

Development of a Server for Code Smell Data

Bachelor Thesis

University of Bremen

Author:

Felix Frederick Becker

Enrolment number 4227648

Handed in on:

February 17, 2020

Primary reviewer: Prof. Dr. rer. nat. Rainer Koschke

Secondary reviewer: Dr.-Ing. Hui Shi

Declaration of Academic Honesty

Hereby I declare that my bachelor thesis was written without external support and

that I did not use any other sources and auxiliary means than those quoted. All state-

ments which are literally or analogously taken from other publications have been

identified as quotations.

Date Signature

Table of Contents

1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1
1.2 STRUCTURE .. 2

2 GOAL .. 3

2.1 FEATURES ... 3
2.2 NON-GOALS.. 4

3 PRIOR WORK ... 6

4 TECHNOLOGY STACK.. 8

5 DATA MODEL .. 11

5.1 API ..11
5.1.1 Pagination ... 15

5.2 STORAGE .. 16

6 IMPLEMENTATION ... 22

6.1 GIT REPOSITORY UPLOAD ... 22
6.2 GRAPHQL ENDPOINT ... 23
6.3 DATA LOADING ... 23
6.4 REST ENDPOINTS ..26

7 USAGE ... 27

7.1 ADDING CODE SMELL DATA ... 28
7.2 QUERYING CODE SMELL DATA ... 30

8 EVALUATION ... 32

8.1 RESEARCH QUESTION 1 ... 35
8.2 RESEARCH QUESTION 2 .. 39
8.3 RESEARCH QUESTION 3 ..42

9 CONCLUSION ... 46

9.1 OUTLOOK ..46

10 WORKS CITED ... 48

Table of Figures

Figure 1: GraphQL schema. ... 12

Figure 2: Conceptual GraphQL schema of the Relay specification. 16

Figure 3: Normalized database schema. ... 17

Figure 4: PostgreSQL query plan for a common code smell query in normalized

schema. .. 19

Figure 5: Denormalized database schema.. 20

Figure 6: PostgreSQL query plan for common query with denormalized schema..... 21

Figure 7: Implementation components. ... 22

Figure 8: Interactive query explorer. ... 27

Figure 9: RQ1 script runtime by number of inserted lifespans. 36

Figure 10: RQ1 script runtime by number of HTTP requests. 37

Figure 11: Lifespan of code smells by kind as box plot. ... 39

Figure 12: RQ2 script runtime by number of HTTP requests. 40

Figure 13: Scatter of code smells as box plot. .. 41

Figure 14: RQ3 script runtime by number of HTTP requests. 43

Figure 15: Box plot of changed files by code smell presence. Outliers omitted. 44

Figure 16: Box plot of changed files by code smell presence. Outliers included. 45

List of Tables

Table 1: Supported REST endpoints. ... 26

Table 2: PMD ruleset. ... 33

Table 3: Analyzed repositories and found code smells. ... 34

Table 4: Lifespan of code smells by kind. ... 38

Table 5: Scatter of code smells by kind. .. 41

Table 6: Number of changes to files with and without code smell. 43

Table of Listings

Listing 1: Example SQL query to batch-load code smells of a lifespan, paginated. .. 25

Listing 2: Query for analyses with samples of repositories and lifespans. 28

Listing 3: Example command to push a repository. .. 29

Listing 4: Example mutation for creating a new analysis. ... 29

Listing 5: Parameterized GraphQL mutation to add code smells. 29

Listing 6: Example GraphQL query for a vertical view. ... 30

Listing 7: Example GraphQL query for a horizontal view. ... 31

 1

1 Introduction

1.1 Motivation

Modern software is more complex than ever and needs to be maintained for ever

longer periods, as users expect software to be continuously updated or even be pro-

vided as service and subscription models. At the same time, we are seeing a purge of

innovation in new software products in a highly competitive market that demands

rapid release cycles. This demand can often push developers to take technical debt to

ship features faster, intentionally or unintentionally sacrificing the maintainability of

their software, often leading to the introduction of “code smells.”

This makes the emergence and evolution of code smells an interesting target for re-

search, one that is actively explored in the software technology working group at the

University of Bremen [1] and other research institutions [2] [3]. Martin Fowler de-

fined code smells as “symptoms of poor design and implementation choices” [4]. Ex-

amples of interest include how these code smells emerge, what negative effects they

have, how they can be detected, avoided, and removed automatically.

To research these questions, research projects usually require a significant set of data

to analyze. Presently, this is raw source code of projects to analyze, optionally with

versioning information to research the evolution of code smells. As a result of the re-

search they also produce data such as detected code smells, optionally tracked across

revisions of the code, revealing at which point in time the code smell was introduced

and removed again, e.g. through refactoring. This again can be the input to higher-

level research that combines the knowledge about the evolved code smells with other

data, such as the authors that worked on the file [1], the number of authors, the stage

in the lifecycle of the software [2], and many more.

Especially the higher-level research currently incurs a high overhead, as researchers

first need to start from scratch to develop a significantly large data set of code smells

by raw source code analysis. Such analysis takes a long time (especially if it needs to

be applied to many revisions for the purpose of capturing their evolution) and incurs

additional work to bring the output of different tools into the same format. The actual

research part is non-trivial either, as such a data set can be massive in storage size.

 2

This makes efficient analysis a challenge, especially when code smell data needs to be

correlated back to other data such as the file content or versioning information.

1.2 Structure

This thesis is structured into 8 further sections. Chapter 2 describes the goal of the

project and defines the scope. Chapter 3 lays out prior research in this area that pro-

vide context and inspiration. Based on the defined goals, Chapter 4 explains the

choices in technology that were made to rely on for the implementation of the project.

Following that, chapter 5 goes into detail of the chosen data models and chapter 6 into

the implementation of business logic, public API and data access. Chapter 7 walks

through the usage of the server and demonstrates its capabilities and flexibility. To

verify the project meets the goals outlined in chapter 2, the project is evaluated in

chapter 8 by reproducing the research of select research questions in a recent thesis.

Lastly, chapter 9 contains a conclusion and outlook.

 3

2 Goal

The challenges described in 1.1 should not need to be solved for every new research

project. Instead, a new project should be able to rely on a pre-existing, publicly avail-

able, sizable set of code smell data in a consistent format. This data should be easily

queryable such that it is easy to correlate with a diverse range of metadata. Further-

more, it should be possible to easily contribute the results of research projects back

into the data store, for future research to build on top of.

The goal of this project is to find out whether a data store can be built that solves the

aforementioned use cases.

2.1 Features

The server should allow a variety of queries over the data from different views.

F1. Basic requirements are querying the available repositories and their version

control history. For each revision in the version history, it should be possible to

query information about the state of the repository at that point in time, e.g.

what files existed and their contents.

F2. In addition, the information about the changes from revision to revision need to

be exposed, e.g. what files changed, the commit message, date, and time. Revi-

sions should be addressable by different criteria, e.g. the commit ID, a range of

dates, or a filter on the commit message.

F3. Code smells should be queryable in particular from two views, referred to as the

horizontal view and the vertical view. Horizontal shall mean inspecting the evo-

lution of a code smell throughout the repository’s history.

F4. The vertical view refers to inspecting all the code smells in a specific revision.

F5. In every view it should be possible to directly include related version control in-

formation mentioned above with code smells, e.g. the contents of the affected

range, or metadata about the commit it appeared in.

F6. Code smell queries should also be filterable, by criteria such as the code smell

kind (e.g. “God Class”), the affected folder, file, or file type.

F7. All lists that are exposed through the API must support pagination, as the server

will have to deal with copious amounts of items. This means to support limiting

the queried list to an arbitrary number of items and continuing from the end of

 4

the list in a follow-up query. Analyses that research projects must run over code

smells may take multiple weeks to complete. With these timeframes, it is desir-

able to iterate over code smells in pages and it is possible that data (code smells,

version history, …) gets added or removed on the server in between requests for

the next page. As such, it is important that pagination is implemented such that

this scenario under no circumstances would cause elements to be iterated mul-

tiple times, or elements to be skipped.

F8. Since a research project that contributes analyzed code smells will likely want to

be able to evaluate their own contributed code smells in isolation, the server

needs to have the ability to tie code smells to the analyses they were discovered

in. This should also allow deleting all the code smells of an analysis in case of a

mistake.

2.2 Non-Goals

While there are a lot of related problems in this space worth solving, there are some

that are out of scope for this thesis or better left to other tools.

The server itself is not intended to do any analysis on the code itself, but only store

code smell data that was produced out-of-band. Building analyzers into the server

would make the server not analyzer- and language-agnostic.

Further, it is not the goal of the code smell store to become a general-purpose store

for arbitrary metadata on source code. The data model is specifically optimized for

the domain of code smell research. While other metadata can be interesting in certain

circumstances in the context of code smell research, this project only includes directly

inferable information from the stored data, that is mostly language-agnostic (e.g. line

count of files).

Research over large bodies and histories of source code is an inherently lengthy pro-

cess. As such, the server does not need to be highly optimized to return responses in

under a second. A primary goal is flexibility in query capabilities, which is prioritized

over query performance.

The primary goal of the code smell store is to expose data in a flexible way with a rich

data model. It is expected that the consumer needs to apply further client-side pro-

cessing (such as aggregation, grouping, counting) to the data to answer their research

 5

questions. Moving such aggregation into the server would require predicting every

conceivable way the data may be used, which is not feasible.

