
On the Complexity of Conditional DAG Scheduling
in Multiprocessor Systems

Alberto Marchetti-Spaccamela∗, Nicole Megow†, Jens Schlöter†, Martin Skutella‡, Leen Stougie§
∗Sapienza University of Rome and INRIA-Erable, alberto.marchetti@dis.uniroma1.it,

†University of Bremen, {nmegow, jschloet}@uni-bremen.de, ‡Technical University of Berlin, martin.skutella@tu-berlin.de,
§CWI Amsterdam, Vrije Universiteit Amsterdam and INRIA-Erable, leen.stougie@cwi.nl

Abstract—As parallel processing became ubiquitous in modern
computing systems, parallel task models have been proposed
to describe the structure of parallel applications. The workflow
scheduling problem has been studied extensively over past years,
focusing on multiprocessor systems and distributed environments
(e.g. grids, clusters). In workflow scheduling, applications are
modeled as directed acyclic graphs (DAGs). DAGs have also
been introduced in the real-time scheduling community to model
the execution of multi-threaded programs on a multi-core archi-
tecture. The DAG model assumes, in most cases, a fixed DAG
structure capturing only straight-line code. Only recently, more
general models have been proposed. In particular, the conditional
DAG model allows the presence of control structures such
as conditional (if-then-else) constructs. While first algorithmic
results have been presented for the conditional DAG model, the
complexity of schedulability analysis remains wide open.

We perform a thorough analysis on the worst-case makespan
(latest completion time) of a conditional DAG task under list
scheduling (a.k.a. fixed-priority scheduling). We show several
hardness results concerning the complexity of the optimization
problem on multiple processors, even if the conditional DAG has
a well-nested structure. For general conditional DAG tasks, the
problem is intractable even on a single processor. Complementing
these negative results, we show that certain practice-relevant
DAG structures are very well tractable.

Index Terms—parallel processing, makespan, conditional DAG,
complexity

I. INTRODUCTION

As parallel processing became ubiquitous in modern com-
puting systems, parallel task models have been proposed to
describe the structure of parallel applications.

A popular representation is the DAG (directed acyclic
graph) model; in this model a task is represented by a DAG
G = (V,E) where V is a set of vertices and E a set of
directed edges between these vertices. Each v ∈ V represents
the execution of a sub-task (or job), and it is characterized by

Partially funded and supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) Projects ME 3825/1 and 146371743 -
TRR 89 Invasive Computing, by the Netherlands Organisation for Scientific
Research (NWO) Gravitation Programme Networks 024.002.003, by ERC
Advanced Grant 788893 AMDROMA “Algorithmic and Mechanism Design
Research in Online Markets” and by MIUR PRIN project ALGADIMAR
“Algorithms, Games, and Digital Markets”.

©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

an execution time. The edges represent dependencies between
the jobs: if (v1, v2) ∈ E then job v1 must complete execution
before job v2 can begin execution.

The DAG model has been extensively used to represent
cooperative tasks (workflows) which typically require more
computing power beyond single machine capability: scientific
workflows, multi-tier web service workflows, and big data
processing workflows such as Map Reduce from Google and
Dryad from Microsoft. A lot of research effort has been
done to include in the model specific aspects of the computer
platform (multiprocessor systems or distributed environments
like clusters and grids), and on other specific aspects of the
considered workflow (e.g. resource provisioning and mapping,
communications costs etc.). We refer to the survey papers [1],
[2] and references therein for a thorough presentation.

The DAG model has also been used in the real-time systems
community to model the execution of multi-threaded recurrent
tasks to be executed on a multi-core architecture [3], [4].

It is well known that many variants of DAG scheduling
are NP-complete even in simple cases. In fact, Ullman [5]
showed that it is NP-complete to decide whether the makespan
(latest completion time among all jobs) for scheduling a DAG
is within a certain deadline, even if i) all vertices have unitary
execution times using an arbitrary number of processors, and
ii) all vertices have execution time equal to one or two using
only two processors.

A scheduling paradigm which is widely used in practice is
called list scheduling. The basic idea is to assign priorities to
jobs and obtain a list of jobs by sorting them according to their
priorities; during execution whenever a processor is idle the
available job with highest priority is selected for processing.
Graham [6] proved the following performance guarantee: for
any priority order of jobs, list scheduling produces a schedule
on m processors that has a makespan no greater than (2 −
1/m) times the minimum possible makespan. Most run-time
scheduling algorithms that are used for scheduling DAGs use
some variant of list scheduling.

While the DAG model captures the intra-parallelism of
tasks, it does not capture the typical conditional nature of con-
trol flow instructions, such as if-then-else statements.
The presence of such conditional constructs within the code
modeled by the task may mean that different activations of
the task cause different parts of the code to be executed. The
conditional DAG model generalizes the DAG model allowing

additional conditional nodes [7], [8]. We note that a workflow
can also have conditional branches as in BPEL [9]. A formal
definition follows in Section II.

In this paper we study the problem of computing the worst-
case makespan for a conditional DAG under list scheduling
with an arbitrary but fixed priority order (a.k.a. FP-scheduling)
from a complexity theoretic view point. This is a fundamental
question, e.g., when performing schedulability analysis.

Our results

We show that it is coNP-complete to decide whether FP-
scheduling a given conditional DAG task on multiple pro-
cessors can be done within a given deadline in each of
the (possibly exponentially many) realizations of conditional
vertices. This is true even if conditions are independent (see
Section 2 for a formal definition). The coNP-completeness
holds in both, a non-preemptive (run-to-completion) and pre-
emptive migratory setting. For these results we give a general
reduction framework based on a non-obvious relation between
the problem of computing the maximum makespan for a
conditional DAG and minimizing the maximum completion
time (makespan) for a DAG. The framework allows us to
derive several refined complexity results for special graph
classes by using (known) NP-hardness results for classical
makespan minimization.

It is known that the worst-case makespan for FP list schedul-
ing a conditional DAG task with independent constructs on a
single processor can be computed in polynomial time [8]. We
show that it is crucial for this result that different conditional
constructs are independent of each other, meaning that they
are nested and there is no dependency between them such
as a shared node. In particular, we show in Section III-D
that computing the worst-case makespan for FP-scheduling
a general conditional DAG task with shared nodes is coNP-
complete even on a single processor.

If the conditional DAG (without shared nodes) has in each
realization bounded width (precise definitions follow), then we
can compute the worst-case makespan for non-preemptive FP-
scheduling in pseudo-polynomial time via a dynamic program.
We show also that this algorithm can be turned into an efficient
algorithm by loosing only marginally in the performance if a
certain monotonicity property holds for the job completion
times under FP-scheduling. We present a fully polynomial-
time approximation scheme (FPTAS) in this case. We prove
that it does hold, e.g., for a bounded number of chains. This
monotonicity result might be of independent interest to the
scheduling community as has been motivated e.g. in [10]. For
general DAGs the monotonicity property does not hold as a
classical example known as Graham anomaly [6] shows.

Other related work.

