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1 Introduction

This document describes the RoboCup 3D simulation league team Virtual Werder 3D of the Intelli-
gent Systems department of the Center for Computing Technologies (TZI) at the Universitaet Bremen.
RoboCup is an international initiative to bring together researchers from different fields like artifi-
cial intelligence and robotics. The long-term goal is to ”develop a team of fully autonomous humanoid
robots that can win against the human world soccer champion team ” by the year 20501. RoboCup con-
sists of different disciplines (RoboCupSoccer, RoboCupRescue, RoboCupJunior, and RoboCup@Home).
RoboCupSoccer subdivides into different leagues– the real robot leagues (small-size, mid-size, Hu-
manoid) and the simulation leagues. The 3D simulation league has been part of a RoboCup tournament
in 2004 for the first time. It is a follow-up of the elder 2D simulation league. While the 2D simulation
league simulates a flat world and lacks of a third dimension and a realistic physical model the 3D league
addresses these issues [KO04].

Virtual Werder was founded in the year 1999 as a 2D simulation team. The 2D team took part at
various RoboCup events starting in the year 2000 [DHS+01]. Efforts in the 3D simulation league have
been started from the very first beginning of this league and Virtual Werder 3D has participated in
all international 3D simulation league tournaments so far (Lisbon 2004, Osaka 2005, Bremen 2006,
[BKN+04, KLP+05, LPR+06]). The greatest success has been to reach the quarter finals 2006 in
Bremen where Virtual Werder 3D lost its decisive game and managed to reach rank eight out of 32
participating teams at the end.

This document consists of relevant information about our simulation league team. It describes how
to install and use the team and gives an insight into the architecture, configuration and formation
files and many different components like the knowledge base, behaviors and skills, communication and
localization aspects. The intention of this paper is to describe how the system works and to provide
means for future developers working on or extending the system.

Within this document it will be referred to different server parameters in some sections (e.g., the catch
radius of the keeper’s catch effector). These values are based on the RoboCup 3D soccer simulation
server version 0.5.2 from May 24 2006. Text passages where other values are used are explicitely
marked.

The documentation describes the Virtual Werder 3D agent of August 14 2006 (SVN rev. 1957) which
functionally is compliant with the binary that took part at the RoboCup 2006 in Bremen but includes
a number of performance improvements.

2 Installation and Usage

This section describes the system requirements, how the agent can be compiled and gives a more
detailed view on the configure script as well as the way the agent is created, linked and finally run.

2.1 System Requirements

The following components have to be installed on the system in order to compile the agent binary.
Compiling and running the agent has been tested with the versions given below. Other versions may
work as well but have not been tested.

• gcc 4.0.1 / gcc 4.0.2 / gcc 4.1.0

• boost library 1.3.3

• bison 1.875 / bison 2.1

• flex 2.5.4 / flex 2.5.31

1http://www.robocup.org
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2.2 Configure and Debug Options

Configuring the agent is done by, as usual, running the configure script. Though efforts had been
made to utilize the autotools (automake/ autoconf)2 we found out that due to some specialities in
our source code regarding the build-order and the automated parser and code generation, using the
autotools would have caused more difficulties than benefits. This caused us to create a configure script
on our own. As the development of the agent continued and the code grew more and more complex
the configure script had to meet an increasing number of requirements. Most of them were handled by
adding some parameters to it which will be explained in the following.

All parameters are provided using the common form −−PARAMETER or if arguments have to be
provided −−PARAMETER=ARGUMENT.

If program locations have to be provided the syntax is PROGRAM NAME=ABSOLUTE PATH.

• −−help If this option is provided, a listing of all available options is printed to the screen.

• −−exec=NAME This option allows to change the name of the executable. As a default the
executable is called agent.$USER (e.g., if the user is called werder the executable would be
named agent.werder).

• −−prefix=PREFIX Providing this option allows for the user to set a custom prefix path. The
prefix path defines the location where the executable is copied to when make install is called. The
default value for this parameter is the user’s home directory $HOME.

• −−sym prefix=PREFIX Providing this option allows for the user to set a custom symlink prefix
path. The symlink prefix path defines the location where the symbolic link to the executable is
created at. The default value is the user’s home directory $HOME.

• −−builddir=BUILD DIR This option allows the user to change the directory where the object
files, the binary and the library are built in. The default location is ./agent.build.

• FLEX=PATH, BISON=PATH Our agent uses automatically generated parsers requiring both flex
as well as bison to be available on the system. If the the flex or bison executable is located in
a non-standard directory (e.g. /usr/bin or /usr/local/bin) this parameter is used to specify
the location.

• −−flags=FLAGS This option allows the user to provide additional compiler flags. Multiple flags
have to be separated by : tokens. For a list of available compiler flags, please refer to the gcc
manual [SC06].

The following parameters define the behavior of the debug streams (cf. section 4).

• −−nodebug This option completely disables any debug output, including the monitor and the
statistic debug streams. This should be the default option when compiling a binary for a compe-
tition for after compilation the debug system won’t need any CPU time. This option overrides all
following options. That means if −−nodebug is provided in combination with −−nobasicdebug,
−−nomonitordebug or −−nostatisticdebug the latter will not have any effect.

• −−nobasicdebug This option disables the basic debug streams d err, d warn, d info, d dbg and
d misc but leaving the monitor and statistic streams d mon and d statistic enabled.

• −−debuglevel=LEVEL This option disables all debug streams below the provided level. Allowed
options are err, warn, info and dbg. Providing info for example will disable dbg and misc, leaving
err, warn and info enabled. Disabled debug streams are not compiled into the code requiring no
CPU time during binary execution.

2http://sourceware.org/autobook/

http://www.tzi.de
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• −−nomonitordebug This option disables the monitor debug stream.

• −−nostatisticdebug This option disables the debug stream used for statistic debug information.

• −−nocolor Normally, the debug levels receive an individual coloring for better distinguishability.
This option disables the coloring, setting all debug outputs to the standard console output color
scheme.

2.3 Usage

The process is very similar to the standard way of configuring, building and installing software. First the
configure script configure is executed with the desired parameters. It creates a customized Makefile.
This makefile is then used by make to compile and link the executable while make install can be used
to both compile and install the executable into either the default or a customized location. Another
makefile option is make symlink which installs the executable and afterwards creates a symbolic link to
it.

2.3.1 Binary and Library

Using the binary and the library is pretty straightforward. After successful compilation both are placed
in their appropriate directories. Running the agent only requires the user to add a matching entry
into the agentdb.xml file. If this entry exists the teamname only has to be entered into the the
rcssserver3d.cfg and at the start of the server the binary is automatically launched.

2.3.2 agentdb.xml

The agentdb.xml is the team or agent library of the rcssserver3d. For each team the teamname,
location of the binary and possible needed startup parameters have to be provided. The following
entry would match if either the user is named vw3d or the −−exec=vw3d option was provided to
the configure script. In addition the directory /data/agents/ exists and the prefix option was set
to −−prefix=/data/home/agents followed by a make install, setting an appropriate symbolic link into
that directory.

<agent_type_external name="vw3d">
<inputfd>3</inputfd>
<outputfd>4</outputfd>
<timer>perfctr_instr 10000</timer>
<working_dir>/data/agents/agent.vw3d</working_dir>
<exec_line>./vw3d vw3d</exec_line>

</agent_type_external>

3 Architecture

This section describes the basic architecture of the agent framework and the idea behind it. It is divided
into two subsections. In the first subsection an overview of the framework and its structure is given,
followed by a brief description of the more vital parts. The second subsection focuses on the framework
core, the way framework classes are handled in terms of creation, access and destruction followed by a
description of the agent main loop including the used timing model.

http://www.virtualwerder.org
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Figure 1: Overall architecture

3.1 Overall Architecture

The framework consists mainly of two parts. The first part encapsulates everything which is needed
for the percept - reason - act cycle, namely the agent main loop, behaviors, skills, effectors and the
communication interface. These parts are arranged in layers with each element in one layer only capable
of utilizing elements in its own or the directly underlying level. As an example the agent is only able to
use a behavior from the subordinated behavior layer. Only elements from this layer are allowed to use
elements in the skill layer. Only skills are allowed to either use skills or elements in the effector layer.
Finally, only effectors are able to use the communication layer, completing the hierarchy. Apparently,
this structure does not only help to define clear responsibilities throughout the framework but it also
makes the code easy to extend and maintain. The overall architecture is illustrated in Fig. 1.

The second part encapsulates all the knowledge which is needed for reasoning and performing all
calculations. The knowledge base holds all information about the world, as well as all information
about the agent itself. Access to the knowledge base is possible for all classes in the framework through
a defined interface which supports low- as well as high-level queries for data access and prevents
accidental corruption of data (cf. section 5).

3.2 Architect Paradigm

Early development discussions and experiences with the first version of our agent brought up an issue
which grew more and more important as the complexity of the framework increased. The majority
of classes needed pointers or references to other classes during runtime, some of them even needed
information from other classes during their creation. This had a direct impact on the build order of all

http://www.tzi.de
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framework classes which, as a direct consequence of the increasing number of objects, became more
and more complex. The main development tasks were:

• Find a build order at runtime that allows all instances to be created one after another and assures
all information needed to be present at that point.

• Find a way to determine an owner for each instance that is responsible for creating and destroying
this particular instance.

• Assure this system to be extendible. Adding classes should not result in having to change the
whole build order throughout the framework.

The solution to this problem was the so-called architect paradigm, an extendible way to handle the
construction, initialization, connecting and deletion of all managed framework instances.