The initial version presented in this thesis does not have any authorization system.

HTTP basic authentication can be configured, but access is “all or nothing.” The server

could be extended later with a more complex permission system, but that is out of

scope for this thesis.

 6

3 Prior Work

Code smells in software systems and their evolution were the target of a significant

body of existing research.

M. Steinbeck [5] created a library that can track code smells across the version history

of Git, Mercurial and SVN repositories and is therefore suitable to research the evo-

lution of code smells. It walks a given range of revisions in a repository and tries to

map every code smell to a successor and predecessor in the previous and next revi-

sion, respectively. This library was used in a recent bachelor thesis on code smell evo-

lution by D. Schulz, who indicated in his outlook that a REST API for code smells

would make it easier to process results [6, p. 55].

Landfill [7] by Palomba et al. is a public dataset of code smells with a web UI. Code

smells can be uploaded as CSV files and repositories as archives. However, it is not

built to research the evolution of code smells. The repository upload only contains the

specific version that was analyzed. Code smells note the affected part of the codebase

through its fully qualified class name. It also features an API, which gives access to

the file contents of the analyzed repositories at the uploaded version. The project has

some interesting social features, such as voting for the accuracy of a detected code

smell. Unfortunately, the public instance linked in the paper does not appear to be

online anymore.

Palomba et al. did utilize version history in another paper [8] to better detect code

smells, but not to research the evolution of them over time. Lozana et al. made use of

version history for the same goal [9]. This usage is orthogonal to the planned code

smell store — the code analyzer that produces the code smells is not precluded from

making use of version history for detection, but the server’s goal is to expose version

history for the sake of evolution research.

There are online platforms for storage of generic research datasets such as Mendeley

Datasets, that host some code smell related datasets [10]. However, since the plat-

form is not focused on code smells specifically, datasets are not easily queryable, but

only available for download as files in the format they were uploaded in (e.g. .zip, .xlsx,

.txt).

General data models of code smells can be found in tooling and editor infrastructure.

For example, the Language Server Protocol [11], an editor-agnostic RPC protocol for

 7

code intelligence functionality based on JSON, has the concept of a “code diagnostic”

that expresses a general problem about a part of code. This can be either something

like a code smell, or something more severe like a compile error. Diagnostics in the

protocol have a message, a single location, code, severity, source (e.g. name of the

generating tool), zero to many tags, and “related” locations.

 8

4 Technology Stack

The code smell server is composed of a storage component (database) and a public-

facing API that exposes query and upload functionality specific to the domain of code

smell analysis. As every project, the code smell server needs to build on top of a variety

of fundamental, existing technologies that are explained in this chapter.

To allow easy consumption, the code smell store is exposed as a web service over

HTTP. While HTTP allows a variety of data exchange formats, JSON is the most com-

mon format for modern web APIs and easily integrable into most client languages.

Two architectural styles have emerged as the most popular for web APIs: REST [12,

pp. 76-106] and GraphQL 1. The architectural style REST (representational state

transfer) relies mostly on the core functionalities of the HTTP protocol. Every re-

source or collection is addressed by its URL, and different actions are indicated

through HTTP verbs. APIs following REST are easily consumed from any environ-

ment and can build on decades of compatible tooling. A big disadvantage of REST is

that resources expose mostly fixed views. This means views often either return more

data than needed, or not enough and require subsequent requests to correlate data.

GraphQL’s main objective is to solve these problems, by allowing the client to query

all the data it needs over a strongly typed graph data model. The disadvantage of

GraphQL is a higher implementation complexity on the server to serve these arbitrary

views, and to reimplement many of the features HTTP supplies for URLs through

GraphQL. Because of its younger age, it is also less known and may require a small

learning curve.

For the code smell server, query functionality must be flexible enough to be tailorable

to any code smell research project and not limited to a handful of views. At the same

time, it must handle requests for large amounts of data, where it becomes important

to not send unnecessary bytes over the wire. These attributes are better provided by

GraphQL than REST. Because GraphQL allows the client to freely select any needed

subset of the available fields, the server can expose a lot more fields to query without

having to worry about bloating the payload with fields not asked for. This especially

supports feature F5 to correlate various data with code smells from different views, as

the consumer can construct a query resulting in a graph structure suiting their needs.

1 https://graphql.org/

https://graphql.org/

 9

Another advantage is the integrated query explorer GraphQL comes with. This GUI is

accessible through the web browser and provides autocompletion and documentation

while writing a query. This adds discoverability to the API without requiring engineer-

ing effort spent on a GUI. In opposite to a web UI specifically built for the server, the

query explorer allows to trivially translate any query into an automated script for

more advanced use cases.

Ideally, we can expose both GraphQL for advanced queries and REST endpoints for

simpler use cases or more constrained environments. This adds additional implemen-

tation complexity, but this complexity can be minimized by having the REST end-

points execute GraphQL queries internally. The REST endpoints are therefore merely

small wrappers that expose a handful of fixed views. They still support the same filter

capabilities (F6) through query parameters and pagination (F7) through Link headers

as specified in RFC8288 [13].

A desired feature is the correlation of code smells with the file content they affect, as

well as with revision metadata like message, author, date, or other files changed in the

revision (F5). This versioning data comes from a version control system such as Git,

Subversion or Mercurial, and must be uploaded together with the code smell data.

Most open source projects, especially since the advent of GitHub, use the version con-

trol system Git nowadays. Git is distributed, which makes it easy to push a copy of all

versioning information of a project to a different server (and keeping that copy up to

date). Supporting multiple version control systems is possible, but would drastically

increase complexity, as it would require designing an abstract data model over multi-

ple VCS. This would exclude the opportunity to directly rely on Git’s unique features.

For the less common cases of analyzing a code base using SVN, Mercurial or Perforce,

Git provides features to easily convert these to Git repositories [14, pp. 344-356]. Be-

cause of this, the code smell store will support only Git as source of version control

system data.

The most efficient way to transfer the version history is the git push command, as

Git’s protocol is highly optimized. This is enabled by allowing the code smell server to

be added to Git as a remote. It also allows updating the version history incrementally

later. Since Git supports transfer over HTTP, the endpoint can be integrated into the

same HTTP API, which also allows it to share any future features added like authen-

tication.

 10

For cases where the server is not directly reachable by the repository owner, git push

may not be possible. In these cases, the owner can pack the repository into a single

file with the git bundle command. This bundle can be transferred through other

means (e.g. email) and be directly uploaded to the server with a POST request. This

method is still superior to uploading a file archive of the repository, as Git bundles

can be created from a subset of the history and support incremental updates as well.

Non-Git data will need to be stored in an external database. Relational databases are

the most mature in this space and because of that a good default choice. A different

database system may yield a better query performance, but the evaluation of multiple

alternative database systems would be out of scope for this project and is left for future

projects. The open source relational database system PostgreSQL 2 is the option

among the available RDBMS that I have the most experience with.

The backend could be implemented in a variety of languages. The reference imple-

mentation of GraphQL is written for NodeJS 3, which makes it a good option. It is also

the one I have the most personal experience with. Node generally allows to quickly

implement HTTP-based APIs and offers a great ecosystem of open-source modules.

On top of NodeJS, TypeScript 4 adds type safety to the codebase, which prevents a lot

of issues and accelerates development.

The server should be easy to deploy and self-host, as well as have a reproducible build

process. To ensure this, the server will be designed to run in an isolated container.

The image will be defined in a Dockerfile and will be publicly available from Docker

Hub 5.

2 https://www.postgresql.org/
3 https://nodejs.org/
4 https://www.typescriptlang.org/
5 https://hub.docker.com/r/felixfbecker/olfaction

https://www.postgresql.org/
https://nodejs.org/
https://www.typescriptlang.org/
https://hub.docker.com/r/felixfbecker/olfaction

 11

5 Data Model

This chapter explains the data model of the code smell server. The most important

side of this is the GraphQL schema, which is the rich domain-specific data model the

API consumer will interact with. It is described in 5.1, while the internal database

model is explained 5.2.

5.1 API

The structure of the data to be stored and queried affords modelling it as an object

graph, which will be exposed through GraphQL. This graph is strongly typed in a

GraphQL schema, which is visualized as a UML class diagram in Figure 1. A GraphQL

query then allows to arbitrarily follow edges of this graph, starting at the root Query

type and returning them as a deeply nested JSON object structure.

The Query type exposes as a top-level entity the available analyses. An analysis is the

outer-most container for detected code smells. Its purpose is to allow to only look at

data from a specific analysis without mixing it with prior analyses (F8). In addition,

it exists to record which commits of which repositories were analyzed. In particular,

this allows the important distinction between commits that have no code smells and

commits that were not analyzed. This is especially important when only analyzing a

subset of the history in a research project, such as a date range or only every nth com-

mit.

Every other piece of data is contained within a Repository. Repositories have a unique

name that they can be addressed by from the root of the API. This name is also used

to address it when uploading Git history. They can also be queried from the root (F1).

From a repository, revisions are exposed through the Commit type. Commits are always

queried from a start revision, which can be a commit, a branch, or a tag, and defaults

to the repository HEAD. The returned list is the result of walking all commits by fol-

lowing their parent commits. This list may be filtered through parameters, to only

query between a start and end date or by matching the commit message with a regular

expression.