None of the (earlier proposed) parallel-task models
(fork/join, synchronous parallel, DAG) captures control flow
information such as conditional executions. Some alternatives
to the conditional DAG model have been considered. Fonseca
et al. [11] propose the multi-DAG that represents a task as a

collection of DAGs, each describing a conditional execution.
Whenever a task is executed, exactly the sub-tasks of one of its
DAGs need to be processed. The main issue with this model
is the possibly exponential number of control flows.

Chakraborty et al. [12], [13] consider a more restricted
variant of the conditional DAG model, which models tasks as
a two-terminals DAG and for each node exactly one successor
needs to be executed. Additionally each edge characterizes a
delay for the start time of the successor. The authors provide
complexity results and exact and approximative schedulability
analysis for preemptive and non-preemptive scheduling.

Erlebach et al. [14] consider makespan minimization for
AND/OR-Networks that allow constraints to specify that a job
can be executed if at least one predecessor has been completed.

Federated scheduling is a scheduling policy that has been
proposed for scheduling a set of recurrent tasks modeled by
DAGs in a multiprocessor system; each task has a release time
and a deadline. In this model, we assign high-demand condi-
tional DAGs (with high density) to a number of processors that
are completely dedicated whereas all remaining low-demand
tasks are assigned to a pool of shared processors.

Baruah [15] considered federated scheduling for conditional
recurring DAG tasks assuming constrained deadlines. Since
each high-demand task is executed independent of the other
tasks the main challenge is to assign each such task to a
minimum number of dedicated processors, such that it can
be completed within its deadline for each possible realization.
In the case of constrained deadlines our results directly imply
complexity bounds on the problem of minimizing the number
of processors necessary to schedule high-demand DAG tasks.

Overview. In Section II we define the task model and notation.
In Section III we give our hardness results. For conditional
DAG tasks with bounded width, we give in Section IV a
pseudo-polynomial algorithm. In Section V we show how
to turn this algorithm into a fully polynomial approximation
scheme (FPTAS) if a certain monotonicity property holds.

II. SYSTEM MODEL AND DEFINITIONS

The Conditional DAG Model

Let τ be a conditional parallel task (cp-task) that executes
on m identical processors. The cp-task τ is characterized by
a conditional directed acyclic graph G = (V,E,C) where
V is a set of nodes, E ⊆ V × V is a set of directed
edges (arcs) and C ⊆ V × V is a set of distinguished node
pairs, the conditional pairs. Each node j ∈ V represents a
sequential computation unit (sub-task, job) with an individual
execution time pj . Slightly abusing notation we refer to jobs
and nodes equivalently. The arcs describe the dependencies
between sub-tasks as follows: if (v1, v2) ∈ E, then v2 can
only start processing if v1 has completed. Job v1 is called a
predecessor job of v2, and job v2 is called a successor job of
v1. A distinguished pair (c1, c2) ∈ C of nodes is a conditional
pair which denotes the beginning and ending of a conditional
construct such as if-then-else statements. In sub-task c1, there
is a conditional expression being evaluated and, depending on

if c1 then
if c2 then

basic block b1;
else

basic block b2;
end if

else
basic block b3;

end if

c11
c21

b1 b2

c22
c12

b3

Fig. 1. Example source code and its representation as a conditional DAG.
Each bi represents a sequence of statements and each ci a boolean expression.

the outcome, exactly one out of many possible subsequent
successors must be chosen. In our figures, the conditional
nodes are depicted by a square whereas all other nodes are
circles; see Figure 1.

Following the definition given in [7], [8] we define a
conditional DAG formally as follows.

Definition 1. A conditional DAG G = (V,E,C) is a DAG
(V,E) and a set of conditional pairs C ⊆ V × V such that
the following holds for each (c1, c2) ∈ C:

1) There are multiple outgoing edges from c1 in E. Suppose
that there are exactly k outgoing edges from c1 to vertices
s1, s2, . . . , sk for some k > 1. We call k the branching
factor of (c1, c2). Then there are exactly k incoming
edges into c2 in E, from the vertices t1, t2, . . . , tk.

2) For each l ∈ {1, . . . , k} let Pl be the set of all paths
from sl to tl in G. We define Gl = (Vl, El) as the union
of all paths from sl to tl, i.e., Vl =

⋃
p∈Pl

V (p) and
El =

⋃
p∈Pl

E(p), where V (p) and E(p) denote the sets
of vertices and edges on path p. We refer to each Gl with
l ∈ {1, . . . , k} as a conditional branch of (c1, c2).

3) It must hold that Vl ∩ Vl′ = ∅ for all l, l′ with l 6= l′.
Additionally, with the exception of (c1, sl) and (tl, c2)
there should be no edges in E into vertices in Vl from
nodes not in Vl or vice versa for each l ∈ {1, 2, . . . , k}.
That is, E ∩ ((V \ Vl)× Vl) = {(c1, sl)} and E ∩ (Vl ×
(V \ Vl)) = {(tl, c2)} must hold for all l.

For each pair (c1, c2) ∈ C we call c1 and c2 conditional
vertices and refer to the subgraph of G beginning at c1 and
ending at c2 as conditional construct in G. Notice that in the
above definition, 3) explicitly rules out any interaction between
a node within a conditional branch and any other node outside
this particular branch. The restriction to such well-nested
structures is very natural when modeling the execution flow of
a structured programming language [8]. We refer to a condi-
tional DAG with shared nodes when relaxing restriction 3) and
allowing interaction between different conditional branches.
We consider such a generalized model only in Subsection III-D
for demonstrating a drastic increase in complexity.

When executing a conditional DAG G = (V,E,C) at most
one conditional branch per conditional pair is executed. For
a c = (c1, c2) ∈ C no branch is executed if and only if the
conditional construct of c is nested into a branch that is not

executed. Thus, a job j is executed if one of the following
conditions holds:
(i) node j is not part of any conditional branch, i.e, j 6∈ Vl

for each branch Gl of any conditional pair (c1, c2), or
(ii) the innermost branch Gl with j ∈ Vl is being executed.

Let J ⊆ V be a set of jobs obtained by fully executing
the jobs of the conditional DAG G = (V,E,C) taking into
account the outcome of the conditional nodes. Let GJ =
(VJ , EJ) with VJ = J denote the subgraph of G induced
by J . We call GJ a realization of G, and say a vertex j ∈ V
is active for J , if j ∈ VJ holds. Let J denote the collection
of all job sets J for which there is a realization with VJ = J .

Fixed-Priority List Scheduling

Let τ be a conditional DAG task with G = (V,E,C) and
with execution times pj , for each j ∈ V , to be executed on m
parallel identical processors. Let ≺ be a given fixed-priority
order (FP-order) over V .

A non-preemptive fixed-priority list schedule (FP-schedule)
is constructed as follows. At any point in time, when a
processor is idle, the job with the highest priority according
to ≺ among the available jobs starts execution and runs until
completion. A job is available if all its predecessors have been
completed. To avoid ambiguities for jobs j with pj = 0, we say
the successors of such jobs are available if all predecessors j
with pj = 0 have been started and all predecessors j with
pj > 0 have been completed.

If we allow preemption (and migration), then at the arrival
of a job of a higher priority, any executing lower-priority job
is preempted. A preempted job may resume processing at any
later point in time and on any processor at no extra cost. We
assume that any overhead is covered in pj .

