
Efficient Implementation of Carathéodory’s Theorem
for the Single Machine Scheduling Polytope

Ruben Hoeksmaa,∗, Bodo Mantheyb, Marc Uetzb

aUniversidad de Chile, Dept. Ingenieŕıa Industrial, República 701, Santiago, Chile
bUniversity of Twente, Dept. Applied Mathematics, P.O. Box 217, 7500 AE, Enschede, The

Netherlands

Abstract

In a fundamental paper in polyhedral combinatorics, Queyranne describes the
complete facial structure of a classical object in combinatorial optimization, the
single machine scheduling polytope. In the same paper, he answers essentially
all relevant algorithmic questions with respect to optimization and separation.
In the present paper, motivated by recent applications in the design of optimal
incentive compatible mechanisms, we address an algorithmic question that was
apparently not addressed before. Namely, we turn Carathéodory’s theorem into
an algorithm, and ask to write an arbitrary point in the scheduling polytope as
a convex combination of the vertices of the polytope. We give a combinatorial
O(n2) time algorithm, which is linear in the naive encoding of the output size.
We obtain this result by exploiting the fact that the scheduling polytope is a
zonotope, and by the observation that its barycentric subdivision has a simple,
linear description. The actual decomposition algorithm is an implementation of
a method proposed by Grötschel, Lovász and Schrijver, applied to one of the
subpolytopes of the barycentric subdivision. We thereby also shed new light on
an algorithm recently proposed for a special case, namely the permutahedron.

1. Introduction

Given any point x in a d-dimensional polytope Q, Carathéodory’s theorem
implies that x can be written as convex combination of at most d + 1 vertices
of Q. We are interested in an algorithmic version of Carathéodory’s theorem
for a well known polytope in combinatorial optimization, the single machine
scheduling polytope. The vertices of this polytope are vectors of completion
times corresponding to permutation schedules of n jobs on a single machine.
These vectors are obtained by computing the completion times of the jobs when
they are processed without idle time in one of the n! possible orders. We denote

∗Corresponding author
Email addresses: rubenh@dii.uchile.cl (Ruben Hoeksma), b.manthey@utwente.nl

(Bodo Manthey), m.uetz@utwente.nl (Marc Uetz)

Preprint submitted to Elsevier August 9, 2016

the convex hull of these vertices by C. The algorithmic problem that we want
to solve is this: Given some arbitrary x ∈ C, compute the representation of
x by at most n vertices vi of C. The fact that this is possible is implied by
Carathéodory’s theorem since the scheduling polytope for n jobs is (n − 1)-
dimensional [15]. With respect to the input size of the problem, observe that all
that is given is a vector of positive processing times p ∈ Rn+ and a point x ∈ Rn.
If x ∈ C, the required output is the vertices vi of C and scalars λi ≥ 0 such that∑
i λi = 1 and x =

∑
i λiv

i. In lack of a better name, we refer to this problem
as decomposition problem for point x ∈ C.

Motivation. As a matter of fact, the single machine scheduling polytope C is
very well understood [14]. For instance, it is known to be a polymatroid, and
optimization over C (and also the separation problem for C) can be done in
O(n log n) time. Having said this, why would one be interested in solving the
decomposition problem? Our motivation is that the problem arises as an algo-
rithmic subproblem in the design of optimal incentive compatible mechanisms
in private information settings. In such settings, some of the data, such as job
processing times, are private to the jobs. One approach for computing Bayes-
Nash optimal mechanisms that recently has received attention is to use linear
programming relaxations for the so-called reduced form of the mechanism [1, 7].
Such relaxations yield so-called interim solutions, which are (interior) points of
a certain polytope. In the final step of the optimal mechanism, the interim
solution has to be translated into a lottery over actual solutions. These actual
solutions are the vertices of the polytope. At this point one is confronted with a
decomposition problem as described above. Specifically, for the single machine
scheduling problem where jobs have private data, the last step to implement
a mechanism requires the solution of the decomposition problem of the single
machine scheduling polytope. We refer to [7] for a detailed discussion.

Related Work & Preliminaries. Already Cunningham [3, Sect. 4.3] observes that
an efficient combinatorial algorithm to explicitly compute an expression of an
interior point of a polytope as convex combination of its vertices is not obvious
at all, even if the underlying optimization problem for a given polytope is well
understood and can be solved efficiently. With this paper, we exactly follow this
line of research and settle the case for the single machine scheduling polytope.

Less directly related to our work is the decomposition of feasible points into
vertices in algorithms for submodular function minimization, starting with work
by Cunningham [2, 3] and including the strongly polynomial time algorithms
of Schrijver [16] and Iwata et al. [8]. More recently, decomposition techniques
have also been used to find approximation algorithms for packing and other
problems [11, 12, 17], where the fractional solution of an LP-relaxation is first
scaled and then decomposed into vertices of the integral polyhedron.