A repository also exposes a connection to the lifespans of code smells throughout the

history, enabling the horizontal view (F3). From a lifespan, its instances throughout

the commit history can be acquired, which is a connection to the CodeSmell type,

 12

containing a linear list. Each of those instances then links to the commit it was de-

tected in. The Lifespan type hosts the field for the code smell kind, because the kind

must be consistent across all instances of the code smell lifespan.

Figure 1: GraphQL schema.

Besides that, lifespans should expose their total age in a format that is easy to con-

sume. This can be calculated on demand from the commit metadata of the first and

Query

repository(name: String!): Repository
repositories: Connection<Repository>!
codeSmell(id: ID!): CodeSmell
codeSmellLifespan(id: ID!): CodeSmellLifespan
analysis(name: String!): Analysis
analyses: Connection<Analysis>

Repository

name: String!

commit(oid: GitObjectID!): Commit
commits: Connection<Commit>!
codeSmellLifespans: Connection<CodeSmellLifespan>!

CodeSmell

id: ID!
message: String!
commit: Commit!
locations: [Location!]!
ordinal: Int!

predecessor: CodeSmell
successor: CodeSmell
lifespan: CodeSmellLifespan!

CodeSmellLifespan

id: ID!
kind: String!
duration: String!
interval: String!

repository: Repository!
analysis: Analysis!
instances: Connection<CodeSmell>!

Analysis

name: String!

analyzedRepositories: Connection<Repository>!
analyzedCommits: Connection<Commit>!
codeSmellLifespans: Connection<CodeSmellLifespan>!

Commit

oid: GitObjectID!
committer: Signature!
author: Signature!
parents: [Commit!]!

combinedFileDifferences: Connection<CombinedFileDifference>!
codeSmells: Connection<CodeSmell>!
f iles: Connection<File>!

Signature

name: String!
email: String!
date: String!

File

path: String!

content(encoding: String): String!
lineCounts(encoding: String): LineCounts!
codeSmells: Connection<CodeSmell>!

CombinedFileDifference

changeKinds: [FileChangeKind!]!
headFile: File
baseFiles: [File]!

FileChangeKind

ADDED
COPIED
DELETED
MODIFIED
RENAMED
TYPE_CHANGED

Location

file: File!
range: Range!

contents(encoding: String): String!

Range

start: Position!
end: Position!

Position

line: Int!
character: Int!

LineCounts

total: Int!
source: Int
comment: Int
single: Int
block: Int
mixed: Int
blockEmpty: Int
empty: Int
todo: Int

queries

1

0..*

queries

1

0..1

queries

1

0..1

queries

1

0..1

queries1 0..*
queries1

0..1

1

0..*

1

0..*

analyzed

0..*

0..*

has parents

0..*

0..*

committed by authored byexists in

1

0..*

exists in

1

0..*

applied

1

0..*

analyzed

0..*

0..*

of

0..*

0..1

compared to

0..*

0..*

ofat

0..*

1..*

follow s
1

0..1 follow ed by

1

0..1

in0..* 1

at

from

to

part of

1

1..*

detected

0..*

1

contains

1..*

0..*

has

 13

last instance of the code smell lifespan. The ISO6801 standard defines string formats

for durations (e.g. P12H30M5S) and intervals (e.g. 2007-03-01T13:00:00Z/2008-05-

11T15:30:00Z). In opposite to alternative means like exposing the duration in seconds,

the ISO6801 standard allows to represent even large intervals and durations in a way

that is both still human-readable and at the same time parsable by most programming

languages through their standard library. This format is used to expose the age of a

lifespan in the duration and interval fields. An application of the duration field can be

found in 8.1.

To be noted is that the largest unit that the ISO duration string can contain is hours.

To calculate days, months and years, the time zone of the commits would need to be

known, as the length of a day can vary throughout the year depending on the time

zone (e.g. because of daylight saving time shifts). However, Git only stores the time

zone offset from UTC for each commit, which is not enough to allow date arithmetic.

To enable the vertical view (F4), a commit (that can be queried from a repository)

exposes a connection to all the code smells detected in that commit.

Fields exposed on the code smell include its ID, message, and its locations in the

source code. Every code smell also links to its lifespan. The position within the

lifespan is given through the ordinal field. The code smell also directly references its

own predecessor and successor, given they exist, otherwise these fields are null re-

spectively. This matches the data model of LibVCS4J [5], which also maps every code

smell to a single predecessor and successor, given one was found.

A location is defined as a range in a file, where a range is a pair of a start and end

position. Positions in a file could be represented in different ways. A single integer

representing a byte offset can be enough to identify a position but is not intuitive to

work with. Better suited for human-readable presentation is a pair of line and char-

acter position. Git also generally operates with lines in diffs, so line numbers are im-

portant when calculating how the line of a code smell moved through the changes in

a commit.

The character field is intentionally not a “column” as presented by a file viewer, as

that number is a lot more complex to calculate and therefore error-prone to work

with. For example, the width of a tab character depends on the tab size preference.

 14

Unicode also contains many characters that are less than one column wide (e.g. zero-

width space) or multiple columns wide (e.g. emojis).

Both line and character also need to be either zero- or one-based. The open Language

Server Protocol [11], which also features an otherwise equal type definition for Posi-

tions, uses zero-based numbers, therefore the same was chosen for this schema.

For each location, the content of only this range can directly be accessed through its

content field, which is sliced from the file content on demand when the field is que-

ried.

Besides code smells, commits expose the known metadata about the commit, such as

the commit message, committer, and author information. Committer and author in-

formation are each represented as a Signature, with name, email, date, time, and time

zone offset (F2). The last three items are all exposed as a standard ISO6801 date

string. Every commit also links to its parent commits, which contains multiple in the

case of a merge commit or none in the case of the root commit.

The fact that commits can have multiple parents also needs to be accurately reflected

in the way file changes are exposed from the commit. Git itself has two ways to present

these, either compared individually to each parent (the -m flag to every command that

produces diffs) or in the “Combined Diff Format” [14, pp. 282-284]. The latter only

includes file changes that were changed when compared to all parents and for each

changed file, lists the detected kind of change, and the corresponding parent file for

each parent commit. The combined format is the default in Git and generally easier

to work with. Because of this, an object structure representing this format is what is

exposed in the API.

The file paths of the parent files may be different in the case of a file rename or copy,

as indicated by the FileChangeKind enum. If the file did not exist in the parent, or no

longer exists in the new commit (as is the case with a change kind of ADDITION or

DELETION respectively) headFile may be null or baseFiles may contain null at the posi-

tion of the respective parent. The CombinedFileDifferences type is currently only used

for commits, but general enough to e.g. also be used for comparisons between arbi-

trary revisions (which is why it uses the term “baseFiles” and not “parentFiles”).

Commits also expose a direct connection to files, which are the files that are present

in the repository at that commit. These can optionally be filtered by a regular

 15

expression applied to the file path, which enables filtering by a subdirectory, as well

as filtering by a file extension (F6).

Files most importantly expose their file path (relative to the repository root) and their

content as a string. Since the encoding of the file is not known, it can be provided as a

parameter. If not given, the server will try to use common heuristics to guess the en-

coding, otherwise fall back to UTF8.

Knowing the content, every file also exposes a field lineCounts with metrics related to

number of lines. Metrics include the physical line count, lines of code, lines with com-

ments, empty lines, and lines with “TODO” comments. This is computed on demand

by the sloc library only if the field is queried and supported for 52 of the most common

languages (otherwise only physical line count is available).

Files also expose a connection to the code smells that existed in exactly this file at this

commit. A use case of this field can be found in 8.3.

5.1.1 Pagination

A horizontal design concern across the entire API is the design of the pagination fea-

ture (F7). The established industry standard for pagination in GraphQL is the Relay

specification [15]. Every connection to a type with a high cardinality is represented

not as a plain list but using the pseudo-generic Connection type, on a field accepting

pagination parameters. It allows querying for only the first 𝑛𝑛 results with the first

parameter. The Connection object then exposes cursors in the form of opaque strings

on the pageInfo field and on each edge, which can be passed to the after parameter to

query only edges after that cursor in a subsequent query. The UML diagram in Figure

2 shows the structure of the Connection type. GraphQL does not actually support ge-

neric types, so a type is generated dynamically for every instance of Connection. For

brevity, the concrete Connection types and lines to the Connection type are omitted

in Figure 1.

 16

Figure 2: Conceptual GraphQL schema of the Relay specification.

The benefit of cursor-based pagination compared to limit/offset is that it is guaran-

teed that no element will appear twice, even if the data is changed in the background

in between paginated requests. In addition, starting a table scan at a given ID encoded

in the cursor can efficiently utilize the primary key index to find the start point, while

starting at a numeric offset requires rescanning the table from the start and is thus

much more expensive for the database.

5.2 Storage

While the GraphQL data schema is the most important for usability of the server, the

data schema of the storage backend needs to be considered too.