For each J ∈ J let SJ denote the FP-schedule induced by≺
for the realization GJ . Let CJ denote the latest completion
time of any job in GJ in SJ . This is the makespan for
realization GJ of the cp-task τ . We may assume that there
is just a single cp-task in our non-periodic task setting since
several cp-tasks can be merged into one by adding nodes with
zero execution times.

Then, M(G,≺) = maxJ∈J CJ is the worst-case makespan
of τ for list scheduling according to the FP-order ≺.

Definition 2 (Problem CDAG-MAX). Given a cp-task with
a conditional DAG G, execution times pj , a number m of
parallel identical processors and an FP-order ≺, the worst-case
makespan problem (CDAG-MAX) is to compute M(G,≺).

Slightly abusing notation, we use CDAG-MAX also to refer
to the following decision variant of this problem in the
complexity analysis: for a given CDAG-MAX instance and a
parameter D decide whether M(G,≺) ≤ D.

We observe that M(G,≺) can be approximated within a
factor 2 in polynomial time. To see that, consider the well-
known Graham bounds [6] on the makespan for any FP-
schedule (mentioned also in [8], [15]):

M(G,≺) ≥ Lmax and M(G,≺) ≥ Vmax/m,

where Lmax denotes the length of the longest chain in the
conditional DAG and Vmax is the maximum total volume of
execution time that has to be executed in a realization of the
cp-task. Both lower bounds can be computed in polynomial
time; how to compute Vmax is shown in [8], [15]. Further, it
holds that

M(G,≺) ≤ Lmax + Vmax/m.

Lemma 1. CDAG-MAX can be approximated within a
factor 2 in polynomial time, i.e., we can efficiently compute
the value apx = Lmax + Vmax/m that satisfies

M(G,≺) ≤ apx ≤ 2M(G,≺).

III. COMPLEXITY

In this section we show several NP-hardness and inapprox-
imability results regarding non-preemptive and preemptive FP-
scheduling of conditional DAG tasks. Firstly, we establish a
reduction framework via a makespan maximization problem
and prove that for non-preemptive FP-scheduling CDAG-MAX
is strongly coNP-hard and that approximating CDAG-MAX
within a factor of 7

5 is NP-hard. The framework can also be
used to derive further hardness results for various special graph
classes. We furthermore investigate the problem for preemptive
FP-scheduling and show that deciding CDAG-MAX remains
strongly coNP-hard and approximating CDAG-MAX within a
factor of 6

5 is still NP-hard. Finally, we consider the conditional
DAG model with shared nodes and show that CDAG-MAX
is much harder in this case: it is coNP-hard already on a
single processor. This is in contrast to CDAG-MAX for the
conditional DAG model as studied in this paper, which is
solvable in polynomial time on a single machine [8].

As we can show that the complement of CDAG-MAX is
in NP by using realizations GJ with CJ > D for an input
parameter D as certificates, all our coNP-hardness results
imply the coNP-completeness of the corresponding problems.

A. A Reduction Framework

We first introduce an approximation preserving polynomial
time reduction from an auxiliary problem, the list scheduling
makespan maximization problem (LS-MAX). This reduction
then gives us a framework to deduce hardness and inapprox-
imability results for CDAG-MAX; by showing the NP-hardness
of solving or approximating LS-MAX, we prove corresponding
hardness results for CDAG-MAX by exploiting the reduction.

Definition 3 (Problem LS-MAX). We are given a precedence
constraint DAG G = (V,E), jobs with execution times pj for
each j ∈ V , m identical parallel processors and a deadline
D. The task is to decide whether Cmax > D, where Cmax

is the maximum makespan that can be achieved by any list
scheduling order (i.e., any FP-order).

Theorem 1. There is an approximation preserving polynomial
time reduction from LS-MAX to CDAG-MAX.

Proof. Consider an LS-MAX instance with DAG G = (V,E),
jobs V = {1, . . . , n}, execution times pj , for j ∈ V , and m

processors. We construct an instance of CDAG-MAX on m′ =
m processors with a conditional DAG G′ = (V ′, E′, C ′),
execution times p′j and an FP-order ≺ as follows:

1) For each job j ∈ V add
a) n job copies v1j , . . . , v

n
j , each with execution time pj ,

b) a conditional pair (cj1, c
j
2) with execution times zero

that uses each vlj as a conditional branch; see Fig. 2a.

2) For each (i, j) ∈ E introduce an edge from ci2 to cj1.
3) Fix the priority order ≺ such that

a) k < k′ implies vkj ≺ vk
′

i for each i, j ∈ V .
b) j ≺ j′ holds for all j, j′ ∈ V ′ with p′j′ > 0 = p′j .

See Figure 2b for an illustration of the construction which
can be done in polynomial time. Let Cmax be the maximum
makespan of the given LS-MAX instance. We now show that
Cmax = M(G′,≺).

To do so, consider an arbitrary realization G′J . Figure 2c
illustrates a realization for the example in Fig. 2b. Observe
that in G′J exactly one job copy vlj is active for each job
j ∈ V . Let vlj and vl

′

j′ be active job copies in G′J , then, by
construction, there is a path P = (vlj , c

j
2, c

j′

1 , v
l′

j′) in G′J if and
only if (j, j′) ∈ E. Note that all vertices on P , apart from the
endpoints, have an execution time of zero and that, according
to the given order ≺, all vertices with execution time zero
are processed before all other vertices. Therefore, the only
function of P when scheduling G′J is, that it formulates a
precedence constraint between vlj and vl

′

j′ . Thus, all precedence
constraints between the original jobs in G are also present
between the corresponding active job copies in G′J .

In addition to the active job copies and the paths that con-
nect them, G′J only contains a unique predecessor respectively
successor with an execution time of zero for job copies vlj
such that j has no predecessor respectively successor in G.
As those jobs have an execution time of zero, they do not
affect the schedule of G′J given ≺.

Furthermore, each job copy vlj has the same execution time
as the original job j, and G as well as G′J are scheduled on
the same number of processors.

By definition of CDAG-MAX, the active job copies in
any realization G′J are scheduled using FP-scheduling with
order ≺ to achieve a makespan of CJ . In LS-MAX, any
list scheduling order can be chosen. In specific, for each
realization G′J there is an order ≺LS that orders the jobs in
G the same way as ≺ schedules the active job copies in G′J .
I.e., there is an order ≺LS , such that vlj ≺ vl

′

j′ holds for the
active job copies vlj and vl

′

j′ of original jobs j, j′ ∈ V if and
only if j ≺LS j′. Thus, ≺LS achieves a makespan of CJ . As
this holds for any realization, M(G′,≺) ≤ Cmax follows.

