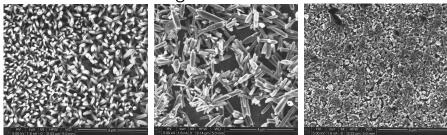
Electromagnetic inverse scattering problem

Alexander Konschin

Scattering on nano-structured surfaces

■ Non-destructive testing method for nano structures.



Electromaginetic wave propagation modeled by Maxwell's equations

$$\nabla\times(\mu^{-1}\nabla\times E)-\omega^2\left(\varepsilon+\mathrm{i}\frac{\sigma}{\omega}\right)E=F\quad\text{in }\mathbb{R}^3,$$

where permeability μ is assumed to be periodic and permittivity ε is also periodic but locally perturbed.

■ Electromaginetic wave propagation in TE mode modeled by Helmholtz equation

$$\Delta u + k^2 n^2 u = f \quad \text{in } \mathbb{R}^3,$$

where refractive index n^2 is assumed to be periodic but locally perturbed.

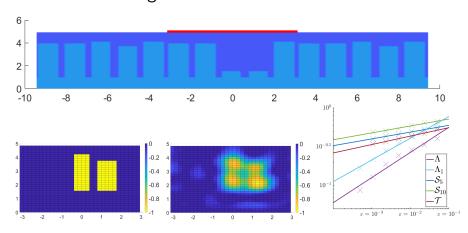
■ Main tool: Bloch-Floquet transform defined by

$$(\mathcal{J}\phi)(\alpha, x_1, x_2, x_3) = \sum_{j \in \mathbb{Z}^2} \phi(x_1 + j_1, x_2 + j_2, x_3) e^{i\alpha \cdot j}.$$

■ Theorem: Under some assumptions there exists a unique solution to the Maxwell's equations and the Helmholtz equation. ^{1 2}

Inverse Problem

- Goal: detect perturbation in periodic structure having measurements of the scattered wave.
- Measurement operators: Λ measures full wave, $\mathcal S$ measures near-field in one period and $\mathcal T$ measure far field of scattered wave.
- Theorem: Under some assumptions the measurement operators are injective, ill-posed and Fréchet differentible.
- Newton method gives nice results: ²



■ Reconstruction also works in 3D: ^{2 3}

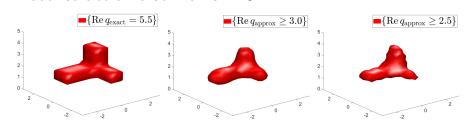


Figure 2: Middle: Helmholtz problem, right: Maxwell problem.

Discretization

- Bloch-Floquet transform gives a family of quasi-periodic scattering problems with coupling.
 - ⇒ suits perfectly for discretization and parallelizes greatly
- Finite-element space: locally constant functions in α , and Nédéc or Lagrange elements in space. Solve large linear equation system by GMRES combined with incomplete LU decomposition. $^{2-3}$

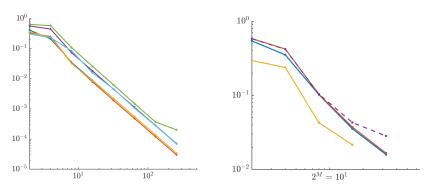


Figure 1: L^2 -error related to discretization in space (Helmholtz and Maxwell).

Factorization method

- The Factorization method is a fast imaging method for recontructing the support of the perturbation.
- Let F be the far field operator, $F_{\#} := |(\operatorname{Re} F)| + (\operatorname{Im} F)$.
- Theorem: Under some assumptions the operator $F_\#$ is strictly positive and

 $z \in \text{ support of perturbation}$

$$\Leftrightarrow \sum_{j=1}^{\infty} \frac{|(\phi_z^{\infty}, \psi_j)_{L^2(S)}|^2}{\lambda_j} < \infty,$$

where ϕ_z^∞ is the far field of fundamental solution and $\{\lambda_j,\psi_j\}_{j=1}^\infty$ the eigen system of $F_\#$. ⁴

■ Numerical results clearly show the perturbed part:

¹Konschin, A. (2019, August). Electromagnetic wave scattering from locally perturbed periodic inhomogeneous layers. In: submitted

⁴Haddar, H. and Konschin, A. (2019, March). Factorization Method for Localization of a Local Perturbation in Inhomogeneous Periodic Layers from Far Field Measurements. In: Inverse Problems and Imaging

²Konschin, A. and Lechleiter, A. (2019, November). Reconstruction of a local perturbation in inhomogeneous periodic layers from partial near-field measurements. In: Inverse Problems 35.11, S. 114006 Konschin, A. (2019, September). Numerical scheme for electromagnetic scattering on perturbed periodic inhomogeneous media and reconstruction of the perturbation. In: submitted