Since the separation problem for the single machine scheduling polytope C
can be solved in O(n log n) time, the existence of a polynomial time algorithm for
the decomposition problem for a given x ∈ C follows via the ellipsoid method [5].
The decomposition algorithm that does the job is recursive over the dimension

2

Q

f
v x

x′

Figure 1: Illustration of the generic decomposition algorithm by Grötschel, Lovász, and Schri-
jver. From some vertex v ∈ Q, extend a half-line from v in direction x− v until it intersects
a lower dimensional face f of Q in a point x′. The point x can be written as a convex combi-
nation of v and x′. Recurse with this face f and the intersection point x′ to obtain a convex
combination of vertices of f that yields x′.

of the polytope and was described by Grötschel, Lovász, and Schrijver in [6].
Figure 1 depicts the idea of that algorithm. For convenience, we refer to this as
the GLS method in the following.

Let us briefly sketch the state-of-the-art of combinatorial algorithms for the
decomposition problem of the single machine scheduling polytope. An O(n9)
algorithm follows directly from work by Fonlupt and Skoda [4] on the inter-
section of a line with an arbitrary polymatroid and using the GLS method.
However, a closer look reveals that an O(n3 log n) implementation is possible
for the scheduling polytope [7]. Still, this result is unsatisfactory in the following
sense. For the permutahedron, Yasutake et al. [18] gave an O(n2) decomposi-
tion algorithm. The permutahedron is precisely the single machine scheduling
polytope for the special case where all processing times are equal to one. Hence,
the natural question arises if their O(n2) algorithm can be generalized to the
scheduling polytope.

Contribution & Main Ingredients. In this paper, we answer this question in
the affirmative. Essentially, we show two things. First, we show that there is
an O(n2) decomposition algorithm for the single machine scheduling polytope.
Second, we give a simple and geometric intepretation for the algorithm by Ya-
sutake et al. [18]. In particular, we thereby show that their algorithm is in fact
also an implementation of the GLS method.

We now sketch the main ingredients. The backbone of our algorithm is the
GLS method. We start by shifting the polytope C by half the processing times
of the jobs to obtain Q, the polytope of feasible half time vectors: Q = C−p/2.
This shift simply makes the computations a lot easier. Now, the main idea is
that instead of applying the GLS method directly to the polytope, we apply it
to a subpolytope obtained from a polyhedral subdivision of Q. Subsequently,
we show that the found vertices of this subpolytope can be expressed with at
most n vertices of Q. The crucial ingredient to get the result is to exploit the
fact that the scheduling polytope is a zonotope, that is, all its faces are centrally
symmetric. As each of the centers of a given face has a representation by at
most two vertices (this is because, by symmetry, for any vertex of such a face,
there is another vertex exactly opposite to the center of the face), it suffices to

3

decompose a given point into (certain) centers. To decompose a given point into
centers, we consider the polyhedral subdivision of the scheduling polytope that
is induced by these centers. This is also called a barycentric subdivision [9]. For
the polytope of half times, we show that this subdivision has a simple, linear
description, which we can exploit algorithmically.

It should be mentioned that the idea of using half times, also referred to as
midpoints, is not new in scheduling. It has proven to be helpful particularly for
the design and analysis of approximation algorithms. Phillips et al. [13] were
probably the first to use half times to analyze an approximation algorithm, and
Munier et al. [10] were the first to use half times explicitly in the design of
approximation algorithms.

We believe that our results are interesting due to the following reasons. First,
consider applying the GLS method directly to the scheduling polytope. In order
to obtain an O(n2) implementation, one would have to compute a face f and
the intersection point of the half-line through v and x with f in O(n) time in
each iteration. We do not see how to do this. Second, considering a naive,
unit-cost encoding of the output, the O(n2) implementation is only linear in
the output size, and in that sense “best possible”. Third, our structural results
shed new light on a well-studied object in polyhedral combinatorics, namely the
single machine scheduling polytope. Finally, we believe that the geometric idea
behind our approach might prove useful also for other combinatorial problems.

2. The Single Machine Scheduling Polytope

Consider a set N of n jobs. Job j ∈ N has positive processing time
pj ∈ R+. Non-preemptive schedules of jobs on a single machine are usually
represented by vectors of either starting times sj or completion times cj . For
any non-preemptive schedule without idle time, the starting time of job j is
sj =

∑
k<j pk, where k < j denotes that job k is scheduled before job j. Then

the completion time of job j is cj = sj + pj . For all sets J ⊆ N of jobs, let

g(J) :=
1

2

∑
j∈J

pj

2

.

