for big items can be generated in time (’)(M) Queries for big items can

1 €
ogn
)

be answered in time C’)( log

Proof. We assume that C’ is already stored in some list. We start by formally mapping knapsacks to config-
urations. To this end, we create a list « where a, = Zg/_:ll iJe s the first knapsack with configuration ¢ € C’.
Using o, = -1 + Yo—1, We can compute these values in constant time while the appearing numbers are
bounded by m. Hence, by iterating once through C’, this list can be generated in O(|C’|). By definition, the
created lists are already ordered by increasing a..
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We start by recomputing the indices needed for the dynamic linear grouping approach. For each value
class Vp with £ < ¢ < max, we access the items corresponding to the boundaries of the item types 7

in order to obtain the item types 7,. By construction, these types are already ordered by non-decreasing
log n

size s;. By Lemma 5.4, these item types can be computed in time (’)(
value class V.

For maintaining and updating the pointer «;, we generate a list C; of all configurations ¢ € C’ with n.; >
1. By iterating through each ¢ € C’, we can add c to the list of ¢ if n.; > 1. We additionally store n. ¢
and a in the list C;. While iterating through the configurations, we additionally compute 7y = » | cec YeNeyt
and store 7; in the same list as the item types 7;. Note that since the list of C’ by definition is ordered by
indices, the created lists C; are also sorted by indices. For each item type, we point & to the first knapsack
of the first added configuration c and set 7; = n. ;. If the list of an item type remains empty, we set x; = 0.

) and stored in one list Ty per

Since each configuration contains at most l item types, the lists C; can be generated in time O(~+ ] ).

Now consider a queried big item j. In tlme O(logn) we can decide whether j has already been queried
in the current round. If not, let ; be the value class of j, which was computed upon arrival of j. If £ < £, j
does not belong to the current solution and no data structures need to be updated. Otherwise, the type of j
is determined by accessing the item types 7y in time O(log 1Og") Once ¢ is determined, 7; can be added to
the left boundary of type ¢ in order to determine if j is packed or not. If j belongs to the current solution,
pointer k; dictates the answer to the query.

In order to update x; and 7, we extract ¢, the current configuration of knapsack «; in time O(log |C'|) by
binary search over the list ov. If k¢ +1 < 41, K¢ 1s increased by one and 1; = n.; in constant time. If not,
the next configuration ¢’ containing ¢ can be found with binary search over the list C; in time O(log |C'|). If
no such configuration is found, we set x; = 0. Otherwise, we set k; = o and 1; = n. . Overall, queries for

big items can be answered in time O (max{log|C’[,log log”}). Observing that |C'| € O(T) = O(logi )
completes the proof. O

Lemma D.4. The above mentioned data structures for small items can be generated in time (’)(log 2.

logn 1 )

Queries for small items can be answered in time (9( max { log -

Proof. We initialize k" = 1 and p = S — s1 where s; is the total size of the configuration assigned to the
first knapsack. For packing cut items, we use the pointer x° to the current knapsack for “cut” items while 7/
stores the remaining slots of small items. We initalize these values with K = (1 —¢)m—em+1 and n° = %
These initializations can be computed in time O(log |C’|) (for accessing s1) while the numbers are bounded
by S and m.

Now consider a queried small item j. In time O(logn) we can decide whether j has already been
queried in the current round. In constant time, we can decide whether j > j* 4+ 1. If j > j*, the answer
is NOT SELECTED. If j = j* 4+ 1, we return m. Both answers can be determined in constant time with
numbers bounded by m. If j < j*, the algorithm only needs to decide if j is packed into k" or k¢, which
can be done in constant time. Finally, ", k¢ as well as p and 1° need to be updated. While ¢, k" and n°
can be updated in constant time, we need to compute the configuration ¢ and remaining capacity S — s,
of knapsack x" if the pointer is increased. By using binary search over the list «, the configuration can be
determined in time O(log|C’|). Once the configuration is known, p can be calculated in time (’)(1) with
numbers bounded by .S. Overall, queries for small items can be answered in time (9( max { log |C'], % )

Using that |C'| € O(|T|) = (’)(105#) concludes the proof. O

Lemma D.5. A query for the solution value can be answered in time O (=% log? ).
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Proof. The value achieved by the small items, vg can be computed with on prefix computation of the
first j* 4 1 items in the density-sorted tree for small items in time O(logn) by Lemma 3.2.

For computing the value of a big item, we consider each value class V; with £ < £ < /.., individually.
There are at most C’)(losgz") many values classes by Lemma C.1. For one value class, in time O(log"),
iterate through the item types ¢t. For each item type, we can access the total value of the first n; items in
time O(logn) by Lemma 3.2.

Combining these two bounds gives the running time claimed in the lemma. O

Lemma D6. A query  for  the complete solution can be answered in
3
time O(|P| logg " max{log|C'],log 10%}) where P is our solution.