3.2.1 Architect

The central point of the architect-paradigm is the architect itself. The architect is a special class inside
our framework. Its task is to assemble the whole framework at agent startup and disassemble it before
the agent process is terminated. For better handling the processes are split up: the assembly is divided
into the create-, the link- and the init-, the disassembly is divided into the finalize- and the delete-phase.
To maintain clear interfaces and to allow polymorphism, all classes which are to be created/deleted in
these phases have to inherit from a base class called ’constructable’ which defines appropriate (pure)
virtual functions which have to be implemented in order to insert this class into the framework.

• Assembly

– create: In this phase all managed object instances are created by the architect by calling
the respective class’s basic constructor. Pointers to these instances are held afterwards in a
special structure inside the architect. Upon completion, instances of all managed framework
classes have been created successfully and are available for the next assembly phase.

– link: In this phase every class has the possibility to link itself to other classes, e.g., get
pointers to other framework classes. For this purpose the ’link’ method (inherited from
constructable) is called for every class, with a list with of all classes created in the ’create’
phase as an argument. Though all framework objects are present, no data access or func-
tion invocation of foreign classes should take place in this phase. Upon completion, every
framework class has all pointers to classes it needs during runtime.

– init: In this phase all classes have the possibility to initialize themselves using either their or
foreign data members. Upon completion, the framework is successfully set up and able to
run.

• Disassembly

– finalize: In this phase all classes have the possibility of shutting down themselves. This may
include deletion of more sophisticated internal structures or saving important variables and
learned values to the disk. Upon completion, all classes are ready for deletion.

– delete: In this phase all framework classes are deleted by the architect by calling their
destructor. Upon completion all framework classes are deleted with only the architect re-
maining.

3.2.2 Dynamic Loading of Framework Classes

The architect, as the instance responsible for the assembly and disassembly, has to know all classes
belonging to the framework. To keep the architect code simple and prevent it from having to be altered

http://www.virtualwerder.org
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every time a new class is added to the framework, we decided to use dynamic class loading. To maintain
this task a dynamic library is created, containing all framework classes. In addition a list of these classes
is stored in a configuration file named classes.cfg.

During runtime the architect reads the classes.cfg retrieving a list of all framework classes. After-
wards the dynamic library is opened and for every entry in the classes.cfg an appropriate instance is
created, linked and initialized as described in section 3.2.1.

This way of handling framework classes has the benefit that adding a new class is very simple. It only
has to inherit from ’constructable’, implement the link, init and finalize methods and define an extern
C function returning an instance of this class (in order to allow dynamic loading). The class name has
then to be put into the classes.cfg which will result in the architect creating, linking and initializing
this class, too, when assembling the framework.

3.3 Agent

One special class inside the framework is the agent class. This class defines a function called run which
encapsulates the entire agent loop - namely the percept-reason-act cycle. At first the main loop will be
described in general, afterwards the way the timing is handled should be looked at in detail.

3.3.1 Main Loop - Basics

At the start of each cycle the server message is parsed. This means that all necessary information is
put into the knowledge base and some calculations like the prediction of ball trajectories or the filtering
of agent positions are made. Afterwards the appropriate behavior is selected. Selection depends on
role of the agent. Currently, roles do not change during the game, but the mechanism would allow for
example a defender to change into an attacker on the fly by selecting an appropriate behavior.

If a behavior is selected the behavior is executed afterwards. In the behavior an action is selected
depending on the current world state, for example intercept the ball. The behavior then calls the
appropriate skill which, after some calculations, will use one of the effectors to execute an action like
drive or kick. Afterwards a thinking done message is sent to the server which ends this cycle.

3.3.2 Main Loop - Timing

As it is described in the server manual [ROME06] the interval between messages that contain updated
world state information amounts to 20 simsteps. Normally, the agent would only be able to act as a
response to these messages. But acting once every 20 simsteps would have some disadvantages in terms
of reaction time and position accuracy. Fortunately, the SPADES system [Ril03] allows the agent to
request notify messages for certain time points within these 20 simsteps, thus providing the possibility
for the agent to theoretically reason/act every simstep (the length of which is currently set to 10 ms).

In our case the agent may or may not request another time notify, depending on the behavior which
was executed before. If, for example, the agent is close to the ball, only acting 20 simsteps later could
lead to losing the ball or an inaccurate pass. In this or similar cases the behavior sets an appropriate
flag, which tells the main loop to not only finish the current percept-reason-act cycle, but to request
another cycle for the next simstep.

4 Debugging

4.1 General

At some point in the development of our agent we needed a way to debug the agent not only by using
debbugers but to actually print some information into the agent logfile, e.g., in order to see if the
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intended behavior is used. Though using cout would be sufficient for smaller programs, the need to
comment out and recompile the corresponding parts to completely get rid of the debug information
makes it troublesome to use. The use of a globally defined DEBUG symbol enclosing all code used for
debugging purpose would at least provide the possibility to compile the code without any debugging
output. Unfortunately a change would require a complete recompilation of the whole code and moreover
could only be switched from ’all output’ to ’no output’.

We implemented the current debug system consisting of five debug streams. Each stream can be
used like the known cout but can selectively be switched on or off. Either during runtime which only
suppresses the output of the stream being written into the agent logfile or during compilation time
which completely disables the stream and results in the corresponding debugging code not to require
any CPU time. The five streams are used for separate levels of debug information.

• d err Should be used for exceptions and errors which cause either the termination of the agent or
are considered very serious.

• d warn Should be used for warnings which are considered important, but will not cause the system
to blow up.

• d info Should be used for information messages. For example the decisions made in the behavior
tree could be written to the d info stream.

• d dbg Should be used for debugging purpose.

• d misc This stream should be used for all messages and comments which are considered least
important (and least interesting).

In addition to these five streams two more are used. One stream for printing all information needed
by the vw3d logplayer [PV07]. Another stream for printing all information needed for the statistic
evaluation (cf. section 15).

4.2 Usage

The usage of the streams is similar to the well-known cout for example:

d_err << "Error: can’t open file <classes.cfg> << endl;

To completely switch on or off debug streams so that the corresponding code will not take any CPU
time the appropriate configure parameter −−nodebug has to be used prior to the recompilation of
the agent binary. Selective activation/deactivation of certain streams can also be realized by certain
configure parameters. For more information on these parameters refer to subsection 2.2.

The debug level can also be changed during runtime to display only certain debug streams by calling
.set debuglevel() on one of the streams, providing DEBUG ERR, DEBUG WARN, DEBUG INFO,
DEBUG DBG or DEBUG MISC as parameter. Setting the debug level to DEBUG WARN will result in
only the streams d err and d warn being printed, d info, d dbg and d misc will be ignored afterwards.
The code

d_err.set_debuglevel(DEBUG_MISC);
d_misc << "Nothing of interest!" << endl;
d_info.set_debuglevel(DEBUG_DBG);
d_misc << "Even more nothing of interest" << endl;
d_warn << "Warning: foo.txt could not be found, using bar.txt instead"

<< endl;

would result in the following text being printed into the agent logfile

Nothing of interest!
Warning: foo.txt could not be found, using bar.txt instead
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5 Knowledge Base

5.1 Introduction and Demands

Among the important reasons for the complete reimplementation of the Virtual Werder 3D multi-agent-
system in the wake of the 2005 RoboCup world championship in Osaka, Japan, stood the realization that
the development of the knowledge base used for our agents at that point had shown severe weaknesses
both in its underlying design and philosophy and in the concrete implementation.

From a design point of view we decided that a new agent knowledge base needed to adhere to a set of
demands that would make sure the knowledge representation was powerful enough for immediate use
and would provide the possibility for future extensions.

The knowledge base currently only supplies a more or less quantitative representation of the world. How-
ever, it was designed to be extended towards a hybrid representation where a qualitative representation
is available.

5.1.1 Compensation for Missing or Noisy Data

First of all the knowledge base of course needs to represent the current situation in the soccer simulation
from the point of view of the acting agent. Such a representation is by nature constrained in comparison
with the true baseline representation that would be available to the simulator itself. The agent’s concept
of the situation on the field is only an incomplete and noisy projection of the real situation.

However, this projection should approximate the real situation as good as possible even though the
soccer agent for each cycle can only perceive part of the soccer field (180 degrees observability in the
xy-plane) and the vision perceptor simulates real sensors by introducing random noise in the percepted
sensor values.

In order to offer a decent approximation the agent’s internal representation of the current situation is
based upon integration of new sensory input obtained from the server by means of worldstate messages
into the already available situation. In order to reduce the impact of noise in the sensor values particle
filtering is used for all objects within the agent’s focus of attention. Additionally, odometry information
is used for a better position estimation for the agent itself. During the integration process of new
worldstate information we also try to compensate for missing data due to our restricted vision by means
of pre-calculation (cf. section 8).

5.1.2 Memory and Prediction

When it comes to the treatment of moving objects within the soccer simulation (the ball and the
players regardless of team affiliation) we wanted the knowledge base to store not only the current
movement information3 for each moving object but we would like to maintain information covering a
certain time interval anchored at the present whose extend can be defined in the agent’s configuration
(cf. section 7). What the knowledge base thus does is to store not only the current (now) movement
for each moving object, but a series of movements which starts n steps in the past and ends m steps
in the future where a step is defined by the duration of the server update cycle. Our agents thus have
a configurable short-term memory for movements and a configurable foresight into the near future.