Consider an arbitrary list scheduling order ≺LS on the jobs
in G that achieves a makespan of C. We show that there is a
realization G′J such that ≺ orders the active job copies in G′J
exactly as ≺LS orders the original jobs in G. For each job
j ∈ V let qj denote the position of j in ≺LS , i.e., j has
the qj highest priority in V . Then, there is a realization G′J
such that vqjj is the sole active job copy of j in G′J for each

cj1

• • •v2jv1j vn−1j
vnj

cj2a) b)
32

1 4

c11 G1 c12

c21 G2 c22

c31
G3 c32

c41 G4 c42

c)

c11 vl11 c12

c21 vl22 c22 c31 vl33 c32

c41 vl44 c42

Fig. 2. Examples for the reduction of Theorem 1: a) Conditional pair as in the reduction, b) Precedence constraint graph of an LS-MAX instance and the
constructed conditional DAG where each Gi is an abstraction of a conditional pair as illustrated in a), and c) Realization G′

J of the conditional DAG in b).

j ∈ V . Let j and j′ with j 6= j′ be two arbitrary jobs in
V with j ≺LS j′, then qj < qj′ holds by definition and v

qj
j

and v
qj′

j′ are the active job copies in G′J . By construction of
≺, qj < qj′ implies vqjj ≺ v

qj′

j′ . Thus, ≺ orders the active
job copies in G′J exactly as ≺LS orders the original jobs in
G and achieves a makespan of C. As this holds for each list
scheduling order ≺LS , Cmax ≤ M(G′,≺) and thus Cmax =
M(G′,≺) follows.

Observe that the reduction from LS-MAX to CDAG-MAX
in some way preserves the structure of the input precedence
constraint graph G. Let G′ = (V ′, E′, C ′) be the constructed
conditional DAG. Consider the graph GC′ that uses each
conditional pair ci = (ci1, c

i
2) ∈ C ′ as a vertex and has edges

between ci and cj if and only if (ci2, c
j
1) ∈ E′. We can observe

that G and GC′ are isomorphic by definition of the reduction.
As each realization G′J of G′ contains a simple path instead
of each conditional construct, we can observe the following.

Lemma 2. Let G = (V,E) be the precedence constraint
graph of an LS-MAX instance I and let G′ = (V ′, E′, C ′)
be the conditional DAG that is constructed by the reduction
of Theorem 1 given I . Then, the following statements hold.

1) If G is a tree, then each realization G′J of G′ is a tree.
2) If G is a set of k chains, then each realization G′J of G

is a set of k chains.

This lemma is useful to show the coNP-hardness of
CDAG-MAX for special graph classes. If we show that
LS-MAX is NP-hard for precedence constraints graphs that
form a tree or are constant number of chains, Lemma 2 and
the reduction of Theorem 1 imply the coNP-hardness of the
corresponding CDAG-MAX variant.

B. Hardness and Inapproximability Results

We now exploit the previously introduced reduction frame-
work to show hardness and inapproximability results for
CDAG-MAX. First, we show the strong NP-hardness of
LS-MAX that, in combination with the reduction of Theo-
rem 1, implies the strong coNP-hardness of CDAG-MAX.
Then, we consider special cases of LS-MAX and CDAG-MAX
and use the reduction framework to derive further hardness
results. Finally, we show that it is NP-hard to approximate
LS-MAX within a factor of 7

5 , which implies the same result
for CDAG-MAX.

Theorem 2. LS-MAX is strongly NP-hard, even if there are
no precedence constraints.

Proof. We show the NP-hardness of LS-MAX by reducing
from a classical load balancing problem, typically denoted by
P ||Cmax: given a set of jobs J = {1, . . . , n} with execution
times pj for j ∈ J , and a number of processors m, one asks
for an FP-schedule of minimum makespan. Deciding if an FP-
schedule with a makespan of

∑n
j=1

pj
m exists, is known to be

strongly NP-hard [16]. This holds true even if pj ≤
∑n
j=1

pj
m

for all j ∈ J .
Given an instance I of P ||Cmaxwith pj ≤

∑n
j=1

pj
m for

all j ∈ J , we construct the following LS-MAX instance I ′.
Let J ∪ {n + 1} be the set of jobs, pn+1 =

∑n
j=1

pj
m be the

execution time of the new job, and let m be the number of
processors. We construct a precedence constraint DAG G =
(V,E) with V = J ∪ {n+ 1} and E = ∅.

We show that the maximum makespan of I ′ is Cmax(I ′) =
2 ·
∑n
j=1

pj
m if and only if the minimum makespan of I is

Cmax(I) =
∑n
j=1

pj
m .

By the classical list scheduling arguments of Graham [6],
any FP-schedule achieves a makespan on I ′ of at most∑
j 6=l

pj
m + pl, where pl is the job that determines the

makespan. (This is because job l is placed on the least loaded
processor which has a load of at most the average load.) This
upper bound is tight if each processor has a load of

∑
j 6=l

pj
m

in the moment when l is assigned. The term
∑
j 6=l

pj
m + pl is

maximal for the constructed instance if n + 1 is the job that
determines the makespan since it is the largest job. Thus, the
following term is an upper bound on the maximum possible
makespan for the constructed instance I ′:∑

j 6=n+1

pj
m

+ pn+1 =

n∑
j=1

pj
m

+ pn+1 = 2 ·
n∑
j=1

pj
m
.

As argued above, this upper bound can be reached iff jobs
1, . . . , n can be scheduled such that each processor has load∑n
j=1

pj
m . This is possible iff Cmax(I) =

∑n
j=1

pj
m , which is

a lower bound on the makespan of the input instance. Thus,
Cmax(I ′) = 2 ·

(∑n
j=1

pj
m

)
iff Cmax(I) =

∑n
j=1

pj
m .

The strong NP-hardness of LS-MAX and the reduction of
Theorem 1 imply the following theorem.

Theorem 3. CDAG-MAX is strongly coNP-complete.

By similar arguments as in the proof of Theorem 2 and a
particular hardness result for makespan minimization in [17],
we can give further refined complexity results for particular
graphs classes. The full proof is omitted.

Theorem 4. LS-MAX is (a) strongly NP-hard even if the
precedence constraint graph is a tree and (b) weakly NP-
hard even if the precedence constraint graph consists of four
chains to be processed on two processors.

The theorem, the reduction of Theorem 1 and Lemma 2 then
directly imply the following hardness results for CDAG-MAX.
Part (c) of the theorem can be shown by using the existing
reduction, exploiting the hardness of LS-MAX without prece-
dence constraints and adding dummy terminals.

Theorem 5. CDAG-MAX is (a) strongly coNP-complete even
if each realization GJ of the conditional DAG G is a tree,
(b) weakly coNP-complete even if each realization GJ of the
conditional DAG G consists of four chains to be processed
on two processors and (c) strongly coNP-complete even if the
conditional DAG is a two-terminals series-parallel graph.

Finally we give an inapproximability result for LS-MAX
and consequently CDAG-MAX. Our reduction from CLIQUE
is inspired by [18]; their reduction for makespan minimization
with precedence constraints gives a hardness of approximation
bound of 4/3 assuming unit execution times. We obtain a
slightly better bound using non-unit execution times.

Theorem 6. Approximating LS-MAX with a ratio better than
7/5 is NP-hard.

Proof. Given a (undirected) graph G = (V,E) and an integer
k ≥ 3 we ask whether G contains a clique of k vertices. Let
h = k(k − 1)/2 be the number of edges of a k-clique. We
construct an LS-MAX instance I on m = |V |+ |E| processors
and a DAG H with nodes partitioned in six sets A, B, C, V ′,
E′, X as follows:

1) V ′ = {vj | j ∈ V } and E′ = {e′ | e ∈ E}.
2) For all e = {i, j} ∈ E, add arcs (vi, e

′), (vj , e
′) to H .