Proof. The small items belonging to a solution can be accessed in time O((j* + 1) logn) by Lemma 3.2.
Lemma D.4 then ensures that their knapsacks can be determined in time O (max { log |C’|, 1}).

log n 1og n

For big items, we consider again at most (9( ) many value classes individually. In time (9( ) we
access the boundaries of the corresponding item types In time O(7, logn) we can access the 7, 1tems of
type t belonging to our solutions by Lemma 3.2. Lemma D.3 ensures that their knapsacks can be determined
in time O ( max{log |C’|,log 1" })

In total, this bounds the running time by O(|P]| lofj “ max{log |C’|, log 1°g 1). O

E Knapsacks with Resource Augmentation

In this section, we consider instances for MULTIPLE KNAPSACK with many knapsacks and arbitrary capac-
ities. We show how to efficiently maintain a (1 — ¢)-approximation when given L = (lo%)o(i) additional
knapsacks that have the same capacity as a largest knapsack in the input instance. The algorithm will again
solve the LP relaxation of a configuration ILP and round the obtained solution to an integral packing. How-
ever, in contrast to the problem for identical knapsacks, not every configuration fits into every knapsack and
we therefore cannot just reserve a fraction of knapsacks in order to pack the rounded configurations since
the knapsack capacities might not suffice. For this reason, we employ resource augmentation in the case of
arbitrary knapsack capacities. While we may pack items into the additional knapsacks, an optimal solution
is not allowed to use them. Again, we assume that item values are rounded to powers of (1 + ) which
results in value classes V; of items with value v; = (1 + ¢)*. We prove the following theorem.

Theorem 6.3. There is a dynamic algorithm for MULTIPLE KNAPSACK that, when given L = (10%)0(1/5)
additional knapsacks as resource augmentation, achieves an approximation factor (1 — &) with update
time (log n)©1/2) (log Smax 108 Umax )CY) where Smax := max{S; : i € [m]}. Item queries are answered
in time O(logn log? ).

) and a solution P can be output in time O (| P|=%

Overview. We use dynamic linear grouping as developed in Section 5.1 in order to reduce the number of

different item types to O(l g ). Given the set of item types T, we decide whether a given item type is small
or big with respect to a certam knapsack. Recall that an item j is called small with respect to a knapsack
with capacity S; if s; < 5; and big otherwise.

Using the item types, we group knapsacks of similar capacity in a way such that within a group any
given item type is either small for all knapsacks in the group or it is big for all knapsacks in the group. We
denote by G the set of all such groups. As there are O (=2 log? <281 item types, we have at most O(IOE#) groups.

Within one group, we give an explicit packing of the b1g items into slightly less knapsacks than belonging
to the group by solving a configuration ILP. For packing the small items, we use Lemma C.5. That is, we
greedily fill up knapsacks with small items and pack any “cut” small item into the knapsacks that were left

33



empty by the configuration ILP. However, since items classify as big in one knapsack group and as small in
another group, instead of guessing the size of small items per knapsack group, we incorporate them into the
configuration LP by reserving sufficient space for the small items in each group.

Data structures In this section, we maintain three different types of data structures: one tree for storing
every item j together with its size s;, its value v;, and its value class ¢; sorted by non-decreasing time of
arrival. We additionally store the knapsacks sorted in non-increasing capacity in one separate tree as well.
For each value class V;, we additionally maintain one balanced binary tree for sorting the items with £; = /¢
in order of non-decreasing size.

Algorithm

1Y)

2)

3)

4)

Linear grouping of big items: Guess /., the index of the highest value class that belongs to OPT
and use dynamic linear grouping with .J' = J and n’ = n to obtain T, the set of item types ¢ with
their multiplicities 7.

Knapsack Grouping: Consider the knapsacks sorted increasingly by their capacity and determine for
each item size for which knapsacks a corresponding item would be big or small. This yields a set G of

O( lofz ) many knapsack groups. Denote by F,, the set of all item types that are small with respect to
group g, and by S, the total capacity of all knapsacks in group g. Let m, be the number of knapsacks
in group ¢ and let G11/%) be the groups in G with mg > é For each g € G(1/9), define Sy as the total
capacity of the smallest em, many knapsacks in g. Similar to the ILP for identical knapsacks, the ILP
reserves some knapsacks to pack small “cut” items. We distinguish between G (1/¢) and G\¢g (1/) to
restrict only large enough groups g, i.e, g € G1/9), to the (1 — £)mg most valuable knapsacks of g.

. . . . . . 1
Configurations: For each group g € G, create all possible configurations consisting of at most

items which are big with respect to knapsacks in g. This amounts to O((k)f#)l/ ¢) configurations
per group. Order the configurations decreasingly by size and denote the set of such configurations
by Cg = {cg1,¢42--.Cgp,}- Let mgy, be the total number of knapsacks in group g in which we
could possibly place configuration ¢, . Further, denote by n.; the number of items of type ¢ in
configuration c, and by s. and v, the size and value of c respectively.