5.1.3 Agent Introspection - Logging of Actions

Another demand which needed to be satisfied was agent introspection. Our old knowledge base was
used to store two types of information:

3Movement Information in this context means information such as absolute position of the object with respect to the
the agent itself in polar coordinates, absolute coordinates on the field in Cartesian coordinates and velocity of the object.
Within our framework we encapsulate these pieces of information in so-called movements.
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Figure 2: Schematical Overview of the Knowledge Base Structure

1. (domain-dependent) background knowledge such as information about the field layout which was
either provided initially by the server or by our configuration system

2. Information about the status of the simulation, the course of the game which was provided by
the server worldstate messages.

In the new agent framework, we figured out that in order to implement commitment strategies on the
behavior or skill level (cf. section 11) or for debugging purposes we would need a full log of the activities
of the agent over the course of the game.

Two methods for the introduction of the required information into the agent knowledge base were
considered: 1) compilation of a new action perception during each reason-act execution that could be
injected into the agent knowledge base analogous to the worldstate perception. 2.) On-the-fly injection
of action related data during the reason-act cycle. Since the latter solution made action information
available within the same reason-act cycle it was produced we decided to design the knowledge base
accordingly. In section 5.8 the system for action logging is described in more detail.

5.2 Knowledge Base Structure - A Walk-through

After covering the major design issues from a high-level perspective, we will take a closer look at
the knowledge base design. The knowledge base representation is build upon four important pillars
(Figure 2):

1. Knowledge Containers which in our frame work are called Knowledge Base Modules (cf. section
5.3).

2. Means to insert data obtained through sensors or self-inspection into appropriate knowledge
containers. The insertion tasks are performed by the Injectors (subsection 5.4).

3. Means to extract information stored either explicitly or implicitly in one or several available
knowledge containers for further use by instances such as behaviors, skills or effectors. The
extraction tasks are performed by the Extractors (subsection 5.5).
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4. Means to create new information using information from several source knowledge containers as
input. The mapping tasks are performed by Mappers (subsection 5.6).

5.3 Knowledge Base Modules

The core of the agent’s knowledge base is not a single monolithic class but a collection of knowledge
base modules which act as containers for all sorts of information the agent needs in order to reason and
act during a match of simulated soccer. Currently there are six knowledge base modules. Each of these
modules stores a certain kind of information such as information about time. Some modules are less
differentiated then others. However, the main idea was to break up the knowledge base into conceptual
pieces with clear responsibilities that can be easily recognized just by looking at the module’s names:

1. Perception WorldState: This perception container stores the raw data which is acquired at each
sensation cycle as result parsing the worldstate message string communicated to the agent by the
soccer server. Basically, the module always contains a straightened version of the most recent
agent sensor readings.

2. KnowledgeBase: The knowledge base stores the agent’s internal representation of all objects on
the field, additional information about the internal state of the agent (both things like battery and
temperature as well as for example current view direction), information about the layout of the
world (field and goal dimensions etc.). Lately there have been additions with regard to off-side
recognition and avoidance.

The knowledge base can be understood as the agent’s image of the world obtained through accu-
mulation of single perceptions, extrapolation with respect to missing information and development
of the game in the immediate future. The latter point is of special importance. The agents of
the Virtual Werder team have a limited recall of four steps in the past for positions of all moving
objects. They also have a preview of three steps for all these objects. The number of recall and
preview values can be setup in the configuration file.

3. SoccerTime: This container stores all information which are related to the simulation and game
time. It is the agent’s internal clock.

In order to work properly with the information which is stored in the SoccerTime knowledge base
module it is important to to understand the agent’s notion of what is to be considered the present
or ’now’. The definition of the present is quite important in throughout the agent framework due
to the fact that actions initiated by the agent at a moment in time will take effect within the
simulation with a delay. This delay is the action delay which is implemented by the server. The
duration of the delay was found in a series of experiments that were conducted with a dedicated
test behavior. We basically found out that if the agent sends an action, the effect of this action
is visible 20 simsteps later. This could mean that the action is executed 20 simsteps after the
server has received them. It could also mean that visions we receive are 10 simsteps old and
actions are executed 10 simsteps after the server has received them. One could construct many
more possibilities, but it is not important which of these is true – the only relevant point is that
one needs to predict the situation which exists 20 simsteps after the last seen situation (plus the
number of simsteps that have passed since having received the last vision) in order to have the
situation in which an action that the agent sends out ’now’ will take effect.

The action delay has strong implications for the agent and its reasoning process. Basically, the
agent knows what the situation just looks like whenever he starts a reason-act-cycle. This is what
we might call the agent’s vision reality. However, this reality is not suitable as a basis for the rea-
soning process which is initiated in order to decide which action the agent should perform. If it was
used anyway it would mean that the agent would choose an action that is appropriate given the
vision reality. However, when the action is actually performed the reality at that moment might
have already changed significantly. Thus, for reasoning the agent needs to consider what we might
call the action reality which corresponds to the Vision Reality pre-calculated 20 ms into the future.
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The agent lives in both realities at once and it is important for the developer to understand which
reality should be referred to for a specific task. Within the TIME SIMULATION enum which is lo-
cated in ../knowledgebase/quantitative/include/soccertime enums.h the vision reality
is associated with STIME CURRENT and the action reality with STIME CURRENT DELAYED.
Note that requests for position or velocity data are always answered with data corresponding to
the action reality if the request was not made for a specific simtime.

4. ActionLog: This container stores a history of the agent’s recent actions during the course of
the game. In short, each action consists of a responsible behavior, the chain of skills (invoked
either directly by the behavior or by other skills) with a complete parameterization and the set of
invoked effectors (by the skills in the skill chain) also with complete parameterization. Thus, the
agent has explicit knowledge about its past actions.

5. GameStatistic: This container stores information which could be used to derive online game
statistics such as the play modes and residence of the ball in certain regions of the field. In order
to encourage statistic evaluation the information is stored in a special form (logical predicates
with temporal dilation).

6. FormationRepository: This container stores the possible systems of play which could be used dur-
ing our matches. For each system it also stores start-up position for each agent. The information
stored here is parsed from a dedicated configuration file at agent startup.

Conceptually all of the above mentioned containers are dumb. Besides the capability to store data in
appropriate data structures optimized for ease of data insertion and data retrieval, there is not much
functionality integrated4.

In order to use the knowledge base modules the agent framework needs means to insert information
into the knowledge base on the one hand and later retrieve information on the other hand.

Based on our experiences with the last knowledge base, we decided to design read and write interfaces to
the knowledge base core which completely encapsulated the core from the rest of the agent framework
and which were as modular and easy to maintain as possible. We came up with the idea of smart
inserters which are called Injectors in our framework, and smart Extractors for reading access to the
knowledge base.

5.4 Injectors

Definition An injector is a function object which is part of the knowledge base’s write-access interface.

It accepts certain input data such as the perception generated by our worldstate parser. It has access to
a subset of the available knowledge base modules and after processing of the raw data inserts polished
or calculated information at the appropriate spots within those knowledge base modules.

5.5 Extractors

Definition An extractor is a function object which is part of the knowledge base’s read-access interface.

It is a representation of single or a set of queries to the knowledge base. Just like the injectors introduced
in the previous definition it has access to a subset of the available knowledge base modules which is
relevant for performing the knowledge extraction for calculation of the query results.

For all entities outside the agent knowledge base such as skills or effectors the extractors provide the
only means to access information stored in the knowledge base.

4 Information about advanced data structures which are used in some of these modules such as in the knowledge base
module can be found in [Kar05, Jos99, Str00].
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5.5.1 Retrieval of Implicit and Explicit Information

Extractors are capable of two forms of information retrieval. First, they can provide information which
is explicitly stored within the knowledge base. That would be a direct, simple query. Second, extractors
can provide additional information which is only stored implicitly within the knowledge base. Thus,
they can be used to calculate data based on information explicitly stored in the knowledge base.

5.5.2 Query Caching

Another interesting fact which is due to the extractors’ incarnation as function objects, that is functions
with a state, is that it is possible to use the extractors themselves as cache for repetitive queries in-
between two sensations. Therefore to a certain extend extractors can be used to extend the knowledge
base’s storage capabilities.

An example where caching is used a lot is the extraction of movements (representations of the current
motion situation of movable objects on the field). Since the same information is extracted multiple
times during a single reason-act-cycle, caching is reasonable in this situation.

From a general design point of view knowledge synthesis and caching is superior to immediate pre-
calculation by mappers presented in the next subsection if you have reason to believe that the information
provided by the extractors probably will not be needed all the time which means that part of the time
there is a real chance computation time can be saved.

5.6 Mappers

With knowledge base modules, injectors, and extractors a large part of the knowledge base has been
described. Mappers can be seen as a hybrid of extractors and injectors as they have read and write
access to the knowledge base.

Definition A Mapper is a function object just like an extractor or injector. However in contrast to these
elements of the knowledge base’s read & write access interfaces a mapper is an internal link between
the knowledge base modules. Mappers are completely integrated into the agent’s knowledge base.

The reason for their development is that there are two flavors of information. First, there is information
which can be directly inserted into the knowledge base by the injectors. But second there is also
information which must be derived by integrating the information stored in several knowledge base
modules.

For example the knowledge about the current situation on the field which is stored in the knowledge base
module and the static knowledge about possible tactic lineups stored in the formation knowledge base
module and the data kept about the course of the game which is stored in the game statistic module
can be used to decide which system of play the agent should use (defensive or offensive). A mapper
which performs such a calculation thus integrates information from three knowledge base modules and
derives new knowledge which is then inserted into an appropriate target module.