We can distinguish between two principal areas of data: The basic repository data

including version history and file contents, and the code smell data for these reposi-

tories and their versions. One possibility would be to store all this information in a

database, which would allow atomic transactions over all data and ensure referential

integrity on the database level. However, the version history and file contents are al-

ready tracked very efficiently by Git and an attempt to replicate this in a database

would take a lot of effort, with the likely result of slower queries and larger storage

size. A better alternative is to store version information and file contents as bare Git

repositories in a known folder on disk and ensuring data integrity on the application

level. With this approach, listing repositories is possible with a readdir operation from

the file system. Querying information from a repository is done by executing the

Relay

ForwardConnectionArguments

f irst: Int
after: String

Connection TNode

pageInfo: PageInfo!
edges: [Edge<TNode>!]!

Edge TNode

node: TNode!
cursor: String!

PageInfo

endCursor: String!
hasNextPage: Boolean!
hasPreviousPage: Boolean!

 17

appropriate Git command with the repository as a working directory and parsing its

output.

Code smell data on the other hand needs to be stored in a separate database. The main

entities needing storage are code smells (in a commit) and code smell lifespans (across

commits). In addition, we need to bundle these into analyses (to support F7) and

store which commits were analyzed in an analysis. Figure 3 visualizes a normalized

database schema for these.

Figure 3: Normalized database schema.

In this schema, a code smell has exactly one lifespan and a code smell lifespan has

0. .𝑛𝑛 code smells. Code smell lifespans store columns for information that is the same

for all its code smell instances: The kind of the code smell, the repository it was de-

tected in and the analysis that detected it. The ID of a lifespan is a universally unique

identifier (UUID). This allows the client to pick IDs before uploading, which simplifies

the API for associating code smells with their lifespans. Each code smell instance links

to its lifespan through a foreign key. The order within the lifespan is stored as an in-

teger in the column “ordinal” of the code smell table. Code smell instances are also

associated to a commit through the commit ID, where each tuple of (code smell ID,

commit ID) is unique within the code smell table. In opposite to the code smell kind,

the message can (but does not have to be) different for each code smell.

Each code smell can have one to many locations in the code, which are stored in the

code_smell_locations table following this schema. Each location is linked to its code

smell through a foreign key.

code_smell_lifespans

id UUID «PK»
kind TEXT
repository TEXT
analysis UUID «FK»

code_smells

id INTEGER «PK»
lifespan UUID «FK»
ordinal INTEGER
commit TEXT
message TEXT

code_smell_locations

code_smell INTEGER «FK»
file TEXT
start_line INTEGER
start_character INTEGER
end_line INTEGER
end_character INTEGER

analyses

id UUID «PK»
name TEXT

analyzed_commits

analysis UUID
repository TEXT
commit TEXT

 18

There are no tables for commits and repositories, because these are stored outside of

the database and referenced by strings. Code smell kinds are also not considered their

own entity, but an attribute of a code smell. The server does not expose a way to query

all available kinds.

The application will have to query the most by repository, commit, analysis, and kind.

To prevent a full table scan for these queries, there are binary tree indices in the code

smells table on the lifespan foreign key and the commit column. In the code smell

lifespans table, there are three binary tree indices on the repository, analysis and kind

columns. The analysis name, analyzed commit and analyzed repository are also in-

dexed.

While this database schema ensures data integrity well, it was suspected that it will

not perform well because of the number of needed JOINs. A common query like ask-

ing for code smells together with their kind and locations requires two JOINs. For

illustration, Figure 4 contains a visualization of a query plan produced by PostgreSQL

for batch-loading code smells and their kinds for 1,000 commits over a data set of

343,014 code smells. This query took 5.29 seconds to execute. The plan shows that

the most expensive nodes are joining the lifespan and location tables, as well as group-

ing the locations for each code smell. The aggregation node at the very top is to group

results for each commit for batch loading purposes (explained more in 6.3).

 19

Figure 4: PostgreSQL query plan for a common code smell query in normalized schema.

Since the server later needs to scale to millions of code smells, the cost of these JOINs

is problematic. To solve this while still maintaining data integrity guarantees, the ta-

bles could be merged into a materialized view. Alternatively, the tables themselves

could be denormalized.

 20

With a materialized view, the schema described in Figure 3 would still act as the al-

ways-consistent source of truth, but the materialized view would need to be refreshed

after every insert. Refreshing a materialized view means truncating the outdated view

contents, then recopying all data from the source tables into the materialized view.

Unfortunately, this process would take magnitudes more time than the insert itself

and unacceptably slow down the process of adding code smells to the server.

The alternative is to denormalize the tables themselves by inlining joined data into

the respective tables. Figure 5 shows the updated denormalized schema using this

approach.

Figure 5: Denormalized database schema.

The kind, repository and analysis of code smells is now stored on both the lifespan

and the code smell, to make sure both the horizontal view (F3) and the vertical view

(F4) can be queried without JOINs. The obvious disadvantage of this approach is

slightly increased storage size. In addition, the kind between the two tables needs to

be kept in sync. Since the server has no requirement to expose a way to update existing

code smells, this is not a concern and was deemed an acceptable trade-off.

Instead of a separate table, locations are stored as a JSONB column of the code smells

table holding an array of location objects, including the file path and the range com-

posed of the start and end position. The disadvantage of this would be a slower query

when filtering by line and column in a file, as it is not possible to index properties of

objects contained in a JSONB array. However, no such capability is exposed by the

server, so it does not make sense to optimize for this scenario while sacrificing general

code_smell_lifespans

id UUID «PK»
kind TEXT
repository TEXT
analysis UUID «FK»

code_smells

id INTEGER «PK»
kind TEXT
lifespan UUID «FK»
ordinal INTEGER
repository TEXT
commit TEXT
locations JSONB
message TEXT

analyses

id UUID «PK»
name TEXT

analyzed_commits

analysis UUID
repository TEXT
commit TEXT

 21

query performance. Queries for code smells in specific files can still be kept fast by

using a GIN index on the column.

Figure 6 shows a query plan for the equivalent query with the denormalized schema.

There are no JOINs needed anymore, instead the necessary index scan and aggrega-

tion for batch loading the input commits are now the slowest nodes. This query fin-

ished in 1.89 seconds, about a third of the previous execution time.

Figure 6: PostgreSQL query plan for common query with denormalized schema.

 22

6 Implementation

This chapter addresses the implementation of the code smell server. As explained in

chapter 4, the HTTP API server is implemented as a NodeJS application. Figure 7

gives an overview over the components of the system as a UML component diagram.

The handlers for the different URLs are registered using the express library 6 in the

server entry point. The exposed endpoints are divided into three routers: The

GraphQL endpoint, the REST endpoints, and the Git upload handlers. These are im-

plemented as separate routers in the routes/ directory. The following sections go into

more detail for each component and the components they depend on.

Figure 7: Implementation components.

6.1 Git Repository Upload

The Git upload endpoint executes Git’s native CGI module git http-backend 7 to handle

requests. This allows uploads through a simple Git push over HTTP after adding the

6 https://expressjs.com/
7 https://git-scm.com/docs/git-http-backend

Application Container

Route Handlers

Server

Loaders

Git DAL

Git UploadRESTGraphQL

Git RepositoriesPostgreSQL DB

HTTP Endpoint

https://expressjs.com/
https://git-scm.com/docs/git-http-backend

 23

server as a Git remote (example in chapter 7). The URL for the Git remote is the server

address, with the path /repositories/ followed by a chosen repository name and the

suffix “.git”. If the repository does not exist on a push or bundle upload, it is initial-

ized ad-hoc.

The alternative upload method through Git bundles uses the same URL, except that

the suffix is “.bundle”. The bundle can be uploaded with a POST request, which stores

it in a temporary folder, then uses git fetch to merge the Git objects contained in the

bundle into the actual repository stored on disk.

Repositories are stored as bare repositories in directories on disk, meaning they only

have versioning information and have no working directory. The root directory for the

repositories can be customized through the REPO_ROOT environment variable.

6.2 GraphQL Endpoint

Two major libraries exist for writing GraphQL backends in JavaScript: The official

reference implementation graphql-js, and Apollo. No relevant differences were found

between the two. For the code smell server, the official reference implementation was

chosen. The GraphQL server library is used to define the schema on startup. On a

request, it takes care of parsing the GraphQL query and invoking resolvers for each

field. Each type in the GraphQL API is implemented as a class with methods that serve

as resolvers for each field. Each class holds a private data object of a domain-specific

type that was returned by the loaders module.

6.3 Data Loading

Since every resolver is executed in isolation for each field and has no knowledge about

the context it is queried in, a resolver for a type in a list may get executed 𝑛𝑛 times for

each item in the list. If the resolver does a database query for each item to query re-

lated data, that would lead to executing 𝑛𝑛 + 1 database queries (with 𝑛𝑛 being the num-

ber of items in the list), which would be detrimental to query performance. This is

commonly referred to as the 𝑛𝑛 + 1 query problem.

One approach to work around this is to eagerly load related data. While it comes at

the obvious cost of sometimes loading data that is not used in the end, it is also not

 24

feasible with the data storage chosen for the code smell server that is split between

the database and Git repositories on disk.

A better solution is using the dataloader library 8. It buffers calls to load data within

the same GraphQL request and dispatches all queries in batches. With dataloader, the

data access layer of the code smell server is implemented as a collection of functions

to batch-load multiple items, each wrapped in a Dataloader instance which takes care

of the batching.