Configuration ILP: Solve the following configuration ILP with variables y. and z, ;. Here, y. counts
how often a certain configuration c is used, and z,; counts how many items of type ¢ are packed in
knapsacks of group g if type ¢ is small with respect to g. Note that by the above definition of C,, we
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may have duplicates of the same configuration for several groups.

max Z Z YeUe + Z Z Zg,tUt

g€G ceCy geEG teF,

4
s.t. Z Yegn < mygy forall g € G, 0 € [k
h=1
Z Ye < (1—¢)my forallge Gl/e
ceCy
Z YeScg T Z ZgtSt < S forallg € G\ g(/e) P)
ceCy teFy
Z YeSc, ), T Z 2,15t < Sy — 8y forallge g/e)
ceCy teFy
Z Z YeNet + Z Zgt < my forallt € T
g€g ceCy geGiteF,
Ye € Zx>o forallg € G,c € Cy
Zg.t € Zx>o forallt e T,g€ G
Zgt =0 forallt € T,ge G : t¢ F,

The first inequality ensures that the configurations chosen by the ILP actually fit into the knapsacks
of the respective group while the second inequality ensures that an e-fraction of knapsacks in G /.
remains empty for packing small “cut” items. The third and fourth inequality guarantee that the
total volume of large and small items together fits within the designated total capacity of each group.
Finally, the fifth inequality makes sure that only available items are used by the ILP.

5) Obtaining an integral solution: After relaxing the above ILP and allowing fractional solutions, we
are able to solve it efficiently. Let OPTLp be an optimal (fractional) solution to (P) with objective
function value v p. With Lemma C.4 we obtain an integral solution that uses the additional knapsacks
given by the resource augmentation with value at least vy p. Let Pr denote this final solution.

6) Packing small items: Observe that small item types ¢ € F, are only packed fractionally by Pr.
Lemma C.5 provides us with a way to pack the small items integrally.

Analysis We start again by showing that the loss in the objective function value due to the linear grouping
of items is bounded by a facor of at most % To this end, let OPT be an optimal solution to
the current, non-rounded instance and let J be the set of items with values already rounded to powers of
(14 ¢). By setting J' = J, we apply Lemma 3.1 and Lemmas C.1 to C.3 to obtain the following corollary.
Here, OPT is the optimal solution for the instance specified by the item types 7 with multiplicities n;.

1—)(1-2
Corollary E.1. Let OPT and OPT be defined as above. Then, v(OPTT) > %U(OPT).

We have thus justified the restriction to item types in 7 instead of packing the actual items. In the next
two lemmas, we show that (P) is a linear programming formulation of the DYNAMIC MULTIPLE KNAPSACK
problem on the item set 7 and that we can obtain a feasible integral packing (using resource augmentation)
if we have a fractional solution (without resource augmentation) to (P). Let vrp be the optimal objective
function value of the LP relaxation of (P).

Similar to the proof of Lemma 5.7 we restrict a given optimal solution OPT7 to the (1 — 2¢)m4 most
valuable knapsacks if my > % and otherwise we do not restrict the knapsacks at all.

Lemma E.2. It holds that vip > (1 — 2¢)v(OPTT).
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Proof. We show the statement by explicitly stating a solution (y, z) that is feasible for (P) and achieves an
objective function value of at least (1 — 2¢)v(OPTT).

Consider a feasible optimal packing OPT for item types. The construction of (y, z) considers each
group g € G. If g ¢ G(1/9) let y. count how often a configuration ¢ € Cy is used in OPT7. Moreover,
let z4; denote how often an item that is small with respect to g is used in OPT7. By construction, the
first and the third constraint of (P) are satisfied. The solution (y, z) restricted to group g achieves the same
solution value as OPT7 restricted to the same knapsacks.

If g € G(/9), ie., if there are at least 1 knapsacks in group g, consider the | (1 — £)m,| most valuable
knapsacks in group g packed by OPT. Define 3. to count how often OPT uses configuration ¢ € C, in this
reduced knapsack set and let z, ; denote how often OPT uses item type ¢ € F, in these knapsacks. Clearly,
this solution satisfies the first constraint of (P). By construction, 3 .cc ye < [(1—¢)mg] < (1—¢)my and,
hence, the second constraint of the ILP is also satisfied. Cleary, the [(1 — £)mg,] most valuable knapsacks
can be packed into the [(1 — €)my,] largest knapsacks in g, which implies the feasibility for the fourth
constraint of the ILP. Observe that | (1 — &)my| > (1 —e)my — 1 > (1 — 2e)my. Thus, the value of the
corresponding packing is at least a (1 — 2¢) fraction of the value that OPT obtains with group g.

As (y, z) uses no more items of a certain item type than OPT7 does, the last constraint of the ILP is also
satisfied. Hence, (y, z) is feasible and

vLp > Z(Z YeUe + Z 2g10¢) > (1 —2e)v(OPTT).

geG c€Cy teFy

O]

The next corollary shows how to round any fractional solution of (P) to an integral solution (possibly)
using additional knapsacks given by resource augmentation. It follows immediately from Lemma C.4.