5.7 Flexibility and Extensibility

The number of injectors and extractors in the framework is in no way restricted. New additions can be
introduced at any time without the need to touch the already existing injectors/extractors. This means
that each functor encapsulated a clearly defined task with a manageable complexity. Maintenance is
thus possible even when the number of injectors/extractors grows.
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5.8 Monitoring of Agent Actions

5.8.1 The Concept of Descriptors

The knowledge base uses Descriptors in order to represent aspects of agent actions. There are basically
three different flavors of Descriptors in the knowledge base which are all derived from a common basis.
The first is the generic Action Descriptor5. It describes a complete agent action first by storing the
source of the action which can be a behavior or sub-behavior (handle method within a behavior), the
so-called Skill Chain and the Effector Set.

The skill chain is implemented as a list of Skill Descriptors which represent the second flavor of De-
scriptors. Skill Descriptors represent concrete invocations of certain skills in the course of an action
execution. While the skill type is identified via its ID, the exact character of the skill invocation is
represented by the set of parameters which were used in the call to the skill. Currently, skill descriptors
are not generic and need to be implemented separately for each active Skill in the agent framework6.

The reason why the skill chain is implemented as a list is that this type of implementation preserves the
order of skill invocations in actions where multiple skills are applied. This is possible in two different
ways. On the one hand the behavior itself is allowed to call more than a single skill directly (e.g., the
goal keeper can approach the ball while it already tries to catch the ball). On the other hand due to
their hierarchical nature skills are themselves allowed to call other subordinated skills. Using the skill
chain it is possible to trace the sequence of applied skills for a single action.

The effector set is implemented as a simple vector of Effector Descriptors which are the third flavor
of Descriptors. Analogous to Skill Descriptors Effector Descriptors represent concrete invocations of
certain effectors by a skill during the execution of an action. Their internal structure resembles that
of Skill Descriptors very much. The only conceptual difference is that Effector Descriptors also store
the final message which is sent to the soccer server. Currently, effector descriptors are not generic and
need to be implemented separately for each active effector in the agent framework7.

5.8.2 Logging of Agent Actions

In section 5.1.3 we talked about our decision to logging agent actions on-the-fly. Now that the concept
of descriptors and the three important flavors thereof have been introduced, we will describe concisely
how the concrete logging mechanism works.

During the whole process three dedicated injectors come in handy: Injector Action, Injector Skill and
Injector Effector. The first thing every of our implemented soccer behaviors introduced in section 12
does is to create a new instance of Descriptor Action which will be used as container for information
about the anatomy of action execution within the current reason-act-cycle. Through instantiation
the new action descriptor already knows which behavior is responsible for the action. We use this
information frequently for debugging purposes in order to see whether our agent’s act according to
their supposed role8. By means of the Injector Action the action descriptor is subsequently stored in
the agent’s action log within the knowledge base even though of course it is not yet complete (no skill
or effector invocations have been recorded so far). The behavior engages in its top-down traversal of
the behavior decision tree at whose leaves the decision for the execution for a single or a series of skills
is made. The behavior calls the skills with a proper parameterization.

The first thing each skill does upon invocation is to create a Descriptor which represents this individual
skill call. It uses the parameter provided by the calling behavior or skill in order to describe the
skill invocation completely. After that, by means of the Injector Skill the Descriptor is stored in the
appropriate action within the agent’s action log. In order to do this, no direct access to the action
previously created by the behavior is required for the skill. After the injection the skill begins with its

5the accordant class is called Descriptor Action
6the naming convention for Skill Descriptors is Descriptor Skill <name of skill>
7the naming convention for Effector Descriptors is Descriptor Effector <name of effector>
8If for example an agent believes to be a defender, of course the defender behavior should be used while reasoning

and acting
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real purpose. This of course has implications with respect to the agent introspection since currently due
to convention rather than design we cannot store internals of a skill invocation in the skill descriptor.
In order to do that, we would either need a mechanism to add information to the skill descriptor once
it has been injected into the knowledge base or we would need to inject it right at the end of a skill
invocation just before the skill returns.

Each skill has two options about what it is going to do in a certain invocation. It can delegate the
work to subordinate skills or it can take action itself which in our framework means calling one or more
effectors. The logging mechanism for effectors works analogous to that in skills with the exception, that
the injection procedure is performed as late as possible so that besides the effector parameterization
the final string command which is sent to the server can be logged as well.

5.9 Knowledge Base Support for Evaluation

The knowledge base supports offline evaluation of the agent’s actions during a match of simulated
soccer performed with the EvalTool presented in section 15. In order to work the EvalTool relies upon
special evaluation agentstate messages stored in each agent’s log file. The mechanism to create these
output messages over the course of a game is based on:

1. A special mapper which controls the assembly of the evaluation messages. It is called Map-
per EvalOutput and differs from the other mappers within the agent knowledge base in that its
purpose is not the fusion of information origination from a set of knowledge base modules in
order to derive further information. Its purpose is to control the creation of a message string
which can then be written into the agent’s log file using a special output stream provided by the
core classes. Thus the Mapper EvalOutput has the character of a Reporter Class. As the agent
framework matures we expect to develop the reporter concepts further in order to be able to
create all sorts of reports at runtime.

2. An extension to all knowledge base modules and all objects9 (static or moving) stored in the
knowledge base. All of those classes implement a special function which upon invocation creates a
string representation of the respective object which can be integrated into the evaluation message.
Furthermore, all descriptors are equipped with the same functionality.

The generation of the evaluation messages is triggered by the automatic invocation of the mapper
after each behavior execution (given that the system is configured to produce evaluation output). The
message string itself is then constructed using a divide & conquer approach.

6 Formation

In this section, we describe how we enable our agent team to play in different formations. First, we
define what the term ‘formation’ means to us, then we describe the different sub-aspects of a formation.

6.1 Definition

When we speak about ‘formation’, we essentially mean ‘playing system’, i.e. a formation is defined
by the number of defenders, midfielders and forwards it consists of. This definition may be somewhat
inaccurate when it comes to real world football (there may be more than one 4-4-2 formation, for
example), but it has been sufficient for us so far. A formation also includes the kick-off positions for the
players, but, as this is only relevant in kick-off situations, they are not a major feature of a formation.

9in this context objects refers to objects within the soccer simulation
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6.2 Roles

In a given formation, each player is assigned a role. That role can currently be one of the following:

• goalkeeper

• defender

• midfielder

• forward

Naturally, each formation has one and only one goalkeeper. In contrast to that, the number of players
assigned to the other roles is different in every formation, in essence, the number of defenders, midfielders
and forwards is what identifies a distinct formation.

Depending on his role, a player follows a different behavior in the match, using different skills or
different parameters for skills. Emphasis is put on the midfielders, as they are the connecting part
between defense and offense. If the opponent attacks and forces our team deep into our own half, they
may function nearly as full defenders, while they are expected to support our offense if we have the
chance to go forward.

Defenders will also come somewhat forward when we attack and forwards will go back if we are under
attack, but these two types of players will mainly keep their role and be ready to do their main task
should the ball possession change to the other team. For more information about the roles and their
behaviors see section 12.

6.3 Kick-off Positions

As mentioned in the definition, the formation includes the kick-off positions for the players. This
means, whenever a kick-off comes up, players move to their assigned position and wait for the referee
to start the game. The kick-off positions may be different for each formation to give the players a
proper position that reflects their role. It would not harm too much however, if the players were given
positions that do not fit their roles, as the repositioning mechanism would direct players to adequate
positions once the ball is free. It would take some time until the players reach their proper positions,
though.

6.4 Voronoi Regions

The repositioning mechanism, fully described in section 11.2.1 makes use of Voronoi cells to direct the
players to a position where they could be useful for the team. However, the players are not equally
distributed around the entire field, as that would mean too big distances between them, and also would
most of them be too far away from the action and therefore useless.

We therefore do not use the entire field as the base area for the Voronoi algorithm, but smaller,
rectangular areas that are only a part of the entire field. Where and how big such an area is depends
on the player’s role, the current ball position, and the playmode. Use of this mechanism will lead to
the players not following a static scheme of positioning around the ball, but instead they try to be well
distributed but still in range of the action.

7 Configuration Files

This chapter describes the various configuration files which are used in our framework. Actually there
are three major configuration files: values.cfg, formation, and classes.cfg. In the following these
files will be described in detail.
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7.1 Configuration Values

In the first version of our agent we had all our configuration values hard-coded. This had the disadvan-
tage that changing one single value would require the whole code to be recompiled. We soon decided
to put all these values into a configuration file which would then be parsed during runtime. But we
wanted our system to be as error safe as possible which means that the agent should also run without
the file being available. The solution was to use the configuration file if present but use hard-coded
fallback values otherwise. Because maintaining consistency between the hard-coded values and the
values in the a separate configuration file would be a possible error source we decided to automatically
generate both the config file as well as the hard-coded fallback values. For that reason we created a
basic file called values.cfg.definitions in which all values are defined by type, name, value and
some additional explaining comments. The most important part of this system is a script which takes
these definitions, runs a syntax check on all values and afterwards creates three files:

• vw3d.cfg This is an automatically generated configuration file which includes all the values
previously defined in the ’values.cfg.definitions’.

• Configuration (.h/.cpp) These two files include the hard-coded values from the
values.cfg.definitions and an automatically generated parser which is able to read and parse
the vw3d.cfg.

The actual parsing is done during runtime, more precisely, during the init phase (cf. section 3.2.1).
An instance of the Configuration is created and all hard-coded values are initialized, afterwards the
vw3d.cfg is parsed. All hard-coded values are overwritten with their appropriate counterpart from
the vw3d.cfg. If the vw3d.cfg cannot be found, the hard-coded values are used assuring agent
functionality in either case.