These functions have no requirement on how they acquire the data, which presents

multiple options. For example, for database queries, the load function could use an

ORM, or perform a raw SQL query. Using an ORM can save some code but can some-

times lack the flexibility to express complex queries. Additionally, they can make the

actual SQL queries harder to predict and optimize. In the code smell server imple-

mentation, the load functions instead execute plain SQL statements on the server as

an ORM does not provide enough of a benefit. The load function passes the specifiers

of what is to be loaded into the parameterized SQL query as an array parameter, which

performs a LEFT JOIN on that array to correlate it with results. These results are

grouped back into result arrays using GROUP BY with the input index as the grouping

criterion and json_agg() to aggregate the list for each input into an array of objects.

In the case of querying for paginated lists, the LEFT JOIN is marked to be a LATERAL JOIN,

and the joined table is a subquery. Thanks to the LATERAL qualifier, the subquery has

access to the input to project it onto the correct results. The subquery can then apply

LIMIT, ORDER BY and a WHERE to limit the result to the desired page.

Listing 1 shows an example of a query that batch loads code smells for a life span while

supporting pagination for each list of code smells. The input is passed in as a query

parameter and contains an array of specification objects that specify for which

lifespan to load code smells for, how many and which page.

8 https://github.com/graphql/dataloader

https://github.com/graphql/dataloader

 25

SELECT json_agg(c ORDER BY c.ordinal) AS instances
FROM (
 SELECT
 ordinality,
 (input->>'lifespan')::uuid AS lifespan,
 (input->'first')::int AS first,
 (input->'after')::int AS after
 FROM ROWS FROM (unnest($1::jsonb[])) WITH ORDINALITY AS input
) AS input
 LEFT JOIN LATERAL (
 SELECT code_smells.*
 FROM code_smells
 WHERE input.lifespan = code_smells.lifespan
 AND code_smells.id > input.after
 ORDER BY id
 LIMIT input.first + 1
) c ON true
GROUP BY input.ordinality
ORDER BY input.ordinality

Listing 1: Example SQL query to batch-load code smells of a lifespan, paginated.

Cursor-based pagination is supported in this query by sorting by the IDs of the code

smells. The after input field, if set, contains the ID of the last code smell of the previ-

ous page. The page is continued after it through the WHERE clause code_smells.id >

input.after. The page size is set to the first value through the LIMIT clause. To note is

that one additional code smell is requested than asked for by the client. This last code

smell is stripped out in the application logic and used to determine the value of

PageInfo.hasNextPage, a field required to be returned by the Relay specification (see

Figure 2).

For data loaded from Git, loading is performed using Git commands that accept mul-

tiple inputs and parses the output to correlate it back to the input. For example, to get

the details of multiple commits, the batched commit IDs are passed as command line

arguments to git show, which accepts multiple revisions. The output is controlled

through a custom format through --format, which the application then parses from

the command output. The same command is used to get the difference between a

commit and its parents.

 26

6.4 REST Endpoints

For simpler use cases, there is also a fixed set of views exposed as REST HTTP end-

points each under their own URL. This can save on verbosity of having to write a

GraphQL query, for example in contexts where encoding a multi-line GraphQL query

into a JSON object to submit it to the server is not easily possible. Table 1 lists the

available REST endpoints.

Route Description
/analyses List analyses
/analyses/:name/analyzed-commits List analyzed commits of analysis

/analyses/:name/analyzed-repositories
List analyzed repositories of anal-
ysis

/analyses/:name/code-smell-lifespans
List code smell lifespans of analy-
sis

/repositories List repositories
/repositories/:name/commits List commits of repository
/repositories/:name/commits/:oid Get commit of repository
/repositories/:name/commits/:oid/code-smells List code smells in commit (F4)

/repositories/:name/code-smell-lifespans
List code smell lifespans in repos-
itory (F3)

/code-smell-lifespans/:id Get code smell lifespan by ID

/code-smell-lifespans/:id/instances
Get instances of code smell
lifespan

/code-smells/:id Get code smell by ID

Table 1: Supported REST endpoints.

The REST endpoints are implemented by executing an internal GraphQL query and

therefore come with a low implementation complexity cost. They otherwise go

through the same data loading logic.

Pagination is implemented for these endpoints through standard Link headers as de-

fined in RFC8288 [13]. Every paginated route supports the URL query parameters

first and after. If there is a next page, a Link header will be set with the next relation

pointing to the URL of the next page. This URL is identical to the current URL, except

that it has the after parameter set to the cursor of last element of the current page.

This allows supporting HTTP clients to automatically iterate all pages in a streaming

fashion and moves pagination concerns out of the JSON response body.

 27

7 Usage

This chapter walks through some example usage patterns of the code smell server,

covering exploration, addition of data and querying of inserted data.

The first step to use the code smell server is to navigate a web browser to the URL

/graphql of the server endpoint. Accessed in a web browser, this shows an interactive

query environment. The editor on the left side allows to edit the query with autocom-

pletion and help texts. Query variables can be set in the bottom left. The right side

shows the result as formatted, syntax highlighted and collapsible JSON. In addition

to autocompletion, clicking the “Docs” button in the top-right expands a panel that

lists the documentation of every API object, including a search box. This enables a fast

feedback cycle to find the right query that returns the data a user is looking for.

Figure 8: Interactive query explorer.

Figure 8 shows a screenshot of the query editor. The query displayed asks for the sub-

ject and date of the latest commit in repository “lanterna.” The result panel in the

middle displays the JSON response, which precisely contains the fields that were re-

quested.

 28

The first query a researcher is likely to run when starting a research project is inves-

tigate whether the server already has code smell datasets applicable for the project.

Listing 2 shows an example of a query for all analyses, with a small sample of analyzed

repositories and detected code smell lifespans for each analysis.

{
 analyses {
 edges {
 node {
 name
 analyzedRepositories(first: 10) {
 edges {
 node {
 name
 }
 }
 }
 codeSmellLifespans(first: 10) {
 edges {
 node {
 kind
 }
 }
 }
 }
 }
 }
}

Listing 2: Query for analyses with samples of repositories and lifespans.

If the available data is sufficient, the user can proceed to query it for the sake of an-

swering specific research questions as outlined in 7.2. If the existing data is not suffi-

cient, they will have to produce a new dataset by running their own code analysis and

adding the data to the server (for example with LibVCS4J).

7.1 Adding Code Smell Data

After producing a dataset through analysis, the researcher would first want to upload

the analyzed repository to the server. The easiest way for this is to push the repository.

The example in Listing 3 clones the repository “lanterna” from GitHub and pushes it

to an example server instance under http://example-endpoint.org.

 29

git clone https://github.com/mabe02/lanterna
cd lanterna
git remote add olfaction https://example-endpoint.org/git/repositories/lanterna.git
git push olfaction --all

Listing 3: Example command to push a repository.

After this, the repository is immediately available from the GraphQL API and is ready

to have code smells referencing it.

Code smell data is added through GraphQL mutations, which are like regular queries,

but cause side effects. Before being able to add code smell data, the researcher first

must create a new analysis (if not appending to an existing one). This is accomplished

through the createAnalysis mutation as shown in Listing 4 and can be easily done in

the query explorer as well.

mutation {
 createAnalysis(input: { name: "my-analysis" }) {
 analysis {
 name
 }
 }
}

Listing 4: Example mutation for creating a new analysis.

Adding the code smell dataset is more likely to be done through a script, which could

invoke the addCodeSmells mutation for every commit that was analyzed (even if no

code smells were found, to record that fact). The script would pass the input contain-

ing the analysis name, repository name, commit and code smells as a typed GraphQL

variable, which are attached to the JSON request body as a JSON object under the

variables field.

mutation($input: AddCodeSmellsInput!) {
 addCodeSmells(input: $input) {
 codeSmells {
 id
 }
 }
}

Listing 5: Parameterized GraphQL mutation to add code smells.

 30

Each code smell is associated to the lifespan it belongs to through a client-provided

UUID. If a lifespan with the given UUID does not exist yet, it is created by the server

with the information about the kind, repository and analysis. The order within the

lifespan is given through the ordinal field. The created code smells are returned in the

result of the mutation.

7.2 Querying Code Smell Data

After ensuring the server is filled with the necessary data, the researcher has the free-

dom to query any needed view on it to answer their research questions, through the

query explorer or through a script.

To get a vertical view (F4) of the code smells throughout the repository history, a

consumer can query code smell lifespans as displayed in Listing 6. For each lifespan

of the kind “EmptyCatchBlock,” this query asks for the instances of the lifespan

throughout history, and in which commit that instance was detected.

{
 repository(name: "lanterna") {
 codeSmellLifespans(kind: "EmptyCatchBlock") {
 edges {
 node {
 duration
 instances {
 edges {
 node {
 commit {
 oid
 subject
 }
 }
 }
 }
 }
 }
 }
 }
}

Listing 6: Example GraphQL query for a vertical view.

A horizontal view (F3) can be achieved by querying the code smells in each commit

as shown in Listing 7. As in Listing 6, the code smells are restricted to only the kind

 31

“EmptyCatchBlock.” For each code smell, the query then asks for the commit of the

code smell’s predecessor and successor, as well as the duration of its associated

lifespan.