Corollary E.3. Any feasible solution (y, z) of the LP relaxation of (P) with objective function value v can
be rounded to an integral solution using at most L extra knapsacks with total value at least v.

In the next lemma, we bound the value obtained by our algorithm in terms of OPT, the optimal solution
for a given input. Let Pr be the solution returned by our algorithm.

Lemma E4. Let Pr be defined as above. Then, v(Pr) > %i()g_e)v(OPT).

Proof. Observe that our algorithm outputs the solution Py, with the maximum value over all guesses of £y,
the highest value class in OPT. Hence, we give a guess {;,,x and a corresponding solution P that satis-

fies v(P) > U=22-0==)y (Opr).

Fix an optimal solution OPT and let £y, := max{l : V; N OPT # 0} and set £ := {p., — “gg((? fgﬂ )

Then, £,,x is considered in some round of the algorithm. Hence, let vy p be the optimal solution to the
configuration ILP (P) and let vy p be the solution value of its LP relaxation. Corollary E.3 provides a way
to round the corresponding LP solution (y, z) to an integral solution (, Z) using at most L extra knapsacks
with objective function value at least v p > vy p. The construction of (g, Z) guarantees that only small items
in the original knapsacks might be packed fractionally.

Consider one particular group g. Lemma C.5 shows how to pack the fractional small items selected
by (z4) into emy extra knapsacks. If m, < % we use one extra knapsack per group to store the frac-

tional items. If m, > %, g € G1/9) which implies that the configuration ILP (and its relaxation) already

reserved [em, ] knapsacks of this group for packing small items. Hence, P is feasible. By Corollary E.1

and Lemma E.2 we have that

(1—-2¢e)%(1 —¢)
(1+¢)?

v(Pr) > v(P) > v(OPT).

36



Now, we bound the running time of our algorithm.

Lemma ES.  The update time of  the dynamic algorithm is bounded
by (% log n) o/ (log mlog Spax log ’UmaX)O(l).

Proof. By assumption, upon arrival, the value of each item is rounded to natural powers of (1 + ¢). The
algorithm starts with guessing /.« the highest value class to be considered in the current iteration. There
are log vyax many guesses possible where vy« is the highest value appearing in the current instance.

By Lemma 5.4, the harmonic rounding of all items has at most O ( bf#) iterations. The size of the
appearing numbers is bounded by O(log max{Smax,U}), where Spax := max S; is the maximal capacity
of the given knapsacks.

Let the knapsacks be sorted by increasing capacity and stored in a binary balanced search tree as de-
fined in Lemma 3.2. Then, the index of the smallest knapsack ¢ with S; > S or the largest knapsack
with S; < S can be determined in time O(logm), where S is a given number. Thus, the knapsack groups
depending on the item types can be determined in time O(logm=2 log? <E. ) as the number of item types is

bounded by (’)(log ). The number of big items per knapsack is bounded by % and, hence, the number of
1
configurations is bounded by O (log K (logi =£. ) E) :

€

1
The number of variables in the considered configuration ILP is bounded by N = O (log “ ((IOE#) c 4

10?—4”)) = O(logife ™). Hence, there is a polynomial function g(NN,10g Smax, 108 Umax) that bounds the
running time of finding an optimal solution to the LP relaxation of the configuration ILP. Clearly, setting up
and rounding the fractional solution is dominated by solving the LP.

Combining everything, we can bound the running time of the algorithm by
(Llogn) o/e) (log m 10g Siax 108 Vmax ) C M.

In similar time, we can store ¥ and z, the obtained solutions to the configuration LP. Let 3y’ and 2’ be the
variables obtained by (possibly) rounding down y and z and let 3" and 2" be the variables assigned to the
resource augmentation by Lemma C.4. Clearly, obtaining these variables is dominated by solving the LP
relaxation of the configuration ILP. O

Answering Queries Since we only store implicit solutions, it remains to show how to answer the cor-
responding queries. In order to determine the relevant parameters of a particular item, we assume that all
items are stored in one balanced binary search tree that allows us to access one item in time O(logn) by
Lemma 3.2. We additionally assume that this balanced binary search tree also stores the value class of an
item. We use again the round parameter ¢(j) and the corresponding knapsack k(j) to cache given answers
in order to stay consistent between two updates. If j was NOT SELECTED in round ¢(j), we represent this
by k(j) = 0. We assume that these two parameters are stored in the same binary search tree that also stores
the items and, thus, can be accessed in time O(1).

We now design an algorithm for non-cached items. The high-level idea is identical to the algorithm
developed in Section 5.2. As the knapsacks have different capacities in this section, the size class of an item
depends on the particular knapsack group, i.e., an item can be big with respect to one knapsack and small
with respect to another. Thus, the distinction between small and big items is not possible anymore and needs
to be handled carefully. Table 1 gives an overview over the parameters and counters used to answer queries
between two updates.