3) Define |A| = m−k, |B| = |E|+k−h and |C| = |V |+h.
4) Introduce edges from each vertex in A to each vertex in

B and from each vertex in B to each vertex in C.
5) X contains a single node x.
6) Each node represents a job; all jobs in A,B,C,E′, V ′

have unitary execution times; job x requires 4 time units.
To show the inapproximability result, we separately proof

the following two claims that imply the theorem:
1) If G has a k-clique, then there exists an FP-schedule of

I with a makespan of 7.
2) If there is no k-clique in G, then all FP-schedules of I

have a makespan of at most 5.
Proof of Claim 1): Consider the following order of nodes:

first nodes in A, then the nodes of V ′ that correspond to
vertices of a k-clique of G, then the remaining nodes of V ′

followed by nodes in B, E′, C and finally X = {x}. The
schedule is as follows:

• time t = 0: all nodes of A and the k nodes of V ′

corresponding to vertices of the k-clique are processed.
• t = 1: the still unprocessed nodes in V ′ and all nodes in
B are executed on (|V |−k)+(|E|+k−h) = m−h pro-
cessors. Therefore, we can additionally process h nodes
in E′ that are already available; the nodes corresponding
to the edges of the k-clique of G.

• t = 2: we execute the remaining nodes in E′ and all
nodes in C using (|E| − h) + (|V |+ h) = m processors.

• t = 3: we start execution of job x that finishes at time 7.

Proof of Claim 2): We first show that if there is no k-clique
in G, node x starts execution at time t ≤ 1 for any FP-order.
In fact, if x does not start execution at t = 0, then at time 0
we execute jobs of V ′ and A. If all jobs in A are executed at
t = 0, then we can process only k jobs in V ′. Since G has
no k-clique, it follows that at t = 1 we can execute jobs in B
and at most h − 1 jobs in E′ whose predecessors have been
processed in the previous step. Therefore job x is processed
at t = 1 independently of its position in the ordering.

If x does not start execution at t = 0 and not all jobs
in A are executed at time 0, then we observe that at least
m − |V | jobs of A have been processed. Therefore at time
t = 1 there are at most |V | − k unprocessed jobs in A and
possibly all jobs in E′ can be processed; therefore there are
at least m− (|V | − k)− |E| = k free processors and job x is
processed independently of its position in the ordering at time
t = 1. We conclude that job x is completed by time t = 5.

We now show that all other jobs are completed by time
t = 5 for all FP-orders. To prove this, we first show that at
t = 2 all jobs in A and V ′ are completed for all FP-orders.

If x and all jobs in A are started at t = 0, then at time 1
there are at most |V | − k + 1 unscheduled jobs in V ′ and at
most (k−1)(k−2)/2 = h−k+1 jobs of E′ can be processed.
This leaves enough free processors to schedule all remaining
jobs in V ′ and all jobs in B, as (h− k+ 1) + (|V | − k+ 1) +
(|E|+ k − h) = |V |+ |E| − k + 2 ≤ |V |+ |E| − 1 = m− 1
holds (using k ≥ 3) and only one processor is busy processing
x. It follows that all jobs in V ′, A and B are finished at t = 2.

If at time t = 0 job x is not started while all jobs in A
are executed, then there are at most |V | − k unscheduled jobs
in V ′ at time 1. Since G has no k-clique, there are at most
h− 1 jobs in E′ that can be processed. Even if all these jobs
are processed alongside job x, we are left with (m − 1) −
(h − 1) = m − h free processors to process jobs in B and
remaining jobs in V ′. These sets consist of a total of at most
(|E|+k−h)+(|V |−k) = m−h jobs. Therefore we conclude
that all jobs in V ′, A and B are completed at time 2.

If not all jobs in A are executed at t = 0, we observe that
at time 0 we execute at least m−1 jobs in (V ′

⋃
A). Thus, at

time 1 there are at most |V |−k+1 unprocessed jobs in V ′ and
A. It follows that at time 1 we can execute jobs in V ′, A and a
subset of jobs in E′ that has size at most |E|. Therefore, using
m− 1 processors, we can schedule (m− 1)− |E| = |V | − 1
jobs in (V ′

⋃
A). We conclude that all jobs in A and V ′ are

completed at time t = 2 independently of the job ordering.

We now show that at time 5 all jobs in E′, B and C
are completed. First, assume that at t = 3 all nodes in B
are processed. It follows that at t = 3 all predecessors of
remaining unscheduled jobs in E′ and C are completed and
that therefore the schedule of jobs in C and E′ is completed
by time t = 5 for any FP-order. If at time t = 3 not all jobs
in B are processed, we can schedule jobs in E′ and B but
no jobs in C; it follows that at time t = 4 we complete the
execution of jobs in E′ and B. Therefore at time t = 5 we
complete the schedule by completing all jobs in C.

Theorem 6 and the reduction of Theorem 1 imply the
following result.

Theorem 7. Approximating CDAG-MAX with a ratio better
than 7/5 is NP-hard.

C. Preemptive Scheduling

Theorem 2 states that LS-MAX is strongly NP-hard even if
there are no precedence constraints. We reduce from LS-MAX
without precedence constraints to the preemptive variant of
CDAG-MAX in which each realization G′J is scheduled using
preemptive FP-scheduling based on ≺. We follow the reduc-
tion of Theorem 1. In the case without precedence constraints,
no edge will be introduced in Step 2) of the reduction. Thus,
the constructed conditional DAG G′ has no path between any
pair of job copies vlj and vl

′

j′ with vlj 6= vl
′

j′ . As there are no
paths between job copies and all other jobs have an execution
time of zero by definition, it follows that all active job copies
are available at time zero in any realization G′J . Consider the
preemptive variant of CDAG-MAX. The FP-schedule of G′J
will never use preemption, because no high priority job will
ever become available and interrupt a low priority job. Thus,
the preemptive and non-preemptive schedules are equivalent
and we conclude the following result.

Theorem 8. CDAG-MAX is strongly coNP-complete even
under preemptive FP-scheduling.

By using a similar proof to the one of Theorem 6, we can
give the following inapproximability result for LS-MAX with
unit-size jobs FP-scheduling.

Theorem 9. Approximating LS-MAX with a ratio less than
6/5 is NP-hard even with unit-size jobs.

The following theorem is implied by Theorem 9 and the
reduction of Theorem 1. Note that the reduction introduces
conditional nodes with execution times zero. The result for
such unit- and zero-size jobs holds also for preemptive
CDAG-MAX as preemption will not occur.

Theorem 10. Approximating CDAG-MAX with a ratio better
than 6/5 is NP-hard, even (a) when pj = 0 for conditional
jobs and pj = 1 otherwise, and (b) under preemptive FP-
scheduling.

D. Generalized Conditional DAG with Shared Nodes

In this section, we consider a more general variant of con-
ditional DAGs allowing less nested structures and demonstrate

a substantial increase in the complexity. While CDAG-MAX
for conditional DAGs without shared nodes can be solved
in polynomial time on a single processor [8], we show
that CDAG-MAX for conditional DAGs with shared nodes is
strongly NP-hard even on a single processor.