Queyranne [14] defined the single machine scheduling polytope using comple-
tion time vectors c and showed that it is described by the following system of
inequalities:∑

j∈J
cjpj ≥ g(J) +

1

2

∑
j∈J

p2j for all J ⊂ N and (1)

∑
j∈N

cjpj = g(N) +
1

2

∑
j∈N

p2j . (2)

Since we assume pj > 0 for all j ∈ N , none of these inequalities is redundant,
and the dimension is n−1 [14]. Note that, for the degenerate case where pk = 0

4

for some jobs k, we would have to add constraints 0 ≤ ck ≤
∑
j∈N pj in order

to describe the convex hull of schedules. However, for all algorithmic purposes
that we can think of, this degenerate case does not add anything interesting,
since we can simply eliminate such jobs and reintroduce them afterwards. In
particular, this is true for the problem we address here. Thus, we assume that
pj > 0 for all jobs j ∈ N .

In this paper, it is convenient to represent a schedule by x, the vector of half
times, instead of the vector of completion times. The half time of a job is the
time at which the job has finished half of its processing. We have

xj = sj +
1

2
pj = cj −

1

2
pj .

Equivalent to Queyranne’s description, the single machine scheduling polytope
of half times is completely described by∑

j∈J
xjpj ≥ g(J) for all J ⊂ N and (3)

∑
j∈N

xjpj = g(N) , (4)

which is the scheduling polytope of completion times shifted by the vector −p/2.
Let Q denote the single machine scheduling polytope of half times. The polytope
Q is the set of all x ∈ Rn that fulfill (3) and (4).

The face lattice of the single machine scheduling polytope is well under-
stood [14]. Every (n− k)-dimensional face f of Q corresponds one-to-one with
an ordered partition of N into k sets. With an ordered partition, we mean a tu-
ple (S1, . . . , Sk) with Si∩Sj = ∅ for all i 6= j, i, j ∈ {1, . . . , k}, and

⋃k
i=1 Si = N .

The intended meaning is that inequalities (3) are tight for all Ti := S1∪ . . .∪Si,
i ∈ {1, . . . , k}. This corresponds to convex combinations of all schedules where
jobs in Ti are scheduled before jobs in N \ Ti, for all i ∈ {1, . . . , k}. The sched-
ules correspond to the ordered partitions ({σ(1)}, . . . , {σ(n)}) for all permuta-
tions σ. Each such ordered partition corresponds to a vertex of Q as follows:
let ({σ(1)}, . . . , {σ(n)}) be an ordered partition and v the vertex it corresponds
to, then

vσ(j) =
1

2
pσ(j) +

j−1∑
i=1

pσ(i) for all j ∈ N . (5)

3. Zonotopes

In this paper, we make heavy use of the fact that the scheduling polytope is
a zonotope.

Definition 1 (centrally symmetric polytope, zonotope). Let P ⊆ Rn be
a polytope. P is centrally symmetric if it has a center c ∈ P , such that c+x ∈ P
if and only if c − x ∈ P . If all faces of P are centrally symmetric, then P is
called a zonotope.

5

An equivalent definition of centrally symmetric is that there is a center c ∈ P
such that for all x ∈ P also 2c− x ∈ P .

Zonotopes also have alternative definitions. They are exactly the images
of (higher-dimensional) hypercubes under affine projections, and they are ex-
actly the Minkowski sum of line segments [19]. The standard textbook example
for zonotopes is the permutahedron [19], which is the scheduling polytope of
completion times when all processing times are equal to one.

The scheduling polytope with arbitrary processing times is a zonotope, too.
This can be seen in several ways. For example, the scheduling polytope can be
obtained as affine transformation from a hypercube in dimension

(
n
2

)
via linear

ordering variables as follows [15, Thm. 4.1]: let the variable δij for i, j ∈ N ,
i < j be ordering variables. The intended meaning is that δij = 1 if and only
if job i is processed before job j. Then the vertices of this

(
n
2

)
-dimensional

hypercube correspond one-to-one with all permutations, and the halftime xj of
any job j can be computed by

xj =
1

2
pj +

∑
i<j

δijpi +
∑
i>j

(1− δji)pi .

We summarize this brief discussion with the following theorem.

Theorem 1 (Queyranne & Schulz [15, Thm. 4.1]). The scheduling poly-
tope is a zonotope.

With respect to the centers of the faces of the scheduling polytope of half-
times, we have the following lemma that gives their explicit description.

Lemma 2. Let f be any face of Q, defined by the ordered partition (S1, . . . , Sk).
Then the center of symmetry (barycenter) c(f) of f is given by

c(f)j =

i−1∑
`=1

∑
h∈S`

ph +
1

2

∑
h∈Si

ph , j = 1, . . . , n , (6)

where i is the index such that j ∈ Si.

Given that a face f of Q corresponds to some ordered partition (S1, . . . , Sk),
this is not difficult to verify. For the sake of completeness, we give a proof.

Proof. Let f be a face of Q, and let v be a vertex of f . Let (S1, . . . , Sk) be the
ordered partition corresponding to f . Then v corresponds to an ordering such
that jobs in Sa are ordered before jobs in Sb for all a < b. Now let v′ be the
vertex of f that corresponds to the following order: for any two jobs i, j ∈ Sa
and i 6= j, we let j be ordered before i if and only if i is ordered before j in v.
Note that, for any v, there is exactly one such v′.