We assume that the knapsacks are sorted by decreasing capacity and stored in one binary search tree
together with .S;, the capacity of the knapsacks. The knapsacks given by the resource augmentation are
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stored in three different lists R®*), R(*) and R() indicating whether they are needed due to rounding y or z,
or because m, < % The knapsack groups are stored in the list G sorted by decreasing capacity. For each
group, we additionally store m,, the number of knapsacks in group g.

Lety',y”, 2/, and 2" be the implicit solution of the algorithm. Here ' refers to packing configurations or
items into the original knapsacks while *” refers to the knapsacks given by resource augmentation. Let C; be
the set of configurations ¢ with yé gt yé’ g = 1 ordered in decreasing size s and stored in one list per group.
In the following, we use the position of a configuration ¢ € C; in that list as the index of c¢. For mapping
the configurations to knapsacks we assign the knapsacks Zz;ll mg +1,..., Zg,zl My 1+ Y w1 Yeto
configuration c.

For each item type ¢, we maintain a pointer 7; to the group where the next queried item of type ¢ is
supposed to go. If ¢ is big with respect to y;, we use again the pointer x, to refer to the particular knapsack
where the next item of type ¢ goes while 7; stores how many slots «; still has for items of type ¢. Because of
resource augmentation, x; may point to a knapsack in R(%), the additional knapsacks for rounding .

If ¢ is small with respect to ¢, we use group pointers 7, and x5, to refer to the knapsack for packing
items regularly or to the position for packing cut items. If m, < %, than R.(g) is used for packing cut
items. As the number of items of type ¢ assigned to group g as small items is determined by z;ﬂf + zgvt, we
additionally use the counter 7, initialized with zﬁmt + ziy/ht, to reflect how many slots group - still has for
items of type ¢. As before, p, refers to the remaining space for small items in the knapsack «y. Because of

resource augmentation, both knapsack pointers may point to a knapsack given by resource augmentation.

Answering Item Queries.
1) Check cache. Let 7 be the current round and let j be the queried item. If ¢(j) = 7, return k(7).

2) Answer queries for non-cached items. Set ¢(j) = 7 and determine ¢, the type of j. Let ~y be the
group of ¢. If v = 0, return NOT SELECTED. Decide if j is small or big with respect to the group ~.

"

+.¢» determine if j goes to the resource augmentation R®):

Small items. If n, = z

If zlwl,t = 1, set k(j) to the knapsack in R®) reserved for z% and increase - to the next group for

type t. If no such group exists, set ¢+ = 0. Otherwise, update 7; and possibly «; accordingly.
If Zlvl,t = 0, increase y; to the next group for type ¢ and go to Step 2. If no such group exists,
set v, = 0, k(j) = 0, and return NOT SELECTED.

Otherwise, determine if j is packed regularly or as a cut item. If s; < p,, return k(j) = k7, and
decrease p- accordingly. Otherwise, return k(j) = k5 and increase k5 to the next position for “cut”
items in group 7.

Big items. If v, = 0, return NOT SELECTED and set k(j) = 0. Otherwise, return k(j) = x; and
decrease 7; by one. If this implies 77, = 0, let ¢ be the configuration of x;.

If K, € RW, let ¢ be the next configuration for type ¢ in group vy and update ~; and 7, accordingly. If
no such configuration exists, increase -, to the next group for type ¢ and update x; and 7; accordingly.
If no such group exists, set y; = 0.

If k; belongs to the original knapsacks and is the last knapsack assigned to configuration ¢, check if
there is resource augmentation for configuration c. In this case, point «; to the knapsack reserved for
rounding y;’ - Otherwise, let ' be the next configuration for type ¢ in group 7 and update x; and 7,
accordingly. If no such configuration exists, increase ; to the next group for type ¢ and update x,
and 7, accordingly. If no such group exists, set v, = 0.

Otherwise, increase x4 by one and update 7, accordingly.
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Table 1: Counters and parameters used during querying items.

Counter/Pointer | Meaning

C ; Configurations that are used by group g

Qg First knapsack with configuration c in group g

R((;%'g) Knapsack in R, used for group g and configuration ¢

R;zt) Knapsack in I, used for group g and type ¢
Gy Knapsack groups where items of type ¢ are packed
Ve Current knapsack group where items of type ¢ are packed
Ky Current knapsack in g for packing small items regularly
Kg Current knapsack in g (or in R.) for packing cut small items
Py Remaining capacity in r, for packing small items
77; Remaining number of slots for small items in /i;

Cyt List of configurations ¢ € C, with n.; > 1
Ky Current knapsack for packing items of a big type ¢
Nt Remaining number of slots for items of type ¢ in k¢ or in y;

depending on the size of ¢ with respect to ;.

Answering the Solution Value Query.

1) Value per item type. For each item type ¢, calculate vy, the total value of the first n; items with prefix
computation.