{
 repository(name: "lanterna") {
 commits {
 edges {
 node {
 codeSmells(kind: "EmptyCatchBlock") {
 edges {
 node {
 lifespan {
 duration
 }
 predecessor {
 commit {
 oid
 }
 }
 successor {
 commit {
 oid
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

Listing 7: Example GraphQL query for a horizontal view.

The returned data may then be aggregated in any way by a client-side script. Thanks

to pagination resilient to mutations, this can also happen in a streamed fashion over

a longer period of time. How the data should be aggregated heavily depends on the

research question posed. Multiple such aggregations are presented as part of the eval-

uation with specific research questions in chapter 8.

 32

8 Evaluation

The goal of this section is to verify whether the server is capable of aiding in answering

real research questions. The focus of this evaluation is to assess the functionality of

the code smell server. To accomplish this, a handful of research questions from the

recent bachelor thesis “Evolution of Code Smells” by D. Schulz [6] were answered

through the help of the code smell server, in the form of scripts that call the API:

RQ 1. How long is the lifespan of specific kinds of code smells?

RQ 2. How scattered are code smells in each commit over time?

RQ 3. Are files that contain at least one code smell changed more often than files

without code smells?

The scripts could be written in any programming language that can make HTTP re-

quests and parse JSON, such as Python, Groovy, Bash, JavaScript, PowerShell or oth-

ers. For the evaluation, PowerShell was chosen, because its object-oriented pipeline

makes it particularly easy to interact with web APIs returning JSON. It is open source

and can run on the three major operating systems. Each script is described in detail

in the following sections for each research question.

To test the server, it first needed to be filled with real code smell data. The most im-

portant aspect is to generate as much code smell data as possible in an acceptable

amount of time. The quality of code smell detection matters less for the sake of the

evaluation, as it does not influence whether the server’s capabilities are sufficient for

the research questions.

For this reason, the analyzer PMD 9 was chosen to detect code smells. As it only per-

forms syntactic checks (no type or data flow analysis), PMD is less precise than other

analyzers, but due to its simpler nature it is also much faster than more advanced

alternatives like the analyzers used by Schulz. Another benefit is that LibVCS4J [5], a

Java library for repository mining, offers an integration for PMD. Together, LibVCS4J

was used with the PMD plugin in a small Java program that walks all revisions of the

selected repositories, analyzes them, and maps any findings to successors and prede-

cessors across commits. This analysis was done in parallel over multiple physical ma-

chines, in batches of the commits to analyze. The resulting code smells and code smell

9 https://pmd.github.io/

https://pmd.github.io/

 33

lifespans were then merged and uploaded sequentially into the code smell server (a

truly parallel insert is not possible because of database locks).

The code smells that are checked for by PMD can be configured in a ruleset. The

ruleset used for the analysis was inspired by the code smells researched by Schulz, as

shown by Table 2 below.

Code smell kind in
Schulz’s thesis

Rule in PMD

God Class GodClass

Long Method ExcessiveMethodLength

Long Parameter List ExcessiveParameterLength

— ExcessiveClassLength

Cycle —

Comments —

Data Class —

Switch Statements —

Unused Code UnusedPrivateField

Temporary Field SingularField

Method Chain —

Table 2: PMD ruleset.

Not all code smells researched by Schulz have an equivalent in PMD, and vice versa.

The code smell “Data Class” is included in PMD v6, but LibVCS4J unfortunately only

integrates with PMD v5 at the time of writing. Initially, the rule “LawOfDemeter” was

also included, which aims to detect a similar anti pattern as the “Method Chain” de-

tector. However, PMDs (likely simplistic) implementation of the rule caused the num-

ber of violations for it to be magnitudes larger than any other rule, presumably with

many false positives. It was therefore excluded. “ExcessiveClassLength” was not re-

searched by Schulz but is similar to “Long Method” and “Long Parameter List”. “Un-

usedPrivateField” only covers a small subset of “Unused Code,” as detecting the entire

range of possible unused code properly requires analysis far beyond the syntactic

checks PMD performs. For the same reason, there is no equivalent to the “Cycle” de-

tector. Lastly, “Comments” and “Switch Statements” happen to not be implemented

by PMD.

The repositories analyzed are a sample of 20 repositories of the repositories analyzed

by Schulz, featuring a variety in number of files and commits. Table 3 lists the sample

with additional metadata of each repository and number of findings. The amounts of

 34

detected code smells also show considerable differences, beyond the expected corre-

lation to the number of files and commits. Especially the repository “checkstyle”

stands out. With a high number of commits and files, as well as one of the highest

numbers of code smells per file, it amounts to over 3.7 million code smells, which is

more than all other repositories combined. “lombok” has the second-highest number

of code smells per file and consequently total number of code smells. Meanwhile, “jna”

also reaches a high code smell count despite having a small number of code smells per

file, due to a long history and large number of files. In total, circa 5.1 million code

smells were inserted in the database, from analyzing circa 24.6 million files.

Repository Name Commits Files in
HEAD

Files across
all commits

Code smells
across all
commits

arangodb-java-driver 1,438 366 322,993 29,704
awaitility 675 142 67,626 506
burstcoin 163 514 77,734 26,601
bytecode-viewer 294 245 94,635 25,495
checkstyle 9,010 2,837 13,191,256 3,716,252
Cleanstone 856 857 427,156 58,241
feign 806 283 127,048 6,567
flexy-pool 333 293 57,732 1,464
jackson-datatype-money 457 33 18,913 1,200
jacoco 1,667 867 938,394 19,210
jeromq 1,075 410 291,184 58,978
jna 3,724 1,114 3,755,382 224,099
jnr-ffi 966 333 219,405 32,048
jolt 392 398 88,798 784
junit-dataprovider 562 238 57,934 2,311
lombok 2,857 1,654 2,403,193 749,091
MutabilityDetector 1113 311 793,561 52,188
one-nio 220 291 46,961 7,399
randomizedtesting 912 512 314,641 13,526
rest-assured 1926 671 1,292,346 31,351
Total 29,446 N/A 24,586,892 5,057,015

Table 3: Analyzed repositories and found code smells.

Because it is of interest to see how the server performs in relation to the amount of

data, all three evaluation scripts were run after inserting the analysis result for each

 35

repository, with their runtime measured. The measurements and the results of each

script are described in the following sections.

The server and scripts were run on a dedicated server with the following specifica-

tions:

• OS: Debian GNU/Linux 10 (buster)

• CPU: Intel® Core™ i5-2400 CPU @ 3.10GHz

• Memory: 16 GB

• Storage: 256GB SSD

All three scripts are using pagination to not reach the memory limits of the server in

the high numbers of code smells, explained in detail in the following sections.

8.1 Research Question 1
How long is the lifespan of specific kinds of code smells?

This question can be answered by querying the server for all code smell lifespans, spe-

cifically their duration field. To make the lifespans comparable across repositories,

the durations are recorded relative to the total age of the project. The total age of the

project is calculated by querying the first and last commit with their authoring date

and calculating the duration between them. This is slightly different than Schulz’s ap-

proach of counting the number of commits [6, p. 39], because it gives weight to the

variable time between commits. The script calculates the relative age for each code

smell lifespan as a number between 0 to 1. Like in Schulz’s thesis, the fractions for

each code smell lifespans are grouped by their kind.

Because all lifespan duration data would not fit into memory (neither of the client nor

the server), the script makes use of pagination (F7) on the codeSmellLifespans connec-

tion. Since this connection is exposed on each repository and the script additionally

needs to query the first and last commit, it first queries only the names of all reposi-

tories (unpaginated). For each repository, it queries the commits connection twice un-

der two separate field aliases: one fetching only the first commit by paginating with a

page size of 1, the other fetching only the last commit by paginating backwards with

the same page size.

It should be noted here that fetching the last commit (paginating backwards), in op-

posite to fetching only the first commit, requires the server to iterate all commits. This

 36

is because Git’s commit graph only stores parent references and a pointer to the tip

of the history (HEAD), which means there is no way to determine the initial commit

without iterating all commits. The backwards pagination is still useful, as it saves

sending all the interim commits over the network.

Once the script retrieved the commit dates and calculated the total project age, it re-

quests the code smells lifespans in pages, before moving on to the next repository. The

page size can be varied depending on the available system resources on the server and

client. There is no straightforward way to determine the ideal page size. In general, a

higher page size is expected to perform better as it reduces the number of requests

needed, but a page size too high can exceed memory constraints on client and server.

For this evaluation, the page size was set to 700 lifespans. In total, 46 HTTP requests

were issued to gather all data.

Like all scripts, this script was run repeatedly while filling the server after inserting

each repository. The runtime of the script was measured for each run. Figure 1 shows

the runtime at each run in relation to the number of code smell lifespans present in

the database after inserting the respective repository.

Figure 9: RQ1 script runtime by number of inserted lifespans.

bytecode-viewer,
0:01:08

checkstyle, 0:01:07

jeromq, 0:01:14

jna, 0:01:14

junit-dataprovider,
0:01:20

lombok, 0:01:36

y = 2E-08x + 0.0007
R² = 0.8293

0:00:00

0:00:10

0:00:20

0:00:30

0:00:40

0:00:50

0:01:00

0:01:10

0:01:20

0:01:30

0:01:40

0:01:50

 - 5,000 10,000 15,000 20,000 25,000

D
ur

at
io

n
(h

:m
m

:s
s)

Total number of code smell lifespans

 37

We can generally observe that the runtime increases with the number of code smell

lifespans, but in stages, at certain breakpoints. This leads to the suspicion that the

runtime is not directly tied to the number of lifespans, but mostly influenced by the

number of HTTP requests made as part of a run, as the number of requests has to

increase every time the last page of lifespans overflows and requires a request for an-

other page. This suspicion is confirmed by Figure 10, which demonstrates a much

better correlation between number of HTTP requests and total script runtime.