We argue that c(f) = 1
2 (v + v′). Suppose that j ∈ Sa. Then for any b < a,

in both v and v′ any job i ∈ Sb is ordered before job j. For any b > a, in both v
and v′ any job i ∈ Sb is ordered after job j. And, for any job i ∈ Sa, i 6= j, job

6

i is ordered before job j in one of v and v′ and ordered after job j in the other.
From this we have that

1

2
(v + v′)j =

a−1∑
`=1

∑
s∈S`

ps +
1

2

∑
s∈Sa

ps for all j ∈ Sa,

which equals c(f)j as defined by Lemma 2. Therefore we have that c(f) =
1
2 (v + v′), or v′ = 2c(f) − v. As v was an arbitrary vertex of f , it follows that
for any point x ∈ f there exists x′ ∈ f such that x′ = 2c(f) − x. Thus c(f) is
the center of f . �

In particular, observe that the value c(f)j is the same for all j ∈ Si and the
center of Q is the point c(Q) where all values c(Q)i coincide, i.e., c(Q)1 = · · · =
c(Q)n. This is no longer true if we consider the scheduling polytope of start
or completion times. The property that all faces of a zonotope are centrally
symmetric, as well as the simple description of the centers of these faces by
Lemma 2, will be important for the design of the decomposition algorithm in
Section 5.

4. Barycentric subdivision

Consider the following, polyhedral subdivision of the scheduling polytope Q.
For any vertex v of Q, define polytope Qcv as the convex hull of all centers c(f)
of faces f that contain v:

Qcv := conv{c(f) | v ∈ f} .

Note that v itself is a 0-dimensional face of Q and therefore v ∈ Qcv and, by
construction, v is the only vertex of Q that is also a vertex of Qcv. The polytopes
Qcv form a subdivision of Q, which is known as barycentric subdivision [9].

Another polyhedral subdivision of the scheduling polytope Q is obtained by
subdividing the polytope according to orders as follows.

Definition 2. Let P ⊆ Rn be a polytope. We define a relation ∼ on P as
follows: for two points x, y ∈ P , we have x ∼ y if there exists a permutation
σ : {1, . . . , n} → {1, . . . , n} such that both xσ(1) ≤ . . . ≤ xσ(n) and yσ(1) ≤ . . . ≤
yσ(n).

Based on this definition, define for any vertex v ∈ Q the polytope

Qσv := {x ∈ Q | x ∼ v} .

Since vertices of Q correspond to permutation schedules, for every permutation
σ there is exactly one vertex of Q such that vσ(1) ≤ . . . ≤ vσ(n). Therefore we
have Q =

⋃
v Q

σ
v and v is the only vertex of Q that is also a vertex of Qσv .

The following two lemmas encode the core and geometric intuition behind
the decomposition algorithm that we develop in Section 5. They show that the

7

two above polyhedral subdivisions are in fact equivalent. Thus, we obtain a
description of the barycentric subdivision in terms of vertices and facets, all of
which can be described explicitly by simple expressions. These insights can be
exploited algorithmically.

Lemma 3. Let Q be the single machine scheduling polytope of half times, let v
be an arbitrary vertex of Q and let σ denote the permutation such that vσ(1) ≤
. . . ≤ vσ(n). Then Qσv has the following, linear description:

xσ(j) ≤ xσ(j+1) for all j ∈ {1, . . . , n− 1} , (7)

k∑
j=1

xσ(j)pσ(j) ≥
1

2

 k∑
j=1

pσ(j)

2

for all k ∈ {1, . . . , n− 1} , and (8)

∑
j∈N

xjpj =
1

2

∑
j∈N

pj

2

. (9)

Proof. Since Qσv ⊆ Q, (8) and (9) are satisfied for every point in Qσv . Since σ
is the only permutation with vσ(1) ≤ . . . ≤ vσ(n), we have that x satisfies (7) if
x ∼ v. Therefore, (7) holds for any point in Qσv .

It remains to be shown that (7), (8), and (9) imply x ∈ Qσv . Let x satisfy
(7), (8) and (9). For simplicity of notation and without loss of generality, let all
vectors be sorted such that xi ≤ xj if and only if i ≤ j. Then, for each j, we
have (

j∑
i=1

pi

)
xj ≥

j∑
i=1

pixi ≥
1

2

(
j∑
i=1

pi

)2

.

Thus, xj ≥ 1
2

∑j
i=1 pi for all j. Now suppose x satisfies (7), (8), and (9), but

x /∈ Q. Then there is a set J of minimal cardinality, such that (3) is not satisfied.
This means that ∑

i∈J
pixi <

1

2

(∑
i∈J

pi

)2

.