7.2 Formation File

The formation file is a configuration file containing all currently supported formations for the agent.
We now describe its structure:

<formations> ::= <formations> <form>
| /* empty */

The file may contain any number of formations. If it is empty or even non-existing, the team will use
a standard formation.

<form> ::= "formation" p "value" q "system" a b c "kickoffpositions" <kickoffpos>

A formation begins with the keyword ‘formation’, followed by a positive integer value used as its ID.
We continue with the keyword ‘value’, followed by an integer denoting the value of this formation. This
value has nothing to do with quality of the formation, but is used to indicate how defensive or offensive
a formation is, where more positive values indicate more offensive formations. It is used when the agent
requests a more offensive or more defensive formation. Another keyword follows: ‘system’, followed by
three positive integers. These indicate the number of defenders, midfielders and forwards, respectively.
The sum of these values must be ten– otherwise a fallback formation will be used. After that, we have
the last keyword ‘kickoffpositions’ and then a list of kick-off positions.

<kickoffpos> ::= <kickoffpos> unum x y
| unum x y

Said list contains of entries in the form unum x y, where unum is an integer from 1 to 11, x and y are
values of double type, indicating the kick-off position for unum. The list should contain one entry for
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each of the eleven players. It will cause problems if players are left out as they will then all have the
same standard position. Note: There is no check whether a given kick-off position is actually on the
field.

We conclude this part with an example of a complete formation:

formation 442
value -2
system 4 4 2
kickoffpositions
1 -50 0
2 -30 22
3 -35 9
4 -35 -9
5 -30 -22
6 -15 18
7 -20 5
8 -20 -5
9 -15 -18
10 -10 0
11 -11 -10

7.3 classes.cfg

As described in section 3.2.1 the architect needs a list of all framework classes to be able to dynamically
create them from the library. The classes.cfg actually supports such a list. Though the order of
classes is irrelevant (due to the way the framework is constructed) the classes are ordered by namespace
as well as alphabetically.

8 Localization and Ball Prediction

In this section, we explain how our agent processes the vision information in order to get reliable
movement data for players and ball. This process happens every 20 simsteps, i.e., every time a vision
message is received. The identified positions will later be injected into the knowledge base, where they
are hold for skills and behaviors to work on.

8.1 Calculating Own Position

The base of all further calculations is the position of the agent itself, as vision data gives us all positions
relative to the agent’s own. If one wants to have all positions as absolute positions on the field, it is
required to have one reference object with absolute position, and we use the agent itself for that purpose.
We calculate the agent’s position using two different approaches and then combine their results.

8.1.1 Odometry

The first one of these approaches is based on odometry, i.e., the agent uses its old position and speed
and the drive commands he sent for calculating the new resulting position and speed. This of course
only works if all required data is available; if not, we cannot use odometry and must use the second
approach - vision - alone.

Let us assume we have the agent’s correct position and velocity for the time of the last vision (i.e.,
the one before the newly received one). The agent also stores all drive commands he sends with
a timestamp, so we can look up those drive commands that were executed by the server in the 20

http://www.virtualwerder.org


TZI Report no. 36, August 2006 23

simsteps between last and current vision. (Note: these drive commands are not equal to the drive
commands we sent out between the two visions, as there is an intended delay in the server. The drive
commands executed in the last 20 simsteps have been sent out earlier; see text about the action delay
in section 5.3 for more details.) We then apply their effect on the known position and velocity and get
new position and velocity as result.

8.1.2 Vision

Second approach is to use the vision data for calculating the agent’s own position. As there are some
static objects, the flags, which positions are known (as we know field width and length), we can use
their relative positions included in the vision data for getting the agent’s absolute position. With
the implementation of the pan-tilt effector, this approach became somewhat more complicated, as all
relative positions are now given relative to the current view direction of the camera, and that view
direction is subject to quite heavy noise. We therefore decided to use only the distances to the flags,
as they are independent of camera view directions. This introduces a new condition: we need at least
two flags to be able to calculate the agent’s position.

Let us assume we have at least two flags in the current vision data. We then take two flags out of
them, create circles around them (with the radius being the agent’s distance to the respective flag)
and intersect these circles. Typically, this yields two intersection points, of which one is the agent’s
position. The decision which of these is the right one is made with the assumption that the agent will
not leave the bounds of the field, except for kick-ins and corners, and even then he leaves the field only
for some decimeters. If we have used two flags which are located on the same field border, one of the
intersection points is in the field, the other usually far outside, and we then take the point inside the
field as the right one. This is only problematic if the agent is close to the border, in which case we use
another safeguard: We then decide to use the point to which the last known agent position is closer.
This safeguard is also used if both intersection points are inside the field, which can be the case if the
two flags used are not on the same side of the field.

If we have more than two flags available, we can repeat this with another pair of flags, essentially using
as much combinations of flags as possible and then using the average of our selected intersection points.

8.1.3 Combining the Results

At this point, we may have two possible positions for the agent, one calculated by odometry, the
other by vision. Either of them may be unavailable, as there may be some data missing for odometry
calculations or we may have seen only one flag, not enough for vision calculation. In case we have only
one position available, we have no choice but to use this position as the agent’s position for the next
steps.

But if we have both, we can combine them. If the agent’s movement has been undisturbed by other
objects, i.e., there were no collisions, and the agent also has not been beamed, odometry based positions
have proven more accurate than vision based ones. On the other hand we can only use vision based
positions to correct the odometry based ones in case one of the two disturbing factors (beaming,
collision) has indeed taken effect. We therefore combine the two positions as follows. If they differ too
much, we assume a disturbance has taken place and use the vision based position only. Otherwise, we
combine them, giving higher weight to the odometry based one.

There is one more possibility: both position calculation approaches may have failed. In this case, we
try as a last resort to see if we have only one flag seen. We can not use the vision based calculation
described above under this condition, but we can use distance and angle to that flag combined with our
assumed camera direction to calculate a position. But as the camera direction is suffering from noise,
this turns out to be quite inaccurate. If we do not have one flag at all, we are forced to continue using
an old position as the current one, which is also quite inaccurate.
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8.2 Calculating Positions of Other Objects

Now that we have the agent’s own position, we can calculate the camera direction, using the percepted
angles to the flags and their absolute positions. Summing up our camera turn commands, we can of
course calculate a close approximation of the real camera direction without using the flags, but that
would not take noise into account, which is, as mentioned before, quite heavy for camera direction. We
therefore prefer to use the calculated direction. Having this direction and the agent’s own position, we
can calculate the absolute positions of all other objects included in the vision.

These ‘raw’ positions, including the agent’s own, then serve as input to the next step.

8.3 Position Processing

So far, we have one position for each of the percepted objects. This is not sufficient for tracking the
movement of an object. For that, we require positions for different timesteps and velocities for different
timesteps.

The data structure for an object’s position data therefore is designed to include positions not only for
the ‘current’ (i.e., the new percepted timestep), but also for a number of past visions and a number
of future steps which we try to predict. The structure holds position and velocity for the ‘current’
timestep, p./v. 20 simsteps before ‘current’, p./v. 40 simsteps before ‘current’ and so on, (predicted)
p./v. 20 simsteps after ‘current’, (predicted) p./v. 40 simsteps after ‘current’ and so on. The time
difference between the data pairs is always 20 simsteps, as this is the frequency we receive vision data
from the server. It is configurable how far into past and future the structure should reach.

For each moving object, we hold a data structure like this, and we now describe how we fill it when
we receive vision data. We have two different approaches in place, one is the ‘quick and dirty’ method
which does not much more than simply inserting the new percepted position, the other is a mechanism
based on particle filtering, which takes more time to calculate but is more accurate as it is not as
susceptible to noise.

8.3.1 Without Filtering

This method takes the data structure (which possibly already has values in it from the past), shifts
the old values one step into the past and sets the new percepted position as the current one. For the
current velocity, we take the difference between the new position and the one before. If there is no old
position (which may happen if the agent sees this object for the first time at all or for the first time after
a long period of not seeing the object), a velocity of zero is assumed. Prediction for future positions
and velocities assume that the object keeps its current velocity. This would be highly inaccurate for the
ball, but the ball is one of the objects which is always calculated by the particle filtering method.

If an object using this method is not seen in a vision, we can simply do the described shifting of old
values one step into the past, using the former ‘predicted position in 20 simsteps’ as new ‘current
position’. This should however not be done too often as the position information rapidly loses quality.
There exists a configurable number of steps, making it possible to deem an object without known
position if not seen for this number of steps.

8.3.2 Particle Filtering

In this approach each object is represented by a ‘particle cloud’, consisting of a number of particles.
Each of these particles holds a data structure as described above, with positions and velocities for
different timesteps. It also possesses a weight. If we then need the position of an object, we use
the average of all particles belonging to that object, taking into account the individual weights of the
particles. In each update cycle, the weights are changed so that particles containing ‘good quality’ data
get a high weight, those with ‘low quality’ data get low weight or are even reset to initial state.
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Let us assume we see an object for the first time and want to use particle filtering for it. We then
initialize all its particles with the seen position (and some random offset added to it, each particle gets
a different offset so that average of all offsets should be close to zero) and give them an initial weight,
which is equal for all particles. The initial velocity vectors are determined randomly, with mean velocity
being zero. We then have a number of particles, their ‘current’ positions being almost equal, but with
very different velocity vectors. As the predicted positions and velocities are created using the current
velocity (same as above in the other approach), the future positions will widely differ.