This is a good property to observe, because it means that analyses can optimize

runtime by parallelizing HTTP requests. The API server can be scaled horizontally,

i.e. run with multiple replicas and a load balancer, to handle more concurrent re-

quests.

Figure 10: RQ1 script runtime by number of HTTP requests.

Deviations from the linear approximation can be caused by various reasons. Besides

the pagination, PostgreSQL’s data storage and query execution are highly dynamic.

Completely different execution plans may be chosen depending on the amount of data

under operation. This could explain why the evaluations at the very beginning did not

follow the linear progression as closely. There are also optimizations to the data stor-

age that run in the background periodically (VACUUM) and can have positive impacts

on query performance. Since there is a lot of network and file system IO involved, each

runtime also contains an element of randomness that can also contribute to somewhat

bytecode-viewer,
0:01:08

checkstyle, 0:01:07

jna, 0:01:14

junit-dataprovider,
0:01:20

lombok, 0:01:36

y = 1E-05x + 1462
R² = 0.8959

0:01:00

0:01:09

0:01:18

0:01:26

0:01:35

0:01:44

0:01:52

 20 25 30 35 40 45 50 55 60 65 70

D
ur

at
io

n
(m

in
ut

es
)

Number of HTTP requests

 38

surprising deviations. An example of this is the run after the insertion of “checkstyle”

at 25 requests/1:07, where the evaluation took slightly less time than at the previous

run despite more data having been added.

The aggregated results of the scripts can be found in Table 4. This includes 29,446

code smell lifespans with a total of 5,057,015 individual code smell instances. Com-

pared to Schulz’s results, all code smell kinds equally appear to have shorter lifespans.

This could be attributed to a variety of differences in the measurement. The biggest

one is the different approach to calculating the total project age, which means these

percentages represent the fraction of time the code smell was present in the history,

as opposed to the fraction of commits. Another potentially relevant implementation

detail is that the server counts the lifespan duration as the time between the first and

last known occurrence of the code smell, as opposed to the alternative of counting

between the first occurrence and the commit that removed the code smell. This ex-

plains why all kinds in this evaluation have a minimum duration of 0%, which in this

measurement corresponds to a code smell that only lived for one commit. With the

alternative measurement, a lifespan of 0% would not be possible.

Kind Count Avg. St. Dev. Min. Max.
ExcessiveClassLength 1,067 1.97% 13.90% 0.00% 100.00%
ExcessiveMethodLength 2,099 8.19% 27.43% 0.00% 100.00%
ExcessiveParameterList 1,373 1.02% 10.05% 0.00% 100.00%
GodClass 1,911 7.48% 26.32% 0.00% 100.00%
SingularField 2,540 3.43% 18.19% 0.00% 100.00%
UnusedPrivateField 12,130 3.57% 18.55% 0.00% 100.00%

Table 4: Lifespan of code smells by kind.

Equal to Schulz’s measurements, all kinds feature at least one code smell that spans

the entire project history and generally a lot of outliers, as visualized in Figure 11. God

class and excessive method length are also the two most persistent code smells from

the researched set, but in Schulz’s results long methods live longer than god classes.

This could be caused by a different configuration of the analysis – if the threshold for

long methods is higher, a refactoring that removes some parameters may still not be

enough to end the smell’s lifespan in his analysis, but may already have fallen below

the threshold by PMD’s metrics. At the same time, with a lower threshold more in-

stances would get detected (and not long after be detected as removed again), causing

 39

the code smell kind to appear more volatile and consequently show shorter lifespans.

The same applies to excessive method lengths.

Figure 11: Lifespan of code smells by kind as box plot.

8.2 Research Question 2
How scattered are code smells in each commit over time?

Schulz defined the “scatter” of code smells as the pairwise distance between the file

locations of all code smells in a given commit, where the distance is defined as the

number of directory changes one has to walk to get from one file to the other [6, p. 3].

Further, he defined the “breadth” of a code base at a given commit as the maximum

pairwise directory distance between all files that exist in the commit. For each code

smell location (grouped by code smell kind) in each commit he calculated the pairwise

directory distances and divided them by the maximum breadth of the code base at

that commit. This fraction was defined as the “scatter index.” These scatter indices

were then aggregated per code smell kind.

The data that needs to be queried for this analysis are all the commits of all reposito-

ries. To calculate the breadth, the query needs to include the paths of all the files at

each commit. Furthermore, it needs the code smells at that commit with the file paths

of their locations. This makes RQ2 the most data- and compute-intensive research

 40

question to answer. To handle this, it was split into two scripts: RQ2a gathers all the

necessary data and stores it in temporary files, and RQ2b does the client-side compu-

tation. In opposite to other scripts, only the first part was run for each repository dur-

ing insertion, as the client-side computation is independent of the server performance

and would increase the evaluation time by magnitudes.

Figure 12 displays the runtime after each repository by the number of HTTP requests

needed, with a particularly good linear correlation (𝑅𝑅2 = 0.98). In this evaluation, the

script paginates over commits (i.e. always fetches all files and code smells). The page

size for commits is initially set to 1 (a single commit with all its files and code smells),

but adjusted dynamically depending on how many files and code smells were found

in the previous page. This is a heuristics-based optimization to reduce the number of

requests for ranges of commits with only few files or code smells.

Figure 12: RQ2 script runtime by number of HTTP requests.

After saving all the results from the first script, the second script iterates over all com-

mits and calculates the pairwise path distances between each file and each code smell

location. This second part is very computationally expensive due to the complexity of

the pairwise comparison of the file paths, but it is parallelizable. Similar to the seed

script, this part was split into 297 jobs of 100 commits each that were distributed over

multiple physical machines. Instead of PowerShell, this script was translated to

checkstyle, 0:15:46 jeromq, 0:17:38

jna, 0:20:17

junit-dataprovider,
0:21:53

lombok, 0:24:38

y = 4E-05x + 0.0042
R² = 0.9818

0:00:00

0:05:00

0:10:00

0:15:00

0:20:00

0:25:00

0:30:00

 150 200 250 300 350

D
ur

at
io

n
(h

:m
m

:s
s)

HTTP Requests

 41

JavaScript, which showed a better performance in the CPU intensive task. All jobs

were finished after 3h 21min and produced a total of 352,536,602 data points encoded

in 11.6GB of CSV. The results of the final run can be found in Table 5 below.

Kind Avg. St. Dev. Min. Q1 Med. Q3 Max
ExcessiveClassLength 0.44 0.28 0.00 0.12 0.61 0.63 0.96
ExcessiveMethodLength 0.46 0.27 0.00 0.23 0.46 0.71 1.00
ExcessiveParameterList 0.44 0.30 0.00 0.13 0.57 0.70 0.96
GodClass 0.45 0.26 0.00 0.21 0.38 0.69 1.00
SingularField 0.35 0.27 0.00 0.12 0.25 0.68 1.00
UnusedPrivateField 0.37 0.26 0.00 0.21 0.26 0.30 1.00

Table 5: Scatter of code smells by kind.

We can see that the detected code smells were scattered across a median 25% to 61%

of their project. All kinds are generally less scattered than in Schulz’s analysis [6, p.

46]. The differences are most likely due to the differences in PMD’s detection ap-

proaches. Figure 13 visualizes the result as a box plot.

Figure 13: Scatter of code smells as box plot.

 42

8.3 Research Question 3
Are files that contain at least one code smell changed more often than files with-

out code smells?

To answer this question, the script needs to inspect the file changes of the commits in

each repository, which is paginated with a page size of 1. Schulz constrained the list of

commits to those referencing an issue number [6, p. 50]. This is possible with a regu-

lar expression passed to the messagePattern parameter of the commits resolver, which

is queried by the script in pages of 1,000 commits. File changes are available from the

Commit type in the combinedFileDifferences field, which contains the difference be-

tween the commit and its parents in a structure representing Git’s default combined

diff format [14, pp. 282-284]. We are interested in checking whether the file had any

known code smells prior to each commit. The corresponding file in the parent commit

is exposed on the CombinedFileDifference type through baseFiles. This is a list, since a

commit can have multiple parent commits and a file therefore multiple parent files.

For each parent file, using pagination, we query a single code smell to see if at least

one code smell exists. For each commit, the script partitions the file differences by

whether at least one parent file had at least one code smell.

Figure 14 again shows the script runtime after each inserted repository in relation to

the number of HTTP requests, which again shows a good linear correlation (𝑅𝑅2 =

0.98). Since only repositories and commits are being paginated, this means the

runtime scales linearly (but in stages due to page sizes) with the number of reposito-

ries and commits added.

The final run over all repositories took 11 seconds. This low runtime is mostly thanks

to constraining the commits to only those that reference an issue, which reduces all

28,958 commits to only 468. However, given the liner scaling we can infer that this

analysis would still perform well even for large data sets.