But then, for j = maxk∈J k, we have

∑
i∈J\{j}

pixi =
∑
i∈J

pixi − pjxj <
1

2

(∑
i∈J

pi

)2

− pjxj

≤ 1

2

(∑
i∈J

pi

)2

− pj
1

2

(
j∑
i=1

pi

)

≤ 1

2

(∑
i∈J

pi

)2

− pj
1

2

(∑
i∈J

pi

)
=

1

2

 ∑
i∈J\{j}

pi

2

.

8

This contradicts that J is a set of minimal cardinality that does not satisfy (3).
So (7), (8), and (9) imply x ∈ Q.

Now suppose x ∈ Q \Qσv , then x ∈ Qσv′ for some other vertex v′ ∈ Q, which
would imply that (7) is not valid for x. Hence, x ∈ Qσv . �

Lemma 4. Let Q be the single machine scheduling polytope of half times. Then,
for all vertices v of Q, we have

Qcv = Qσv .

Proof. Lemma 2 implies that the vertices of Qcv are given by (6) for all f 3 v.
Moreover, it also follows from Lemma 2 that for any face f and any vertex v of
f we have that v ∼ c(f). Thus, for any vertex q of Qcv we have that q ∼ v. It
follows that Qcv ⊆ Qσv .

Let q be a vertex of Qσv . Then, by Lemma 3, at least n − 1 inequalities
among (7) and (8) are tight for q. Let ` ∈ {1, . . . , n− 1}. If (8) is tight for q for
k = `, then (7) cannot be tight for q for j = `. This is because if (8) is tight for
q and k = `, then jobs 1, . . . , ` are scheduled before jobs `+ 1, . . . , n. Therefore,

q`+1 ≥
1

2
p`+1 +

∑̀
j=1

pj

and

q` ≤
1

2
p` +

`−1∑
j=1

pj .

Thus, q` < q`+1, since all processing times are assumed to be positive. This
implies that for any ` ∈ {1, . . . , n − 1}, we have that q satisfies exactly one of
the following: (8) is tight for k = ` or (7) is tight for j = `. The inequalities (8)
that are tight for q induce an ordered partition (S1, . . . , Sk) that corresponds to
a face f . Moreover, since all inequalities (8) are tight for v, we have that f 3 v.
The inequalities (7) that are tight for q ensure that qj = qj+1 for all j ∈ Si and
any i ∈ {1, . . . , k}.

It follows from Lemma 2 that q = c(f) and, thus, q is a vertex of Qcv. Since
this holds for any vertex of Qσv , we have Qσv ⊆ Qcv. Thus, Qσv = Qcv. �

For simplicity of notation, we define Qv := Qcv (= Qσv).
Figure 2 illustrates the barycentric subdivision of the scheduling polytope.

It shows the scheduling polytope for three jobs together with its barycentric
subdivision (indicated by dashed lines). The subpolytope containing vertex v213
contains all vectors x ∈ Q for which x2 ≤ x1 ≤ x3. Its vertices are v213, and all
centers of faces on which v213 lies. Its facets are defined by x1p1 +x2p2 +x3p3 =
(p1 + p2 + p3)2 together with one of the following equalities:

x1p1 + x2p2 = (p1 + p2)2 ,

x2p2 = (p2)2 ,

x2 = x1 ,

x3 = x1 .

9

v123

v213 v231

v321

v312v132

1
2
v123 +

1
2
v213

1
2
v213 +

1
2
v312

1
2
v213 +

1
2
v231

Figure 2: Barycentric subdivision of a scheduling polytope with three jobs. vijk denotes the
vertex corresponding to the order i, j, k. Only vertices of Q, and the vertices of the subpolytope
Qv corresponding to vertex v213 are labeled. The latter are v213 and convex combinations of
v213 with one “opposite” vertex.

5. Decomposition Algorithm for the Single Machine Scheduling Poly-
tope

Based on Lemma 3, we next develop a decomposition algorithm for the
scheduling polytope that runs in time O(n2). This algorithm can be seen as
a generalization of an algorithm recently proposed by Yasutake et al. [18] for
the permutahedron. We argue here that this algorithm is in fact an application
of the GLS method [6, Thm. 6.5.11]. Before diving into technical details, we
describe the high level idea.

We know that any point x ∈ Q lies in a subpolytope Qv of the barycentric
subdivision of Q, namely for a vertex v for which v ∼ x according to Defini-
tion 2.1 Moreover, Qv is described by inequalities (7) and (8), and the vertices

of Qv consist of the points v+v′

2 for some vertices v′ of Q. This means that a
decomposition of x into vertices of Qv also yields a decomposition into vertices
of Q.