2) Value. Return ), v;.
Answering the Solution Query.
e For each item type ¢, query the first 77; items and return these items with their knapsacks.

Lemma E.6. The query algorithms return a feasible and consistent solution obtaining the total value given
by the implicit solution.

Proof. By construction of k(j) and ¢(j), the solution returned by the query algorithm is consistent between
updates.

Observe that 3 and 2’ is a feasible solution to the configuration ILP (P). Hence, showing that the
algorithm does not assign more than yé,g times configuration ¢ and not more than z;7t items of type ¢ to
group g is sufficient for having a feasible packing of the corresponding elements into the | (1 — &)my|
largest knapsacks if m, > % or into the m, knapsacks of group g if my < %

If the item type ¢ is small with respect to the group g, then at most z;,t items of type t are packed in
group g. Then, Lemma C.5 ensures that all small items assigned to group g fit in the regular and the “cut’-
items knapsack. Moreover, the treatment of 7, = z‘;’yt guarantees that the value obtained by small items
packed in g and its additional knapsacks is as claimed by the implicit solution.

If ¢ is big with respect to group g, then the construction of ; and 7; ensure that exactly cecy (vl +

Yo )ne,y items of type ¢ are packed in group g and in RW). Hence, the total value achieved is as given by the
implicit solution. O

The next lemmas are concerned with the running time of the algorithms used for answering queries.
Table 1 summarizes the counters and pointers used in the proof.

. . 3 2/e . .
Lemma E.7. The above mentioned data structures can be generated in O<l°§5 " 1054 e ") many iterations.

logn
=2

Queries for a particular item can be answered in (’)< ) many steps.
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Proof. We start by retracing the steps of the dynamic linear grouping in order to obtain the set 7 of item
types. We store the types 7, of one value class in one list, sorted by non-decreasing size. By Lemma 5.4,
the set 7 can be determined in time O( lofi 2.

We first argue about the generation of the data structures and the initialization of the various pointers

and counters. We start again by generating a list a4 for each group g where a.. 4 stores the first (original)
(Z) _

knapsack of conﬁguration cE C’ Then, ac g = ae—1,49 + Y gt 1 where ag 4 = 0. Then, we set R

Zg, L 2veT Zgr and R 79 Zg, 1 2-tec) Yy 1» Where Rét) corresponds to the resource augmentatlon
(v)

needed because of rounding z, ¢ and Rc,g corresponds to the resource augmentation caused by rounding y. 4.
Then, these lists can be generated by iterating through the list C;, for each group g in time O(3_ <5 |Cy|) =
1 2 1 2/e
O(5=57)-
For maintaining and updating the pointer +;, we generate the list G, that contains all groups g where
items of type ¢ are packed in the implicit solution. By iterating through the groups once more and check-

ing Zce% (Ye,g + Yeg)nte = Lorz , + 25, > 1, we can add the corresponding groups g to G;. Then,

points to the head of the list. Note that the appearing numbers are bounded by O(|C4|n). While iterat-
ing through the groups, we also calculate 7y = Y- 6 (Y ecr (Yog + Yig) + 214 + 21,) and store the
g bl 9, 9, 9,

corresponding value together with the item type. The lists G; can be generated in O(|T|>_ .5 |Cq|) =

3 2/e . .
O (lof—sn bi%) many iterations.

For maintaining and updating the pointer x; we create the list C,; storing all configurations ¢ € C;
where t is packed as big item. While iterating through the groups and creating G, also checking yé 9 —|—yé’ g2
1 for each configuration allows us to add c to the list C,; where we also store n. ;. Initially, we point ; to
the head of the first group g where ¢ is packed as big item. If c is the corresponding configuration, we start

with ; = n¢. Then, the time needed for this is bounded by O(|713_ ¢ ICgl) = O (Ing n log?/* ")

ed cd/e

g€g

The pointer kg is initialized with k; = S fll mg + 1. By using binary search on the list C;,, we get s,
the total size of configuration 1 a351gned to Ky and binary search over the knapsacks allows us to obtain S,.gg

the capacity of knapsack . Then, p; = Sng s1 can be initialized in time O(>_ ;(log(|Cy|) +logm) =
O(log n(l og logn i logm)>.

If mg > 1, we set k¢ = Zg,_ll L mg + [(1 —e)mg] + 1 while my < I implies that x¢ points to the
resource augmentation R(E) ie., Ky R(E = |{¢g’ < g :my < 1}|. The time needed for initializing
is O(|Cy|) while the numbers are bounded by m and |Cy|. In order to determine the position of the next cut
item, we also maintain 7, initialized with g = % that counts how many slots are still left in knapsack rj.