When we see the object again in the next step, we check all particles whether the percepted position
matches (or comes close) to the previously predicted one. If this is true, we can assume that this particle
has a velocity close to the real one, so the weight of this particle is increased. If it is of medium quality,
we set weight to a medium value, and if it is not fitting at all, we reset this particle, meaning we delete
all its data and initialize it again with the new position. If a particle survives, we also draw the position
and velocity of the particle somewhat closer to the percepted values, as this increases the chance that
the particle will survive the next cycle as well. (If we did not do this, we would need a much higher
number of particles in order to have some matches, which would in turn need a high computation time.)

If an object changes direction, the particles that were good before (as they had velocity pointing to the
correct direction) will decrease in quality and lose weight, while others, being of low weight before, now
become more important. It is therefore a requirement for the particle cloud to always have particles
for all possible directions the object could move, with the particles having the correct direction having
so high weights that the other particles do not influence the average of all particles too much. This
consideration is a factor of importance when selecting the number of particles for a particle cloud. On
the other hand, one wants to reduce the number of particles as far as possible as this yields calculation
speed.

The particle update function is tolerant to some level of noise, so that a predicted position not exactly
matching the percepted one will not lead to reinitialization of the particle too early. By drawing particle
positions closer to percepted ones (but not setting them on the percepted positions at once), we dampen
the effect of the noise.

Some notes: The ball particle cloud uses two different particle types at the same time, BallHeightParticle
and BallPosParticle. This is done because the movement on the xy-plane and the movement on the
z-axis can be seen as independent movements. This way, we can reduce the total number of particles
needed. For the agent itself, a different type of particle, MyselfParticle is used. It differs from the
normal PlayerParticle by having a different function for future position prediction. As the agent knows
its own drive commands, he can employ odometry here again, which works the same as described at
the beginning of this section.

If an object is not seen, we can do the same as we do in the non-filtering approach, i.e., predicted
positions become current positions, and if we do not see the object for too long, it is declared as having
unknown position. If the object is seen again after a period of not seeing it, all particles for this object
are reinitialized. For further information on particle filtering refer to [Rek02, FTBD01].

9 Communication

When we talk about communication, we have to distinguish between two different kinds of communi-
cation. One is the communication between player and server, the other is between different players.

9.1 Server Communication

To communicate with the server, the agent must be capable of following the communication protocol
defined by the server and its component SPADES [Ril03]. Messages coming from the server are length-
prefixed, followed by a letter indicating the message type. Depending on what type of message it is,
further data follows. The actual receiving of the messages is done in the Messenger class, detecting the
message type is done in the Parser MessageType class. The latter class is also responsible for injecting

http://www.tzi.de


26 Virtual Werder 3D Team Documentation 2006

all data contained in the message into the knowledge base, for which it uses some sub-injectors. Further
actions, depending on the message type, is then initiated in the Agent class.

Messages in the other direction have one purpose: an agent wants to perform an action. The message
declaring that the agent wants to do a specific action is constructed in the effector class responsible
for that action. It is then again the job of the Messenger class to perform the actual sending. The
message must be length-prefixed, which is done by the Messenger.

9.2 Agent Communication

Agents can communicate with each other using a “say” command provided by the agent-server interface.
All communications between agents must use this command; it is against the rules to use other means
of agent communication.

The messages will be heard by other agents in the vicinity of the talking agent up to a threshold distance
beyond which it is not heard. There is also a limit on how long a message can be, and how often an
agent can hear something. A team must therefore make sure that it is not jamming its own ears by
talking too much, because when there is more than one message that could possibly be heard by an
agent, the server decides which of these the agent gets. We solve this by letting only the ball-controlling
agent talk and limiting its frequency of talking to that which can safely be understood by the others.
Other solutions, such as a rotating “right to speak” have been thought of, but not implemented at the
moment.

A team does not only hear its own talking, but also that of the opponent - it is however not possible
to jam the opponent’s hearing, as a player hears his own team and the opponent at the same time.
The important thing about this is that the server does not provide the information which player (by
unique ID) did send a certain message, it merely gives the direction where the message came from. It
is therefore required to have a mechanism which lets a player identify his team mate having sent the
current hear message and at the same time make sure that the received communication does not come
from an opponent imitating messages he may have heard from our team mates in order to disturb our
behavior. We currently use message signatures for this purpose. Each message one of our players sends
contains a unique signature that lets all his team mates recognize the source. Moreover, the signatures
are made for one time use, so that an opponent can not simply echo a message. Each player has a
pool of signatures, which can each be used once. Each player also knows all signatures of his team
mates and will accept each heard signature only once. Messages containing wrong, already used or no
signatures at all are discarded and their content is not used.

For creating a complete set of signatures, we use the gen signatures tool contained in the bin directory
of the agent source tree. The resulting file must be placed along with other configuration files.

10 Effectors

This section describes the effectors of the agent. Effectors are the low level interface between the agent
and the soccer simulation. They take the arguments given to them by the skills, transform them into
a message string and send this string to the server, using the messenger class.

10.1 Beam

The beam effector is used to instantly teleport an agent to a designated position. The coordinates
have to be provided to this effector as a Vector3d parameter. This effector can only be used in the
playmode ’before kick off’. Using this effector in any other playmode will have no effect. With the
input Vector3d(x,y,z) the message to the server is ”A(beam x y z)”.
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10.2 Catch

The catch effector is used to catch the ball and is called with no parameters. It is usable in all playmodes
but limited to the agent with the unum 1 (the goalkeeper). Using this effector will only have an effect
when the distance between the goalkeeper and the ball is below a certain catch margin which is currently
set to 2.0 meters. If the distance is below this threshold and the effector is called, the ball’s speed is
set to zero, it is teleported to the goalkeeper and all agents which are closer to the goalkeeper than 2.0
meters are moved 5.0 meters away (current server settings). The message to the server is ”A(catch)”.

10.3 Drive

The drive effector is used to move the agent and is called with a Vector3d as a parameter. It is usable
in all playmodes. The x and y parameters define the direction in which the agent is accelerated. The
z component is ignored because agents can only move in the x/y-plane. The amount of the vector,
including the z component, defines the percentage of the desired speed. Therefore the length of the
vector should lie between 0 and 100. The vector (100, 0, 0) would cause in the agent to accelerate
into positive x direction until it reaches maximum speed. The vector (0,−50, 0) would cause the agent
to accelerate into negative y direction until it reaches half its maximum speed. The vector (0, 0, 100)
would cause the agent to stop as there is no way to accelerate ’up’. With the input Vector3d(x,y,z) the
message to the server is ”A(drive x y z)”.

10.4 Kick

The kick effector is used to kick the ball by applying a force to it. This effector is called with two
parameters, defining the kick power, ranging from 0 to 100 and the (horizontal) kick angle ranging
from 0 to 50 degrees and is usable in all playmodes but only will cause an effect if the distance between
the agent and the ball is below a certain kick margin, currently set to 0.04 meters. If the distance is
below this threshold the ball will be accelerated with the provided power and into the desired angle.
The direction in which the ball is accelerated on the x/y plane depends on the position of the agent
relative to the ball for the force will always be applied in a direction from the agent’s center to the
ball’s center. This means that correct agent positioning is vital for accurate shooting. With the input
double(x),double(y) the message to the server is ”A(kick x y)”.

10.5 Pan-Tilt

The pan-tilt effector is used to move the camera which is hinged to the agent’s center and is called
with two parameters defining the angle-delta for both the pan (vertical) as well as the tilt (horizontal)
parameter. It is usable in all playmodes. Using this effector will cause the camera to be turned the
appropriate ’pan’- and ’tilt’-value. The ’pan’ angle has a scope of only 10 degrees while the ’tilt’ angle
has a scope of 360 degrees with a maximum turning angle of 90 degrees per simstep. With the input
double(x),double(y) the message to the server is ”A(pantilt x y)”.

10.6 Say

The say effector is used to send a message to other agents. It is called with a single parameter, namely
the message which is to be transmitted. This effector is usable in all playmodes. The message length
is limited by the server to 512 characters. If the sent message exceeds this size it is truncated. In
addition to the length limitation there are also some constraints regarding the allowed characters. Only
the printable characters without space and ’(’ and ’)’ are allowed. With the input string(x) the message
to the server is ”A(say x)”. For more information about communication see section 9.
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10.7 Spades

The spades effector is a special kind of effector which is used for all low level, SPADES specific com-
munication. For this reason it capsules a variety of functions both with as well as without parameters.
For more details on how the communication with the server works, especially regarding the SPADES
system, please refer to the spades manual [Ril03].

• send create message() This function is called after the agent is created and sends back the
first life sign to the server. The message to the server is A(create).

• send init message() This function is called after the the create message has been sent. It tells
the server the name of the agent and its uniform number. With the input string(x),uint32 t(y)
the message to the server is ”A(init (unum x) (teamname y))”.

• send initialisation done message() This function is called after the agent is fully initialized
and ready. It is send as a response to a initialisation message. The message to the server is ”I”.

• send done thinking message() This function sends a ’done thinking’ message which tells the
server that the agent is done for that thinking cycle. If this message is not sent, the agent will
be terminated by the server with a ’too long think time’ error. The message to the server is ”D”.

• send request current think time() This function requests the server to send a message
back, telling the agent how many simsteps he has already used in the actual thinking cycle. The
message to the server is ”C”.

• send request time message() This function is used to request a time notify message from
the server at a certain time. The parameter defines the delta from the current simtime to the
requested time. The time notify message will start a new thinking cycle. This function is used
to act more often than every 20 simsteps as a reaction to the sense messages. For more detail
refer to section 3.3.1 and 3.3.2. With the input uint32 t(x) the message to the server is ”Rx”.