The idea of our algorithm is as follows: We find a decomposition of x into
vertices of Qv by using the GLS method [6, Thm. 6.5.11]. The idea of this
algorithm is illustrated in Figure 3: Given x = x1 ∈ Qv (we have v = v1),
we extend the difference vector x1 − v1 towards the intersection with a lower
dimensional face of Qv (this will be a facet of Qv, unless we accidentally hit a

1In case of ties, x lies on the intersection of several of such subpolytopes, namely those
corresponding to vertices v with v ∼ x. We can break such ties arbitrarily.

10

v1 = q1

v3

v2

x3 = c(Q)
x1

q2

x2

f2

Figure 3: Visualization of the decomposition algorithm on a single machine scheduling poly-
tope for three jobs

face of even lower dimension). Then recurse with this intersection point and the
face on which it lies. To arrive at the claimed computation time, it is crucial that
both the intersection point and the face(t) on which it lies can be computed in
time O(n). This is indeed possible because of the explicit, linear description of
Qv given in Lemma 3. As the number of iterations is bounded by the dimension
of Qv, which is equal to the dimension of Q, this gives an O(n2) implementation.

Finally, by the fact that all vertices of Qv can be written as v+v′

2 for vertices v′

of Q, we obtain a decomposition of x into at most n vertices of Q.
In order to describe the technical details of the algorithm, we use the fol-

lowing notation and facts, all of which follow from the structural insights of
Section 4.

v: vertex of Q corresponding to the permutation 1, 2, . . . , n; we have v = v1;

J t: set of indices;

f t: face of Qv associated with J t such that yj = yj+1 for all y ∈ f t and all
j ∈ {1, . . . , n− 1} \ J t;

qt: vertex of f t;

vt: vertex of Q such that qt = 1
2 (v + vt);

xt: point in f t;

κ̃t: scalar such that xt = κ̃tq
t + (1− κ̃t)xt+1;

κt: scalar corresponding to qt in the convex combination x =
∑
t κtq

t;

λt: scalar corresponding to vt in the convex combination x =
∑
t λtv

t.

Moreover, for ease of notation and without loss of generality, we assume that

11

Algorithm 1: Decomposition Algorithm

input : processing times p, point x ∈ Q with x1 ≤ . . . ≤ xn
output: at most n vertices vt of Q and coefficients κt ∈ [0, 1]

1 t := 1, x1 := x, J1 := {i ∈ {1, . . . , n− 1} | x1i < x1i+1};
2 let v be the vertex with v1 ≤ . . . ≤ vn;

while J t 6= ∅ do
3 qt := VERTEX(J t);

4 vt := 2qt − v;

5 κ̃t := min
j∈Jt

(xtj+1 − xtj)/(qtj+1 − qtj);

6 xt+1 := 1
1−κ̃t

(xt − κ̃tqt);
7 J t+1 := {i ∈ J t | xt+1

i < xt+1
i+1};

8 κt := (1−
t−1∑
τ=1

κτ)κ̃t;

9 t := t+ 1;

10 qt := xt;

11 vt := 2qt − v;

12 κt := 1−
t−1∑
τ=1

κτ ;

13 λ1 := 1
2 + 1

2κ1;
for τ ∈ {2, . . . , t} do

14 λτ := 1
2κτ ;

the given point x ∈ Q satisfies x1 ≤ . . . ≤ xn.2

The subroutine VERTEX(J t) computes the vertex of Q corresponding to the
face associated with J t as follows: Let J t(i) denote the i-th element in J t and
define J t(0) = 1. Then, for j ∈ {J t(i), . . . , J t(i+ 1)− 1}, we compute

qtj =

Jt(i)−1∑
k=1

pk +
1

2

Jt(i+1)−1∑
k=Jt(i)

pk .

Note that vertex qt can be computed in linear time per iteration by just com-

puting P ti :=
∑Jt(i+1)−1
k=Jt(i) pk for all i, in time O(n). Then, qt1 = 1

2P
t
1 , and for

j ∈ {J t(i), . . . , J t(i+ 1)− 1} and k ∈ {J t(i+ 1), . . . , J t(i+ 2)− 1}, the values
for qt are computed iteratively as qtk = qtj + 1

2 (P ti + P ti+1).

Theorem 5. For any x ∈ Q, Algorithm 1 outputs a convex combination of
vertices of Q for x in O(n2) time.

2This comes at the expense of sorting, which costs O(n logn) time and, thus, falls within
the O(n2) time complexity of the proposed algorithm.