A conditional DAG with shared nodes G = (V,E,C)
is defined analogous to Definition 1 with an adjusted third
requirement for each (c1, c2) ∈ C that allows edges from
conditional branches Gl to conditional branches Gl′ of pairs
(c′1, c

′
2) ∈ C with (c1, c2) 6= (c′1, c

′
2).

When executing a conditional DAG with shared nodes, the
execution of branches is defined as before and we say that a
job j ∈ V is executed if one of the following conditions holds:
• j is not part of any conditional branch. That is, j 6∈ Vl

for each branch Gl of any conditional pair (c1, c2),
• at least one of the innermost conditional branches Gl

with j ∈ Vl is being executed.
Realizations, FP-schedules and makespans are then defined as
for conditional DAGs without shared nodes. Observe that the
makespan CJ of a realization GJ on a single processor is
just the sum of the execution times of all active jobs in GJ .
Therefore, the used FP-order has no influence on the makespan
and we do not consider it subsequently.

We show a reduction from the strongly NP-hard problem
1in3-SAT [19]. In 1in3-SAT, there is given a set of proposi-
tional logic 3-Clauses C = {C1, . . . ,Cn} and a set of variables
L = {λ1, . . . , λn} such that each clause contains only positive
literals and each variable occurs in exactly three clauses. The
question is whether there is a satisfying variable assignment
that satisfies exactly one λij for each Ci = {λi1, λi2, λi3}.

Theorem 11. CDAG-MAX for conditional DAGs with shared
nodes is strongly coNP-complete even on a single processor.

Proof. Let (C, L) be a given 1in3-SAT instance. We construct
a conditional DAG G = (V,E,C) with execution times pj for
all j ∈ V and m = 1 as follows (see also Figure 3):

1) For each clause Cj ∈ C, add a node γj with an execution
time of one.

2) For each λi ∈ L, add two nodes ci1 and ci2 with execution
times of zero that form a conditional pair ci = (ci1, c

i
2).

a) For each branch l ∈ {1, 2} of ci, add a source sil and
sink til with execution times of zero.

b) For each node γj with λi ∈ Cj , add edges from si1 to
γj and from γj to ti1.

c) Add vertices πi and ρi with execution times of one and
edges from si2 to πi and ρi and from πi and ρi to ti2.

Obviously the reduction can be done in polynomial time. To
prove correctness and completeness, we show the following
two statements:

1) If the given 1in3-SAT instance has a feasible solution,
M(G,≺) ≥ 7n

3 holds.
2) If the given 1in3-SAT instance does not have a feasible

solution, M(G,≺) < 7n
3 holds.

For each variable assignment α : L → {0, 1} we can
construct a realization GJ such that for each ci = (ci1, c

i
2) ∈ C

ci1si2

πiρi

ti2

si1

γl

ti1ci2

sj1

tj1

cj1

cj2

sj2

ρj πj

tj2

Fig. 3. Reduction of Theorem 11 for variables λi, λj that share a clause Cl.

holds that Gi1 ⊆ GJ if α(λi) = 1 and Gi2 ⊆ GJ if α(λi) = 0,
where Gi1 and Gi2 are the two conditional branches of ci. In
this way, a unique realization is constructed for each different
α. As additionally the number of possible variable assignments
and realizations is equal at 2n, we can conclude that there is
an one-to-one correspondence between variable assignments
and realizations of the constructed conditional DAG.

To prove the first statement, assume that a 1in3-SAT-
instance with a feasible solution is given. Then, a satisfying
variable assignment α : L→ {0, 1} exists such that α satisfies
each clause by exactly one literal. Let GJ be the realization
constructed for α as described above. We show that CJ ≥ 7n

3
holds for realization GJ . Then, M(G,≺) ≥ 7n

3 follows.
For each λi ∈ L the branch Gi1 is part of GJ if and only

if α(λi) = 1 by definition of GJ . In the resulting schedule,
each γj must be executed as α satisfies all clauses and thus
for each clause Cj there is a literal λi ∈ Cj with α(λi) = 1
and thus Gi1 ⊆ GJ . Therefore γj ∈ V i1 is active and executed
in GJ . This contributes n time units to the makespan CJ .

Because α satisfies each clause by exactly one literal and
each variable occurs only as a positive literal in exactly three
clauses, it follows by pigeon hole principle that at least 2n

3
variables λi ∈ L exist with α(λi) = 0 and thus Gi2 ⊆ GJ .
Therefore, the vertices πi and ρi are active for each such λi.
This contributes 4n

3 time units to CJ . Adding up both parts
leads to an makespan of at least 4n

3 + n = 7n
3 .

To prove the second statement, assume that the formula is
not satisfiable and consider an arbitrary variable assignment α.
Let k be the number of variables λi with α(λi) = 0 and let
GJ be the realization corresponding to α as described above.

If k < 2n
3 , then at most n nodes γj are active for GJ .

For k variables λi, it holds that πi and ρi are active for GJ .
Therefore the makespan of GJ is at most n+ 2k < n+ 4n

3 =
7n
3 .

If k > 2n
3 , then at most 3 · (n− k) nodes γj are active for

GJ as each variable occurs in at most 3 clauses. Additionally,
for k variables λi it again holds that πi and ρi are active for
GJ . Therefore the makespan of GJ is at most 2k+3(n−k) <
2 2n

3 + 3(n− 2n
3) = 7n

3 .
To finish the proof, consider k = 2n

3 . As α does not satisfy
the given formula by assumption, it follows that of the n− k
positive assigned variables at least two must occur in the same
clause. This means that at least one node γj is not active for
GJ . Therefore the makespan GJ is strictly less than n+2k =
n+ 4n

3 = 7n
3 .

It follows that CJ < 7n
3 holds for each realization GJ

that corresponds to an assignment α. Because each realization
corresponds to an assignment α, CJ < 7n

3 holds for each
realization GJ and therefore M(G,≺) < 7n

3 follows.

IV. PSEUDO-POLYNOMIAL TIME ALGORITHM FOR
BOUNDED WIDTH

In this section, we consider conditional DAGs G with the
property that each realization GJ represents a partial order of
width bounded by a constant k. The width of a partial order
is the maximum number of pairwise incomparable tasks, that
is, the maximum antichain. Slightly abusing notation, we say
that the underlying graph has width bounded by k.

Theorem 12. CDAG-MAX can be solved exactly in pseudo-
polynomial time if each realization GJ of the given conditional
DAG G has width at most k.

Assume w.l.o.g. that G has a single source; otherwise we
simply add a dummy terminal with execution time zero.

We present a dynamic program (DP) for solving
CDAG-MAX. Each state of the DP describes a partial schedule
in terms of an ideal as defined in [20]. An ideal I of a
realization GJ is a subset of VJ such that a job in I implies
all of its predecessors to be contained in I as well. We say
that I is an ideal of G if I is an ideal of some realization
GJ . Every partial schedule for a set of jobs in GJ must
contain all jobs in the corresponding ideal of G to ensure
that precedence constraints and conditions are respected. Our
DP establishes the reachability in a graph of ideals, where an
ideal Ī is reachable from I if a feasible subschedule for I can
be extended to a feasible schedule for Ī by adding tasks in
Ī \ I while respecting the FP-order.