• send migration message() This function is the appropriate answer to a migration request
which can be send by the server. It tells the agent to shut down and to put all its internal data
into a string which then should be used to initialize a new agent process on another system. This
would cause something like a ’migration’ of the current agent. Currently this process is neither
supported by the server nor by our agent, For more detail please refer to the SPADES manual
and the rcsssever3d manual [Ril03, ROME06]. With the input string(x) the message to the server
is ”Mx”.

• send exit message() This function is used to tell the server that the agent is going to shut
itself down. The message to the server is ”X”.

11 Skills

This section describes all the agent’s skills. It is divided into two subsections. The first subsection
deals with the basic, so called, low-level skills which lie only one level above the effectors. The second
subsection deals with the so called high-level skills which utilize low level skills to perform higher level
tasks.

11.1 Basic Skills

The basic skills which are going to be described here are low level skills, or (the other way round) high
level effectors. Most of them only utilize one effector by just passing the arguments directly to it.
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11.1.1 Beam

The skill is used to teleport the agent to the designated position and is called with a Vector3d as
parameter which defines the point the agent should be teleported to. Although this skill can be used in
any playmode, it will only show an effect when used in the before kick off playmode. The skill directly
passes the provided Vector3d to the beam effector.

11.1.2 Move

This skill is used to move the agent to a designated position by driving toward this point. It is called
with two arguments - a Vector3d defining the absolute position the agent should move to and an
enum value defining the speed the agent should move with. Currently three velocities are distinguished
MOVE SLOW, MOVE MEDIUM and MOVE FAST which equal to 33, 66 and 100 percent. Given
the absolute destination and the agent position the relative destination is calculated. This vector is
normalized, scaled with the desired speed percentage and passed to the ’drive’ effector.

11.1.3 Kick

This skill is used to kick the ball to a designated position. There are two ways to use the skill. The
first way is to provide two enum values, the desired ball speed and the desired ball height. Currently
three velocities are distinguished RECEIVABLE, DRIBBLING SPEED and FULL POWER as well as
four heights LOW, MED, HIGH and SCORE with the last one being a special height only used for the
score skill. If the skill is invoked with only these parameters the skill will use the kick effector to kick
the ball when possible. If the distance to the ball is too great, the drive effector is used to approach
the ball.

The second way is to provide the ball speed and ball height in combination with a designated target
and an enum value, defining the tolerated position error for the ball. Currently five error granularities
are distinguished KICK ERROR HIGH, KICK ERROR LOW, KICK ERROR DRIBBLE,
KICK ERROR GOALKICK and KICK ERROR DEFAULT which can be adapted in the configuration
file (see section 7). If the skill is invoked with these four parameters it checks whether the agent is
in a good shooting position. If the agent is not properly positioned it repositions itself to correct the
alignment towards the ball. Otherwise the kick effector is used.

11.1.4 Catch

This skill is used to catch the ball and is called without any argument. It only invokes the catch effector
without further checking neither whether the agent calling this skill is the goalkeeper nor whether the
distance to the ball is below the catch margin.

11.1.5 Say

This skill is used to communicate a message to other agents of our team (which can also be perceived
by opponent players). There are two ways of using the ’say’ skill. The first way is to provide the
message to be sent as a string parameter. All limitations regarding messages which apply to the say
effector also apply to the ’say’ skill (length / allowed characters). If there are no ’pending’ messages -
messages that are still in the queue for later transmission - the message string is prefixed with a unique
signature and sent directly to the say effector. Otherwise it is stored for later sending. The second way
is to provide no argument. This will cause the skill to send any messages which were stored earlier to
the say effector and to flush its ’pending message queue’.
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Figure 3: Voronoi regions for midfielders (schematic)

11.2 High-level Skills

High level skills are used to accomplish more complicated tasks which require more sophisticated cal-
culations and/or the use of some low level skills.

11.2.1 Reposition

The reposition skill is responsible for calculating a ‘good’ position for an agent that is not responsible
for going to the ball and then moving the agent to that position. Positions are considered good if they
are not too far away from the ball, not too close to a team mate and not too close to opponents, so
that an agent at a good position can receive the ball and has some time to decide on the next move
until an opponent can pose a threat to him.

Distribution of our agents is done by using Voronoi diagrams, assigning each agent one of the polygons
in the diagram and moving it to the centroid of the polygon. This way, we can keep our agents from
moving too close together. We were inspired to use this technique by [ATDAA+05] and then added
some ideas of our own.

We do not use the entire field as the base area, as that would move too many of our agents too far away
from the action. Instead, we use a smaller rectangle as base, the dimensions of which are dependant on
the current playmode, the current ball position and the role of the agent. For example, the base area for
the attackers is always in front of the ball if the ball is not yet close to the opponents’ goal, or the base
area for all players if equal to our own half if we have a kick-off situation. These situation-dependant
base areas for the Voronoi polygon calculation enable us to distribute the players in an area somewhat
close to the ball and at the same time maintaining a position that is ideal for their role. We use this
mechanism also to keep our field players out of the penalty box if there is a goal-kick to be performed.
The Voronoi regions are illustrated in Fig. 3.

Note: the calculation of the polygons currently only takes our own players into account. We did
experiment with also using the opponents in order to keep our players away from them, but this
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resulted in our players moving to positions that the spectator did not consider to be good. In essence,
the opposing team too often forced our players into bad positions with their own positioning and we
therefore disabled the option of taking opponents into account.

The reposition skill also takes the offside rule into account - if a player was to move to a position
making him offside, it will simply go as far as possible without overstepping the current offside line.

11.2.2 Score

The scoring skill is used if the agent has ball possession in a position that will allow a shot at the goal
(both distance- and angle-wise). It then searches for any objects that could obstruct the path of the
ball from its actual position to the goal and determines which parts of the goal line are reachable and
which parts are blocked. Let us assume there are some free parts. The skill then selects the longest
free part and executes the shot to the center of this part. If the free part ends at one of the posts,
the shot is targeted close to the post (as this is the target as far away as possible from the obstructing
object). For the height of the shot, the distance from ball to goal is taken into account: the shot is
performed as high as possible. If the ball is too far away from the goal, the shot must be of low height
as the distance covered by the shot is higher that way. On the other hand, if the ball is very close to
the goal, the agent must be careful not to shoot over the goal.

The scoring skill can remember its last target and be instructed to use that target again or to select a
new target. This way, we can keep the agent from selecting a new target every step, which would lead
to the agent taking a very long time to shoot, as it will probably have to reposition itself over and over
again to aim at the possibly changing target.

11.2.3 Pass

The pass skill is used to shoot the ball to a point on the field that is deemed good. There are some
criteria that make a point good, among these are presence of team mates, absence of opponents
and distance to the opponents’ goal. For deciding on the actual target, a field evaluation function is
employed, which works as follows: The field and the area around the field is partitioned in small squares
of 2m * 2m. Each of these cells is assigned a basic value which depends on its position on the field: the
closer the opponents’ goal is, the higher the value. Cells that are out of bounds get a very low value,
as well as cells close to our own goal. The function then iterates all players and changes the values
of the cells around the player: the cells around a team mate are increased in value, those around an
opponent are decreased. The amount the cell value is changed depends on the relative position of the
players close to the position.

The skill can, like the score skill, remember its target to avoid jumping between different targets. When
instructed to select a new target, it uses the aforementioned field evaluation to select the best possible
target in reach. Points that have an opponent closer than an own player will not be selected, and passes
to the back have a very low value so that they are used only as last resort.

As the execution of a pass takes time, the selected target is rechecked in every step, but to avoid
jumping targets, a new target is only selected if the old one has become drastically worse (defined by:
no own player present in its vicinity, but an opponent). Also, this new target will typically not be chosen
with a complete new selection (and possibly requiring the agent to rotate a long way around the ball),
but by the get immediate target function instead. This function does also iterate all possible targets,
but does so with the targets ordered by the distance the agent has to rotate around the ball in order
to aim at that target. It does not select the best of all targets, but stops if a target is ‘good enough’,
thereby preferring targets which do not require the agent to take a long way around the ball.

As a final resort, if a pass must be made in the instance the skill is called, it also has a panic function
which only chooses among targets that do not need any agent rotation around the ball, so that the
shot can be executed as fast as possible.
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11.2.4 Cover

The cover skill is used in the game without ball. As the name indicates it is used to cover a player of the
opponent team thus making it harder if not impossible for the opponent to participate in coordinated
attacks of the opponent team. Covering is invoked with a single flag which indicates whether or not
the cover action should be manually reset or not.

The first thing the cover skill does is to perform a check whether or not the current choice of cover
target needs a revision. This situation can happen either upon manual request indicated by the reset
flag. It also happens when no cover target could be found in the last call to the cover skill. The last
situation where the cover target needs to be verified is due to the agent’s limited commitment. Due
to the dynamic changes in the situation on the soccer field while the opponent is controlling the ball
and actively tries to push the ball forward in order to score a goal blind commitment is not feasible for
covering agents. Thus, after a configurable amount of simsteps the commitment is revised.

If the agent finds that a new cover target needs to be chosen an evaluation of the current situation on
the field is performed which as a result returns the new cover target (if such a target can be found) or
a dummy (no one to be covered).

