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The phenomenon of double backpropagation comes into
play, whenever the loss function of a neural network contains
derivatives with respect to inputs.

In this work, a first in-depth study of the involved theoretical
and practical phenomena is presented. In a challenging MALDI
mass spectra tumor classification task (for which a specialized
neural network architecture was developed), the efficacy of a
specific double backpropagation loss for the increase of inter-
lab robustness as well as saliency map interpretability is proven.
Furthermore, the theoretical connection between the interpre-
tability of saliency maps and the robustness of a classifier is
examined. The thesis is based on the following publications:

1. Tumor Typing for Mass Spectrometry Imaging

[ Behrmann, J., Etmann, C., Boskamp, T., Casadonte, R., Kriegsmann, J., & Maass, P. (2017). Deep
Learning for Tumor Classification in Imaging Mass Spectrometry. Bioinformatics, 34(7), 1215-1223.

| | Etmann, C., Schmidt, M., Behrmann, J., Boskamp, T., Casadonte, R., Hauberg-Lotte, L., Peter, A.,
Kriegsmann, J., & Maass, P. (2019). Deep Relevance Regularization: Interpretable and Robust Tumor
Typing of Imaging Mass Spectrometry Data. Manuscript submitted for publication.

2. The Mathematics of Double Backpropagation

M Etmann C. (2019), A Closer Look at Double Backpropagation. Manuscript submitted for publication.

3. Explaining the Connection Between Adversarial Robust-
ness and Saliency Map Interpretability

I Etmann, C., Lunz, S., Maass, P. & Schénlieb, C. (2019). On the Connection Between Adversarial
Robustness and Saliency Map Interpretability. Proceedings of the 36th International Conference on
Machine Learning, in PMLR 97:1823-1832

Double Backpropagation
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Neural network model:

= K;j(0;,2j-1) + b } :
forj=1,..., 1
= 0;(2) ’ o

where K; is a continuous bilinear operator between real Hilbert
spaces, (; is a activation function. This yields a coordinate-
free description!

Main tool:

Theorem 1 (Etmann, 2019).

For a continuous, bilinear operator K : P x X — Y (with real
Hilbert spaces P,X,Y ), there exist two continuous, bilinear
operators KT : P xY — X and K : X xY — P, such
that <K(07 l‘), y)y = <x7 KT(97 y))/Y = <KD(x’ y)? 6>P' which
are unique up to the order of arguments. These operations
commute.

Other results:
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m Complexity analysis
m Description of loss surface

® Improved algorithm with up to a third of saved computa-
tions when using ReLU activations
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Adversarlal Robustness

Neural networks that were trained to be more robust to ad-
versarial attacks seem to exhibit the added benefit of having
more 'interpretable’ saliency maps. We show that this is caused
by the angle between the saliency map and the input image
decreasing, as the distance to the descision boundary increa-
ses (up to linearization). We prove tight upper bounds of the
linearized robustness in terms of the alignment:

linearized robustness multi-class effects
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non-homogeneity effects

The theoretical findings are validated by training various clas-
sification models on image datasets, where the adversarial ro-
bustness is varied using double backpropagation losses.
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MALDI Imaging

Mass spectra from histopathological samples of cancerous tis-
sue were analyzed for the specific subtype of cancer. For this,
the custom IsotopeNet neural network architecture was deve-
loped. In inter-lab scenarios, these however suffer from over-
adapting to dataset characteristics. By employing the custom
deep relevance regularization loss

min £(fo(2). y) + Allr(z, y) |l + Aellr (2, w3

sparsity on the classification explanations was enforced.
Here, r(z,y) is the gradient-based layer-wise relevance
propagation proposed by Bach et. al (2015). This is intended
to restrict the model to only take into account the most
salient features, which in this case promotes the utilization of
biologically relevant features instead of measurement artifacts.

IsotopeNet IsotopeNet+DRR  Linear Baseline Method
bal. Acc. (spot) 37.3% 77.4% 75.5%
bal. Acc. (patient) 34.9% 80.6% 78.8%

The proposed regularization scheme succeeds in robustifying
the neural network. Furthermore, the biological plausibility of
the model is increased.