12

Proof. We first show by induction that xt ∈ f t during any iteration t of the
algorithm. Note that Qv is chosen such that x1 = x ∈ Qv = f1, which is our
base step. Now, as the inductive step, we show that xt ∈ f t implies xt+1 ∈ f t+1.
From line 7 of the algorithm we have that inequalities (7) are tight for xt+1 and
all j /∈ J t+1. Thus, it is sufficient to show that xt ∈ Qv implies that xt+1 ∈ Qv.
By construction, qt is the vertex of f t for which (7) is tight for all j /∈ J t and
(8) is tight for all k ∈ J t. Now suppose xt ∈ Qv. Then, of course, xt and qt

satisfy (8), and we have

k∑
j=1

xt+1
j pj =

k∑
j=1

pj
xtj − κ̃tqtj

1− κ̃t
=

1

1− κ̃t

 k∑
j=1

pjx
t
j − κ̃t

k∑
j=1

pjq
t
j

 ≥ 1

2

 k∑
j=1

pj

2

for all k ∈ {1, . . . , n}. From the definition of xt+1 we have

xt+1
j+1 − x

t+1
j =

xtj+1 − κ̃tqtj+1

1− κ̃t
−
xtj − κ̃tqtj

1− κ̃t

=
1

1− κ̃t
(
xtj+1 − xtj − κ̃t

(
qtj+1 − qtj

))
.

By definition we have for all j /∈ J t that xtj = xtj+1 and qtj = qtj+1. Moreover,
we have by line 5 of the algorithm

κ̃t = min
j∈Jt

xtj+1 − xtj
qtj+1 − qtj

. (10)

Therefore κ̃t ≤
xt
j+1−xt

j

qtj+1−qtj
for all j ∈ J t. Thus, we obtain for all j ∈ N

xt+1
j+1 − x

t+1
j ≥ 1

1− κ̃t

(
xtj+1 − xtj −

xtj+1 − xtj
qtj+1 − qtj

(
qtj+1 − qtj

))
= 0 .

Hence, xt+1 satisfies (7)–(9). From Lemma 3, we have xt+1 ∈ Qv and, therefore,
xt+1 ∈ f t+1. We conclude, by mathematical induction, that xt ∈ f t during any
iteration t of the algorithm.

In addition, (10) ensures that for at least one j ∈ J t, we have xt+1
j+1 = xt+1

j

and thus |J t+1| < |J t|. Since |J1| ≤ n − 1, the algorithm terminates after at
most n−1 iterations. Let t∗ be the value of t as the algorithm terminates. Note
that J t

∗
= ∅ and thus xt

∗
= c(Q), the center of Q. Furthermore, from line 12

of the algorithm, we have κt∗ = 1−
∑t∗−1
j=1 κj , which implies

∑t∗

j=1 κj = 1. For
t ∈ {1, . . . , t∗ − 1}, we have

xt = κ̃tq
t + (1− κ̃t)xt+1 .

Iteratively applying this equality yields

x =

t∗−1∏
τ=1

(1− κ̃τ)xt
∗

+

t∗−1∑
t=1

t−1∏
τ=1

(1− κ̃τ)κ̃tq
t . (11)

13

We also have that

1−
t∑

τ=1

κτ = 1−
t−1∑
τ=1

κτ − κt

= 1−
t−1∑
τ=1

κτ − κ̃t

(
1−

t−1∑
τ=1

κτ

)

= (1− κ̃t)

(
1−

t−1∑
τ=1

κτ

)
,

where the second equality follows from line 8 of the algorithm. Applying this
equality iteratively yields

1−
t∑

τ=1

κτ =

t∏
τ=1

(1− κ̃τ) .

This also gives us the following identity for κt, for t 6= t∗:

κt = κ̃t

(
1−

t−1∑
τ=1

κτ

)
= κ̃t

t−1∏
τ=1

(1− κ̃τ) .

So, expanding from (11) and using the above two identities and the definitions
of qt

∗
and κt

∗
in lines 10 and 12 of the algorithm, we have

x =

(
1−

t∗−1∑
τ=1

κτ

)
xt
∗

+

t∗−1∑
t=1

κtq
t

= κt∗x
t∗ +

t∗−1∑
t=1

κtq
t

= κt∗q
t∗ +

t∗−1∑
t=1

κtq
t =

t∗∑
t=1

κtq
t .

Now since vt = 2qt − v, we have qt = 1
2 (v + vt). From lines 13 and 14 of the

14

algorithm we have λ1 = 1
2 + 1

2κ1 and λt = 1
2κt, for t = 2, . . . , t∗. This yields:

x =

t∗∑
t=1

κtq
t

=

t∗∑
t=1

κt
1

2
(v + vt)

=

t∗∑
t=1

κt
1

2
v +

t∗∑
t=1

κt
1

2
vt

=
1

2
v +

1

2
κ1v +

t∗∑
t=2

1

2
κtv

t

= λ1v +

t∗∑
t=2

λtv
t =

t∗∑
t=1

λtv
t ,

where the second equality follows from line 4 of the algorithm. It follows from

line 12 of the algorithm that
∑t∗

τ=1 λτ =
∑t∗

τ=1 κτ = 1. From (10), we obtain
that 0 ≤ κ̃t ≤ 1 for all t ∈ {1, . . . , t∗}. Therefore, it follows from line 8 of
the algorithm that κt ≥ 0 and