An ideal I can be represented in terms of its front tasks
I ′ ⊆ I , which are all jobs j ∈ I without successors in I .
According to Dilworths Decomposition Theorem [21] an ideal
I of a graph G with a width bounded by k can have at most
k front tasks. Thus, the number of different ideals is bounded
by nk. A state of our DP is a tuple (I, P) with
• I ⊆ V is the set of front tasks of an ideal for some

realization GJ of G such that there is a point in time t in
the FP-schedule SJ where all jobs in I are either being
processed or available to being processed.

• For each j ∈ I , Pj ∈ N ∪ {−} either denotes the
remaining execution time necessary to complete j or
indicates that j has not been started yet (Pj = −).

We define a weighted, directed and acyclic state graph
H = (U,F,w) with one source and one sink such that U
contains the states of the DP and F contains all feasible state
transitions. We define H such that the length of the longest
source-sink-path in H corresponds to the worst-case makespan
of G. To construct H , consider the initial state u0 = ({s},−)
where s is the source of G. The state u0 is part of H and we
inductively define the rest of H .

Consider a state u = (I, P) ∈ U . We define B as the set
of jobs that will be started next according to the FP-order.
Let mu denote the number of jobs that are being processed

in state u (jobs j ∈ I with Pj 6= −). Then m′ = m − mu

is the number of free processors in u and B is the set of the
(up-to) m′ jobs j ∈ I with the highest priority and Pj = −. If
B contains jobs with execution times zero, define B to only
contain such jobs. This differentiation is necessary, as the start
of jobs with execution times zero might cause other jobs to
become available and thus change the set of the m′ available
jobs with the highest priority. Then, pr = min({pj | j ∈ B}∪
{Pj | j ∈ I ∧ Pj 6= −}) is the time that passes until the next
job finishes and C = {j ∈ B | pj = pr} ∪ {j ∈ I | Pj = pr}
contains the jobs that finish next.

We define all states u′ = (I ′, P ′) and transitions f = (u, u′)
with w(f) = pr to be part of H if the following holds
• I ′ = (I \ C) ∪ S contains all jobs j ∈ I that have not

been completed (j 6∈ C) and the set of jobs S that become
available. Therefore S contains exactly one successor for
each j ∈ C that is the start of a conditional pair and all
successors of other jobs in C for which all predecessors
have been finished.

• P ′j remains the same for all jobs that were not being
processed in u and have not been started (P ′j = − for all
j ∈ I \B with Pj = −). The jobs that become available
are not being processed, P ′j = − for all j ∈ S. For all
jobs that have been processed or started in u but have
not finished, the remaining execution time is decreased
by pr. That is, P ′j = Pj − pr for all j ∈ I with Pj > pr
and P ′j = pj − pr for all j ∈ B with pj > pr.

Note that a state u can have multiple successors in H , as
multiple job sets S can become available due to conditional
constructs. Additionally observe that we can decide whether a
predecessor j′ of a completed job j ∈ C has been finished. A
predecessor j′ has finished if either j′ ∈ C holds or if neither
j′ nor predecessors of j′ are elements of I \ C.

In summary, the state graph H contains the start state u0,
all states and transitions that can be reached from u0, and the
state d = (∅,−) as the sink of H . A straightforward induction
on the construction implies the following.

Lemma 3. There is a realization GJ with a makespan of CJ
if and only if there is a u0-d-path in H with weight CJ .

By Lemma 3 we can compute the worst-case makespan
M(G,≺) for a given cp-task as follows: we construct the state
graph H and find a longest path from the start state u0 to the
end state d. The corresponding worst-case realization GJ and
the corresponding FP-schedule can be found by backtracking.

Observe that each state is of polynomial size and the succes-
sor states of a given state u can be computed in polynomial
time. It remains to show that the number of states in H is
pseudo-polynomial in the input size.

As argued before, width k of G implies that there are O(nk)
different sets for I . Moreover, for each I there are at most pmax

possible elements for P , where pmax = maxj∈V pj . Thus,
there are O(nk ·pkmax) states, which is pseudo-polynomial as k
is constant. Thus, a dynamic program can compute the longest
u0-d-path for H in O(n2k · p2kmax) and, by Lemma 3, solves
CDAG-MAX exactly. This proves Theorem 12.

V. FPTAS UNDER MONOTONICITY

We present a fully polynomial-time approximation scheme
(FPTAS) for CDAG-MAX for a certain class of monotone
conditional DAGs, which we define below.

Definition 4. A family of algorithms {Aε} is called FPTAS
if, for every input I and every ε > 0, algorithm Aε finds
a solution of value within a factor of 1 + ε (resp. 1 − ε)
of the optimal solution for I and the running time of Aε is
polynomial in the encoding of I and 1/ε.

Roughly speaking, a scheduling algorithm is monotone if in-
creasing the execution times does not decrease the makespan.

Definition 5. A scheduling algorithm is monotone, if for any
pair of scheduling instances I and I ′, that differ only in one
job j with pj < p′j , the respective makespans CI and C ′I for
each instance satisfy the following:
(a) CI ≤ CI′ , and
(b) CI′ ≤ CI + δ with δ = p′i − pi.

In general, FP-scheduling for conditional DAGs is not
monotone, even if each realization is of bounded width, see
the Graham anomalies [6].

We consider graphs G that have in each realization GJ
bounded width and FP-schedules on GJ that are monotone.
Conditional DAGs that consist of a constant number of chains
in each realization belong to this class. The proof is omitted.

Theorem 13. Let I be a scheduling instance such that the
precedence constraint graph G is a set of disjoint chains, then
each FP-schedule of I is monotone.

We now design an FPTAS for CDAG-MAX. Let I =
(G, p,m,≺) be an instance with G = (V,E,C) and |V | = n.
For fixed ε > 0, set µ = ε · pmax/n where pmax = maxj∈V pj
is the maximum execution time in I . We define algorithm Aε:

1) Let Î = (G, p̂,m,≺) be a rounded CDAG-MAX instance
with p̂j = dpjµ e for each j ∈ V .

2) Solve the rounded instance Î using the dynamic program
(DP) from Section IV. Let GĴ be the realization that
corresponds to the longest u0-d-path determined by DP.

3) Return µ · ĈĴ where ĈĴ is the completion time of GĴ on
the rounded instance Î .

This definition follows the rather standard method of round-
ing the values to reduce the state space and thus the running
time of the pseudo-polynomial time DP. It remains to prove
that the solution quality does not deteriorate too much.

Theorem 14. Algorithm {Aε} is an FPTAS for CDAG-MAX
for conditional DAGs such that each realization has a width
bounded by a constant and FP-schedules are monotone.

Proof. We first show that the runtime of each Aε is polynomial
in the input size and 1

ε . The runtime of Aε is dominated by
the time that the DP takes for solving the rounded instance Î ,
which is O(n2k · p̂2kmax). By definition of Î , we have:

p̂max = dpmax/µe = dpmax · n/(εpmax)e ≤ dn/εe .