Now consider the query for an item j. In time O(log n) we can decide if j has already been queried in

the current round. Upon arrival of j, we calculated its value class V. By retracing the steps of the linear
grouping, the boundaries of value class V; can then be determined in time (’)(log") By binary search, the

item type of j can then be determined in time O(log 10g”) Once the item type is determined, we check
if j belongs to the first n; items of this type. If not, then NOT SELECTED is returned. Otherwise, the
pointer 7, answers the question in which group item j is packed. The pointer 7, is updated at most once
before determining k(j). Hence, the case distinction on the relative size of type ¢ is invoked at most twice.
If j is small, the knapsack k() can be determined in constant time by nested case distinction and having
the correct pointer (either 7, or £7,) dictate the answer. Returning the answer then takes time O(logm).
In order to bound the update time of the data structures, it suffices to consider the case where j is packed
as a cut item since this implies the most updates. The capacity of the new knapsack 7, can be determined
in O(log m) by binary search over the knapsack list while the configuration ¢ of the new knapsack K7, and

its total size are determined by binary search over the list c,, in time O (log |C;t ) =0 <M).

£
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Then, p,, = SHT sc can be computed with constantly many operations while the appearing numbers
are bounded by (’)(Smax) If n5, = 0 after packing j in k7, we increase the knapsack pointer by one and
update 75, = %

If j is big, the pointer ., dictates the answer which can be returned in time O(logm). For bound-
ing the running time of the possibly necessary update operations, observe that 7; is updated in constant
time with values bounded by n. If ; = 0 after the update, the knapsack pointer x; needs to be up-
dated as well. The most time consuming update operations are finding a new configuration ¢’ and possi-

bly even a new group ¢’. Finding ¢ € C,,; can be done by binary search through the list C,, ; in time
<log IC.,. t|) =0 (M). To update «; and 7, we extract the configuration ¢’ from the list o,

and n from the list C’, ; in O <1og IC., \) =0 (M) by binary search with values bounded by m
and n respectively. If the algorithm needs to update 7, as well, this can be done by binary search on the
list G; in time O(log |G¢|) = O <log (log( )))

In both cases, the running time of answering the query and possibly updating data structures is bounded
by the running time of the linear grouping step, i.e., by O(~% logny O

Lemma E.8. A query for the solution value can be answered in time O(1).

Proof. For calculating the value of the current solution, we need to calculate vy, the total value of the first 7,
items. We do this by iterating through the value classes once and per value class, we iterate once through
the list 7, to access the number 72;. Then, we use prefix computation twice in order to access the total value
of the first 77, items of type ¢. Lemma 3.2 bounds this time by O(log n). By Lemma 5.3, the number of item
types is bounded by (’)(lofi ") Combining these two values bounds the total running time by O( k’f#).
As this time is clearly dominated by obtaining the implicit solution in the first place, we precalculate the

solution value when computing the implicit solution value and store it to return it in O(1). O

4
Lemma E.9. A query for the complete solution can be answered in time (’)(|P| log—en) where P is the current
solution.

Proof. For returning the complete solution, we iterate once through the value classes and for each value
class, we iterate through the list 7, to access the number 7i;. Then, we use prefix computation on index for
accessing the corresponding 7 items of type t. We access and query each item individually. Lemma E.7
bounds the running time of these queries by O ( log”) while Lemma 3.2 bounds the running time for access-

ing item j. Lemma 5.3 bounds the number of item types. In total, the running time is bounded by O (|P| IOE—%)
where P is the current solution. O

Proof of main result

Proof of Theorem 6.3. In Lemma E.4, we bound the approximation ratio achieved by our algorithm.
Lemma E.5 gives the desired bound on the update time. Lemmas E.7 to E.9 additionally bound the time
needed for answering a query. 0

F MULTIPLE KNAPSACK

Analysis. We consider the iteration in which all the guesses, V;,_ ., k and Sp are correct. Let P be the set
of solutions on the ordinary knapsacks (without the additional virtual knapsack) and the special knapsacks
such that the total size of ordinary items placed in special knapsacks lies in the range [So, (1 + €)So].
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Denote by OPT; a solution of highest value in P;. Altering OPT by deleting the extra knapsacks gives a
solution in P; of value at least (1 — €) - v(OPT). This holds since for correct guesses the yellow knapsacks
by definition contribute at most an e-fraction to OPT. Further, the correctness of the guessed Sp implies that
the altered OPT is indeed a packing in P;.

Observation F.1. For OPT; defined as above, we have v(OPT;) > (1 — ) - v(OPT).

Lemma F.2. Consider an optimal solution OPTg to the ordinary subproblem, i.e., exclude items in Jg but
include the virtual knapsack. Then v(OPTo) > v(OPT o) — 2¢ - v(OPT), where we use the shorthand
OPTy,0 = (OPT1 N Jo) \ JE.

Proof. Consider the ordinary items in OPT; that are not in Jg. Leave items on ordinary knapsacks in their
current position and place ordinary items on special knapsacks into the virtual ordinary knapsack. The latter
is possible with the exception of possibly an e-fraction of the items (with respect to size) due to Sp being
rounded down. Deleting the least dense items until the remainder fits into the virtual knapsack causes a loss
of at most an e-fraction of the value of OPT; plus an additional ordinary item jo. This item jo contributes
at most an e-fraction to OPT as its value is not larger than that of the least valuable element in Jr which has
a value of less than ev(OPT). O

Lemma F.3. Let Pr be the final solution the algorithm computes. Then v(Pr) > (1 — 7e)v(OPT).