∑t
τ=1 κτ ≤ 1 for all t ∈ {1, . . . , t∗}. Thus,

x =
∑t∗

t=1 λtv
t is indeed an expression for x as a convex combination of no more

than n vertices of Q.
Since none of the steps within each of at most n − 1 iterations takes more

than O(n) time, the total computation time of the algorithm is O(n2). �

6. Conclusions

The obvious open question is if our algorithm can be generalized to arbitrary
zonotopes. As a blueprint of an algorithm that is of course true. However,
in order to shape this into a combinatorial algorithm, we would have to find
explicit expressions for the centers of symmetry, as well as the faces of the
resulting barycentric subdivision that is induced by these centers. In the case
of the single machine scheduling polytope we were able to do this, because the
faces of the subdivisions are exactly defined by the linear inequalities induced
by orderings xσ(1) ≤ · · · ≤ xσ(n). We do not see how that could be done in
general for zonotopes. However for other, concrete combinatorial problems it
might very well be doable.

Acknowledgements

We thank Maurice Queyranne for a helpful discussion and for pointing us
to the paper by Yasutake et al. [18]. We also thank a careful reviewer for many
helpful and constructive comments. The first author was partially supported
by Millennium Nucleus Information and Coordination in Networks ICM/FIC
RC130003.

15

References

[1] Y. Cai, C. Daskalakis, and S. M. Weinberg. Optimal multi-dimensional
mechanism design: Reducing revenue to welfare maximization. In Proc.
53rd Ann. IEEE Symp. on Foundations of Computer Science (FOCS),
pages 130–139. IEEE, 2012.

[2] W. H. Cunningham. Testing membership in matroid polyhedra. Journal
of Combinatorial Theory, Series B, 36:161–188, 1984.

[3] W. H. Cunningham. On submodular function minimization. Combinator-
ica, 5:186–192, 1985.

[4] J. Fonlupt and A. Skoda. Strongly polynomial algorithm for the intersection
of a line with a polymatroid. In W. Cook, L. Lovász, and J. Vygen, editors,
Research Trends in Combinatorial Optimization, pages 69–85. Springer,
2009.

[5] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–197,
1981.

[6] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.
Springer, 1988.

[7] R. Hoeksma and M. Uetz. Two dimensional optimal mechanism design for
a sequencing problem. In M. Goemans and J. Correa, editors, Integer Pro-
gramming and Combinatorial Optimization, volume 7801 of Lecture Notes
in Computer Science, pages 242–253. Springer, 2013.

[8] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polyno-
mial time algorithm for minimizing submodular functions. Journal of the
ACM, 48(4):761–777, 2001.

[9] C. W. Lee. Subdivisions and triangulations of polytopes. In Handbook of
Discrete and Computational Geometry, chapter 17. Chapman & Hall/CRC,
2nd edition, 2004.

[10] A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a
general class of precedence constrained parallel machine scheduling prob-
lems. In R. E. Bixby, E. A. Boyd, and R. Z. Ŕıos-Mercado, editors, Inte-
ger Programming and Combinatorial Optimization, volume 1412 of Lecture
Notes in Computer Science, pages 367–382. Springer, 1998.

[11] O. Parekh. Iterative packing for demand and hypergraph matching. In
O. Günlük and G. J. Woeginger, editors, Integer Programming and Combi-
natoral Optimization, volume 6655 of Lecture Notes in Computer Science,
pages 349–361. Springer, 2011.

16

[12] O. Parekh and D. Pritchard. Generalized hypergraph matching via iterated
packing and local ratio. In E. Bampis and O. Svensson, editors, Approxi-
mation and Online Algorithms, volume 8952 of Lecture Notes in Computer
Science. Springer, 2015.

[13] C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In
S. G. Akl, F. Dehne, J.-R. Sack, and N. Santoro, editors, Algorithms and
Data Structures, volume 955 of Lecture Notes in Computer Science, pages
86–97. Springer, 1995.

[14] M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical
Programming, 58(1):263–285, 1993.

[15] M. Queyranne and A. S. Schulz. Polyhedral approaches to machine schedul-
ing. Preprint 408-1994, TU Berlin, 1994.

[16] A. Schrijver. A combinatorial algorithm minimizing submodular functions
in strongly polynomial time. Journal of Combinatorial Theory, Series B,
80:346–355, 2000.

[17] G. Stamoulis. Approximation algorithms for bounded color matchings via
convex decompositions. In E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik,
editors, Mathematical Foundations of Computer Science 2014, volume 8635
of Lecture Notes in Computer Science, pages 625–636. Springer, 2014.

[18] S. Yasutake, K. Hatano, S. Kijima, E. Takimoto, and M. Takeda. On-
line linear optimization over permutations. In Algorithms and Computa-
tion, volume 7074 of Lecture Notes in Computer Science, pages 534–543.
Springer, 2011.

[19] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in
Mathematics. Springer, 1995.

17