 43

Figure 14: RQ3 script runtime by number of HTTP requests.

Table 6 shows the aggregated output of the script. The column “Sum” shows us the

total number of file changes in each category. The average column tells us how many

files of each category are changed per commit on average. Finally, minimum and max-

imum show the minimum and maximum number of files any commit changed with

and without code smells.

File changes Sum Avg. St. Dev. Min. Med. Max.
With code smell 427 1.044 3.151 0 0 49
Without code smell 1,522 3.721 8.173 0 2 117

Table 6: Number of changes to files with and without code smell.

We can see that file changes to files without code smells are more than three times as

common in our dataset. This leads us to the opposite conclusion of Schulz’s result,

which had 1.2x as many changes to files with code smells.

An important aspect that may explain this is that fewer code smell kinds were

searched for in our analysis. This means overall, there is a smaller chance of a code

smell being detected in a file, and therefore a smaller chance for a commit to change

a file with a code smell. Especially the “comments” code smell Schulz analyzed is a

code smell that is likely observed in almost every file, as indicated by Schulz’s results

for RQ2 [6, pp. 46-48]. This code smell was not analyzed as part of this evaluation, as

checkstyle, 0:00:02

jeromq, 0:00:05

jna, 0:00:06

junit-dataprovider,
0:00:07

lombok, 0:00:09

y = 7E-06x - 2E-05
R² = 0.9794

0:00:00

0:00:01

0:00:02

0:00:03

0:00:04

0:00:05

0:00:06

0:00:07

0:00:08

0:00:09

0:00:10

0:00:11

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D
ur

at
io

n
(h

:m
m

:s
s)

HTTP Requests

 44

PMD does not include an equivalent rule. Additionally, Schulz partitioned file changes

by whether the file contained a code smell at the respective commit, which means

commits that introduced code smells are also counted. Besides these aspects, there is

also a plausible explanation for this result: Files with code smells can be significantly

harder to change than files without code smells and may receive less changes because

of that.

Figure 15 visualizes the results as a box plot. Outliers were omitted for brevity. The

lower quartile of changes with code smells is equal to the minimum and median of 0,

which means that a quarter of all commits contained zero changes to a file with code

smells. The third quartile is at 1, meaning that three quarters of all commits changed

zero or one file(s) with code smells.

Figure 15: Box plot of changed files by code smell presence. Outliers omitted.

Figure 16 includes outliers, which shows that the number of files changed in a commit

can have extreme outliers in commits that touch a sizable portion of the repository.

The highest outlier in both categories is a commit 10 in “lombok.” It automatically re-

factored 117 files without code smells and 49 files with code smells to solve a refer-

enced issue.

10 https://github.com/rzwitserloot/lombok/commit/889c935ec9f0e45bba1e88b0f256e1f29a734f39

https://github.com/rzwitserloot/lombok/commit/889c935ec9f0e45bba1e88b0f256e1f29a734f39

 45

Figure 16: Box plot of changed files by code smell presence. Outliers included.

 46

9 Conclusion

The goal of this thesis was to research whether a server for code smell data can be

built to aid in research on code smells and their evolution. Making code smells data

more easily accessible can accelerate research projects in the space, lower the bar for

new research and enable evaluations of larger data sets than before.

A rich graph data model for code smells, their lifespans, and version control infor-

mation was conceptualized for the server. A web API was implemented that exposes

this rich data model, allowing users to perform flexible queries that suit their needs.

This API was backed by a storage backend, which was tailored to the domain and ex-

pected access patterns.

To verify the built server can assist research in a meaningful way, an instance was

deployed and filled with over 5 million real code smells and their lifespans. This data

was gathered by running an analysis with PMD over more than 24 million files in circa

29 thousand commits of 20 distinct repositories.

The server was then used to answer three example research questions from a recent

bachelor thesis [6], applying the same aggregations and visualizations to demonstrate

the feasibility. By incrementally adding more data to the server and repeating the

evaluation after each incremental addition, it was shown that the time required to run

such an evaluation scales linearly.

The results of the evaluation in part showed significant differences to prior analysis

by Schulz, for which potential causes were identified, including differences in the

analysis tools used. This indicates that the server can also be used to compare differ-

ent analysis tools with each other, which is another interesting application.

9.1 Outlook

As mentioned throughout the thesis, the built server provides a solid foundation for

many potential future improvements, that can ease its use or open it up to more use

cases.

Performance is an area that the server could improve, although it needs to be weighed

against the cost in flexibility an improvement might entail. The most interesting ave-

nue of exploration here would be the experimentation with alternative databases, that

 47

can store and query data in a way that matches the domain model more closely (e.g.

graph databases) and that are built to handle enormous amounts of data.

The data model could also be modified to model a more complex relationship between

code smell and version history, if tools arise that can make use of this. For example, a

code smell could have 0. . 𝑛𝑛 predecessors and successors instead of 0. .1, which would

make code smell lifespans a graph rather than a linear history. This would be closer

to real data model of the Git version history, however tools like LibVCS4J [5] are cur-

rently not equipped to make use of this freedom. Changing this aspect would likely

have severe impact on query complexity and, in turn, performance, which may neces-

sitate the mentioned exploration of a different storage backend that is more suited to

store this graph-like data.

It also makes other concepts harder to define, e.g. the duration of a lifespan is not

clearly defined if code smells can “branch off.” A code smell may then be considered

“removed” in one branch, but still existent in another. In reality, the analysis would

then want to treat one of the branches as the “main” branch, which means from the

perspective of the analysis, lifespans are linear again. Since the existent code smell

evolution research usually considers only a linear history [1] [2] [6] (although some-

times constrained by the limitations of SVN), the current model can be seen as suffi-

cient for most research use cases.

Feature-wise, one can imagine a variety of additional query capabilities, e.g. the abil-

ity to query code smells affecting a specific line in a file.

To facilitate more users and to open up an instance to the general public, the server

would eventually need an access control system that regulates write access to the

stored data.

 48

10 Works Cited

[1] J. Harder, "How Multiple Developers Affect the Evolution of Code Clones," in

2013 IEEE International Conference on Software Maintenance, Eindhoven,

Netherlands, 2013.

[2] R. Peters and A. Zaidman, "Evaluating the Lifespan of Code Smells using

Software Repository Mining," in 2012 16th European Conference on Software

Maintenance and Reengineering, Szeged, Hungary, 2012.

[3] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus and T. Dybå, "Quantifying

the Effect of Code Smells on Maintenance Effort," in IEEE Transactions on

Software Engineering, 2012.

[4] M. Fowler, Refactoring: improving the design of existing code, Addison-

Wesley, 1999.

[5] M. Steinbeck, "LibVCS4j: A Java Library for Repository Mining," in 20.

Workshop Software-Reengineering und -Evolution, Bad-Honnef, 2018.

[6] D. Schulz, „Evolution von Code Smells,“ University of Bremen, Bremen, 2019.

[7] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshyvanyk and

A. De Lucia, "Landfill: an Open Dataset of Code Smells with Public

Evaluation," in Proceedings of the 12th Working Conference on Mining

Software Repositories, Florence, Italy, 2015.

[8] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk and A. De

Lucia, "Mining Version Histories for Detecting Code Smells," in IEEE

Transactions on Software Engineering, 2015.

[9] A. Lozano, M. Wermelinger and B. Nuseibeh, "Assessing the impact of bad

smells using historical information," in Ninth International Workshop on

Principles of Software Evolution: In Conjunction with the 6th ESEC/FSE

Joint Meeting, New York, NY, USA, 2007.

 49

[10] V. Lenarduzzi, D. Taibi and A. Janes, "How Developers Perceive Code Smells

and Antipatterns in Source Code: a Replicated Study - Raw Data," 01 06 2017.

[Online]. Available: https://data.mendeley.com/datasets/8n6k8dfw2f/1.

[Accessed 27 01 2019].

[11] Microsoft, "Language Server Protocol Specification - 3.15," 24 07 2019.

[Online]. Available: https://microsoft.github.io/language-server-

protocol/specifications/specification-current/. [Accessed 27 01 2019].

[12] R. T. Fielding and R. N. Taylor, "Architectural styles and the design of

network-based software architectures," University of California, Irvine, Irvine,

CA, 2000.

[13] M. Nottingham, "Web Linking," RFC Editor, 2017.

[14] S. Chacon and B. Straub, Pro Git, vol. 2, New York: Apress, 2014.

[15] Facebook Inc., "GraphQL Cursor Connections Specification," [Online].

Available: https://facebook.github.io/relay/graphql/connections.htm.

[Accessed 15 02 2020].

	Declaration of Academic Honesty
	Table of Contents
	Table of Figures
	List of Tables
	Table of Listings
	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Goal
	2.1 Features
	2.2 Non-Goals

	3 Prior Work
	4 Technology Stack
	5 Data Model
	5.1 API
	5.1.1 Pagination

	5.2 Storage

	6 Implementation
	6.1 Git Repository Upload
	6.2 GraphQL Endpoint
	6.3 Data Loading
	6.4 REST Endpoints

	7 Usage
	7.1 Adding Code Smell Data
	7.2 Querying Code Smell Data

	8 Evaluation
	8.1 Research Question 1
	8.2 Research Question 2
	8.3 Research Question 3

	9 Conclusion
	9.1 Outlook

	10 Works Cited