Proof. Consider Pp, the solution of the ordinary subproblem returned by the algorithm of Appendix E
(including virtual knapsack and resource augmentation). We know that v(Pp) > (1 — ¢) - v(OPTp) >
v(OPT1,0) — 3¢ - v(OPT) by Theorem 6.3 and Lemma F.2.

Let OPTg := OPT;NJg, and P, := PoUOPTgUJg. Then, OPT; = OPT; oU(OPT1NJE)U(OPT1NJg)
implies

v(OPTy) = v(OPT; 0) +v(OPT1 N JE) + v(OPT; N Jg)
v(Po) + 3ev(OPT) 4+ v(JEg) + v(OPTg)
v(P2) + 3ev(OPT).

With Observation F.1 we then obtain v() > v(OPT) — 4cv(OPT).

We now modify P, to obtain a solution P that lacks the virtual ordinary knapsack and deals with
bundles instead. Build % equal-sized bundles from Pp as in Step 5). Place these bundles fractionally
on the remaining space of the special knapsacks that is left after OPTg is packed. This space is sufficient
by definition of Sp and P;. Arrange the bundles such that the lowest-value ones are placed fractionally
and removing them from the solution incurs a loss of at most ev(OPT). Further, remove the items placed
fractionally among bundles. Since there are at most % of these with value smaller than the % items in Jg,
this incurs a loss of at most ev(OPT).

Therefore, v(P3) > v(P,) — 2ev(OPT). Moreover, the portion of P3 on special knapsacks is a valid so-
lution for the request sent to the special subproblem. Therefore, using Theorem 6.2, the overall solution Pr
satisfies v(Pr) > (1 — 7e)v(OPT). O

Lemma F4. The algorithm has update time (% log(nvmax))f /o) | O(% logwlogn), where f is a quasi-
linear function.

Proof. Guessing k adds a factor of % to the update time. Placing the % most valuable ordinary items

on extra knapsacks and removing them from data structures takes time (’)(i—f logn) which is within the
time bound. The same holds for the updates of the ordinary and special data structures and for solving the
subproblems with the algorithms of Appendices B and E.
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Cutting the items placed in the virtual ordinary knapsack info % equal-sized bundles can be archived
efficiently as follows. Compute the total size of these items, using the number of items used for each of the

(’)(lofz ) item types and deduce the size of a bundle. Sort the item types, e.g., by value then size, and then
iteratively pack items of the same type by computing how many items of this type fit in the next non-empty
bundle. This takes time (’)(lof# . LE—S) which is sufficient.

Additionally, the maintenance of data structures is dominated in runtime by that of the subproblems.
These takes time (’)(% logTlogn) and cause the additive factor. O

G Proof of Theorem 3.3

G.1 Hardness of Approximation

The following theorems provides a justification why our algorithms for multiple knapsacks have different
running times depending on the number of knapsacks. As Chekuri and Khanna [18] observed, MULTIPLE
KNAPSACK with m = 2 does not admit an FPTAS unless P = NP.

Theorem G.1 (Proposition 2.1 in [18]). If MULTIPLE KNAPSACK with two identical knapsacks has an
FPTAS, then PARTITION can be solved in polynomial time. Hence there is no FPTAS for MULTIPLE KNAP-
SACK even with m = 2, unless P = NP.

In the fully dynamic setting, this implies that there is no dynamic algorithm with running time polyno-
mial in log n and % unless P = NP. There, we are able to extend this result to the case where 2n + m < %

Theorem 3.3. Unless P = NP, there is no fully dynamic algorithm for MULTIPLE KNAPSACK that main-
tains a (1 — e)-approximate solution in update time polynomial in logn and %, form < 3—15

Proof. Consider the strongly NP-hard problem 3-PARTITION where there are 3m items with sizes a; € N
such that E?;”l a; = mA. The task is to decide whether there exists a partition | J;~, J; = [3m] such
that [J;| =3and }_ ., a; = Afor1 <i <m.

Consider the following instance for DYNAMIC MULTIPLE KNAPSACK: There are m knapsacks
with S = A and 3m many items. Each item corresponds to a 3-PARTITION item with s; = a; and v; = 1
for 1 < 5 < 3m. Observe that the 3-PARTITION instance is a YES-instance if and only if the optimal
solution to the KNAPSACK problem contains 3m items.

If DYNAMIC MULTIPLE KNAPSACK admits a dynamic algorithm with approximation guarantee at
least (1 — ) and running time polynomial in % and log ng where m < 3—18, such an algorithm is able to
optimally solve the KNAPSACK instance reduced from 3-PARTITION. Thus, such an algorithm decides
3-PARTITION in polynomial time which is not possible, unless P = NP. O
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