Thus, the overall runtime is O(n4k/ε2k), which is polynomial
in the input size and 1

ε .
It remains to show that algorithm Aε computes for any given

instance I a solution of value Aε(I) that satisfies

M(G,≺) ≤ Aε(I) ≤ (1 + ε) ·M(G,≺).

Consider an instance I , ε > 0 and Aε. Let J∗ be a
realization with CJ∗ = M(G,≺) on instance I and let Ĵ
be the realization computed by Aε, i.e., by the DP on the
rounded instance Î in Step 2). For a realization J ∈ J let
CJ and ĈJ denote the makespans of J in instance I and its
rounded variant Î , respectively. The value for CDAG-MAX
computed by Aε is Aε(I) = µ · ĈĴ .

First, we observe that for every realization J ∈ J holds:

CJ ≤ µ · ĈJ . (1)

This observation is crucial and relies on the monotonicity
property. In general, Inequality (1) may not be true for FP-
scheduling [6]. To see (1), consider an instance I ′ obtained
from I by scaling all execution times down by the factor µ. For
any realization GJ , the makespan CJ of the original instance
I and the makespan C ′J for the scaled instance I ′ satisfy
CJ = µ · C ′J . As GJ is monotone by assumption and as
execution times in Î equal those in I ′ rounded up to the next
integer values, the makespan of the FP-schedule of Î satisfies
C ′J ≤ ĈJ (cf. Definition 5(a)), which implies (1).

Algorithm Aε computes in Step 2) an exact solution for
the rounded instance Î , i.e., ĈĴ is the worst-case makespan
for Î which is not less than the makespan ĈJ∗ for J∗. Using
Inequality (1) we conclude

M(G,≺) = CJ∗ ≤ µ · ĈJ∗ ≤ µ · ĈĴ = Aε(I)

It remains to show that Aε(I) ≤ (1+ε)·M(G,≺). Similar to
the arguments above, we can show the following inequality by
repeatedly applying monotonicity property (b) in Definition 5.
For every realization J ∈ J holds:

ĈJ < CJ/µ+ n. (2)

Combining (2) with the definition of µ, we conclude

Aε(I) = µ · ĈĴ < CĴ + n · µ = CĴ + ε · pmax

≤ (1 + ε) ·M(G,≺),

which completes the proof.

We observe that by symmetry we have an FTPAS {A′ε} that
returns the solution A′ε(I) =

⌈
1

1+ε ·Aε(I)
⌉

that satisfies

(1− ε) ·M(G,≺) ≤ A′ε(I) ≤M(G,≺).

As mentioned above, we can show that conditional DAGs
that consist of a constant number of chains in each realization
satisfy the monotonicity property of Theorem 13. With Theo-
rem 14 this implies the existence of an FPTAS which is best
possible given the weak coNP-hardness (Theorem 5).

Corollary 1. Algorithm {Aε} is an FPTAS for CDAG-MAX
for conditional DAGs G such that each realization of G is a
constant number of disjoint chains.

VI. CONCLUSION

In this work, we resolve the complexity status of the
CDAG-MAX problem in conditional DAGs. We obtained re-
fined results depending on the graph structure. While we were
able to show that CDAG-MAX is (weakly) coNP-hard for
m = 2 processors if each realization of the given conditional
DAG consists of k = 4 chains, the complexity for m = 2
and k = 3 remains open. As LS-MAX for three chains on two
processors is in P, we cannot hope to settle this open question
by using our reduction framework.

Our reduction from LS-MAX to CDAG-MAX relies on
the ability to arbitrarily assign priorities. In particular, the
reduction does not work if we require all jobs of the same
conditional construct to have the same priority. We leave the
complexity of this special case open. It seems to be an interest-
ing and relevant case as it is a common approach in practice to
assign priorities on a thread level in multi-threading scenarios.

REFERENCES

[1] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”
The Journal of Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.

[2] S. Singh and I. Chana, “A survey on resource scheduling in cloud
computing: Issues and challenges,” J. Grid Comput., vol. 14, no. 2,
pp. 217–264, 2016.

[3] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS. IEEE Computer Society, 2012, pp. 63–72.

[4] V. Bonifaci, A. Wiese, S. K. Baruah, A. Marchetti-Spaccamela, S. Stiller,
and L. Stougie, “A generalized parallel task model for recurrent real-time
processes,” TOPC, vol. 6, no. 1, pp. 3:1–3:40, 2019.

[5] J. D. Ullman, “NP-complete scheduling problems,” J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, 1975.

[6] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[7] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global EDF
scheduling of systems of conditional sporadic DAG tasks,” in ECRTS,
2015, pp. 222–231.

[8] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in ECRTS, 2015, pp. 211–221.

[9] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana,
“Business process execution language for web services,” 2013.

[10] J. Chen, G. von der Brüggen, J. Shi, and N. Ueter, “Dependency graph
approach for multiprocessor real-time synchronization,” in RTSS, 2018,
pp. 434–446.

[11] J. C. Fonseca, V. Nélis, G. Raravi, and L. M. Pinho, “A multi-dag model
for real-time parallel applications with conditional execution,” in SAC.
ACM, 2015, pp. 1925–1932.

[12] S. Chakraborty, T. Erlebach, and L. Thiele, “On the complexity of
scheduling conditional real-time code,” in Algorithms and Data Struc-
tures, F. Dehne, J.-R. Sack, and R. Tamassia, Eds., 2001, pp. 38–49.

[13] S. Chakraborty, T. Erlebach, S. Kunzli, and L. Thiele, “Schedulability
of event-driven code blocks in real-time embedded systems,” in DAC,
2002, pp. 616–621.

[14] T. Erlebach, V. Kääb, and R. H. Möhring, “Scheduling and/or-networks
on identical parallel machines,” in Approximation and Online Algo-
rithms, R. Solis-Oba and K. Jansen, Eds. Springer Berlin Heidelberg,
2004, pp. 123–136.

[15] S. Baruah, “The federated scheduling of systems of conditional sporadic
DAG tasks,” in EMSOFT. IEEE, 2015, pp. 1–10.

[16] M. Garey and D. Johnson, “Strong NP-completeness results: motivation,
examples, and implications,” J. Assoc. Comput. Mach., vol. 25, no. 3,
pp. 499–508, 1978.

[17] A. Agnetis, M. Flamini, G. Nicosia, and A. Pacifici, “Scheduling three
chains on two parallel machines,” European Journal of Operational
Research, vol. 202, no. 3, pp. 669–674, 2010.

[18] J. Lenstra and A. Rinnooy Kan, “Complexity of scheduling under
precedence constraints,” Oper. Res., vol. 26, no. 1, pp. 22–35, 1978.

[19] T. J. Schaefer, “The complexity of satisfiability problems,” in STOC.
ACM, 1978, pp. 216–226.

[20] R. H. Möhring, “Computationally tractable classes of ordered sets,” in
Algorithms and Order, I. Rival, Ed. Springer, 1989, pp. 105–193.

[21] R. P. Dilworth, “A decomposition theorem for partially ordered sets,”
Annals of Mathematics, vol. 51, no. 1, pp. 161–166, 1950.