First a map of potentially threatening agents is compiled which is ordered in decreasing threat mag-
nitude10. Only opponent agents which are closer to the agent’s own goal than a certain configurable
distance (cover consideration distance) and whose x-coordinate is smaller than that of the ball plus
a certain configurable distance (cover ignore distance) are considered. Agents which are located very
close to the field borders or even beyond those borders are not considered as well.

Next a list of potentially covering agents is compiled as well. With these two lists it is possible to
calculate with reasonable certainty which of the possible covering agents is supposedly responsible for
which attacking opponent. If an agent is closest to an opponent player it is considered responsible.
When the ID of a responsible player first matches that of the player just performing the cover skill a
new cover target has been identified.

It is possible that during iteration of the opponent map no opponent can be found which should be
immediately covered due to direct responsibility assignment. In earlier versions of the cover skill the
evaluation would have been aborted without success.

However during the preparation for the RoboCup 2006 we found situations where using only the system
described so far let to severe problems. In those dangerous situations an opponent agent managed to
dribble the ball with considerable speed with one of our agents in close pursuit. The problem with such
a situation is that as long as the attacker does not slow down for a pass action there is often no chance
for our agent to overtake the attacker in order to stop him.

Thus, the attacker needs to be stopped by a supporting cover agent which closes in on the attacker
from the direction of the goal. This concept is really promising and given a good positioning strategy
can stop solo runs by single attackers most of the time. In the implementation a check similar to
that for direct cover responsibility is performed where the agent checks whether or not it is responsible
supporting cover player.

In the cover action itself the agent checks whether an acceptable cover target is currently used. If that
is not the case the skill throws an Exception since it is unable to perform right now. It is thus not
prepared to handle a situation where covering is requested but technically impossible on its own but
leaves this task to the calling behavior.

If however an acceptable cover target can be found the agent recalculates the optimal cover position
based on the ID of the object to be covered (which due to commitment is somewhat stable) and the
current position of the associated agent (which is of course changing rapidly). The general idea which
is applied for the calculation of the cover point is simple. It lies a certain again configurable distance
away from the current position of the agent to cover in the direction of the goal center. Thus, the
covering agent blocks the way of the covered agent to the goal.

10The threat an agent poses is associated with its distance to the goal (with respect to its teammates)
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11.2.5 Intercept

The intercept skill is used by the agent to intercept a moving ball for the purpose of being able to kick it
afterwards. It is called without any parameters. The calculation of the interception point is dependant
on the current ball velocity and the position of the agent relative to the ball. The whole calculation is
based on the predicted ball positions which are calculated every 20 simsteps by the appropriate mapper.
In an interactive method the point the ball will be at after a number of simsteps is compared with the
points the agent could reach in that amount of time. If both – the ball and the agent – can reach the
same absolute position on the field at the same simtime, the iteration stops and the ’move’ skill is used
to move the agent to this point. If no such point exists - this can happen if either the ball is too far
away or too fast - the move skill is used to move the agent to the point the ball is expected to finally
come to a rest.

An additional ability of the intercept skill is the ability to evade the ball in certain situations. If the
ball rolls into the direction of the own goal, intercepting the ball and colliding with it makes sense to
prevent it from moving further into the own half. But if the ball moves towards the opponent goal,
colliding with it might not be the desired action for it takes a lot of unnecessary time to stop the ball,
walk around it and kick it. Instead evading the ball and moving directly behind it enables the agent to
much faster pass it to a teammate or score a goal.

11.2.6 Pan-Tilt Handling Skills

The Virtual Werder agent currently has three skills for handling camera turns. These are:

1. View Turn

2. View Rotate

3. View Follow

Of these, view turn is the most basic skill. It takes the pan and tilt values as parameters and executes
the turn. If the requested turn cannot be executed in one step, the camera will be turned as far as
possible and the remaining turn distance will be stored. The skill can then later be executed without
parameters which triggers completion of any remaining turns.

View rotate is the skill used for giving the player the best possible knowledge about the positions of
all objects on the field. It simply rotates the camera in steps of 180 degrees, so that (without taking
movements into account) each part of the field is seen in every second vision.

While view rotate is good enough for seeing all objects regularly, it may not be good enough if the
position of one special object is to be tracked as accurately as possible. For that case, view follow
exists. It takes one object as parameter and then tries to turn the camera in a way that this special
object is seen in every vision while still moving the camera around as far as possible so that most other
objects are seen, too. In essence, it performs turns so that the tracked object is seen on the right border
of the field of vision in one step, on the left border in the next step and so on. This way we hope to
see the tracked object in every vision and the other objects in every second vision. This way of camera
turning has one disadvantage: there is always a small area ‘behind’ the agent that is never seen, and so
are objects in that area. Yet we have not experienced that to be a bigger problem, as the movements
of the objects sooner or later will cause the agent to see any possible ‘lost’ objects again.

11.2.7 Goalkick

The goalkick is a special skill which is only used by the goal keeper in a situation where an undisturbed
kickoff of the ball needs to be performed. The skill was designed to completely fill the role of the handle
method in the keeper behavior which is active while PLAYMODE GOALKICK OWN.
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Whenever a goalkeeper receives the opportunity to perform the goalkick the server beams the ball
automatically to a position approximately five meters in front of the goal center. For as long as the
ball does not leave the penalty area no opponent player is allowed to enter the penalty area in order to
interrupt the goalkick process.

The goalkick process is divided in two phases. In the first phase the keeper approaches the ball which
is still resting at its initial beam position in order to perform a supporting pass which is used to move
the ball to a better goalkick position closer to the penalty line while still behind the penalty line. If no
decision has yet been made as to which of the three possible more advantageous kickoff positions the
ball should be shot first, this selection is made once for the immediately following goalkick action.

When the ball has been shot towards its better position phase two of the goalkick is started. Again it
starts with an approach towards the new ball position. Once the keeper is close enough the pass skill
takes over and the keeper selects a promising target for the goalkick pass action. Since the goalkick
is a special situation and there are often quite a lot of opponent agents still waiting just outside the
penalty area the pass is to be performed using a high kick in order to minimize dangerous situations
that arise due to deflections of the ball by opponent attackers or midfielders which manage to move
into the shooting line.

11.2.8 Kickin

The kickin skill is a skill which is currently used by midfielders and defenders in order to perform a normal
kickin during a game. Due to our current tactical setup forwards never perform kickins themselves since
they are supposed to find a good position on the field in order to receive a the ball and drive the game
forward. The kickin skill bears some similarities to the goalkick skill described above. The skill was
also designed to fill the role of the handle method in the defender or midfielder behavior which is active
while PLAYMODE KICKIN OWN. However, it cannot be a complete substitution since it remains the
behavior’s task to decide whether or not an agent is responsible for the execution of the kickin due to
its position on the field relative to the kickin point where the ball has been beamed to by the soccer
server. If an agent is responsible the skill takes over.

When a player has the opportunity to perform the kickin as mentioned above the server beams the ball
to the kickin point. The kickin is divided in two phases just like the goalkick: an approach phase and
a pass phase.

When a new kickin is initialized the agent first chooses an intermediate kickin point out of two possible
points which are located about half a meter to the left and to the right of the resting ball along the
field border and 25 cm outside the field. The agent chooses the closer intermediate point for the fast
approach phase. The reason why an intermediate point was introduced in the first place is that in our
experiments we noticed a better ball handling with the indirect approach than with the direct approach.
That is not meant to say, that a direct approach will not work. Actually it does pretty well most of the
time due to the orbiting feature built right into the agent’s regular approach of kick positions. However,
there are special situations where it does not (i.e., the player touches the ball on the way to the kickin
position) and we did not want to take chances.

The agent approaches the intermediate kickin point with maximum speed. Since the agent does not
break it drives through the intermediate point and recognizes it has passed a certain threshold distance
between the border of the field and its own position (measured using only the length along the y-axis)
and thus switches to phase two where immediately the pass skill takes over. It handles the last approach
towards the ball, chooses a suitable pass target and kicks the ball.

In the current implementation of our agent framework we also use the kickin skill to perform corner
kicks. However, it seems like the method does not work too well under these circumstances. We are
investigating the problem and hope to fix it soon.
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12 Behaviors

This section describes the agent’s behaviors. First an introduction to the general design of the available
concrete soccer behaviors is given. After that each behavior is treated in a separate subsection.

12.1 The General Design of Behaviors

In the Virtual Werder framework we distinguish three different kinds of agent behaviors. First of all we
use a set of game behaviors for normal game-play in tournaments and test games. The second group of
behaviors are test behaviors which are used to debug and evaluate the performance of the skills which
are implemented in the framework. Typically, those test behaviors are meant to be used in certain test
scenarios rather than in normal games. Actually most of the test behaviors currently implemented such
as the Behavior Test Kick are written for a scenario with only a single agent acting on the field. Finally,
the third kind are learning behaviors as well. In order to learn more about the whole learning complex,
please refer to section 14.

Whenever the behave() method is called by the agent control loop the appropriate behavior for the
current reason-act cycle is determined. This is performed by the Behavior Evaluator which controls
the behavior pool where all behavior instances are located. The actual process that is used in order
to select the concrete behavior to be executed by the agent in each behave() invocation involves two
selection phases. In the first phase the desired modus of play which is indicated in the configuration
(gaming, testing, learning) is evaluated for the current cycle and thus the behavior domain can be
identified. In the second phase further differentiation takes place which means that out of the set of
possible behaviors associated with the active behavior domain the concrete behavior the be executed
is chosen. The character of the selection procedure is different for each of the three possible behavior
domains.

The easiest case is learning since only a single learning behavior exists at the moment. Therefore of
course, selection is trivial. For test behaviors the agent configuration specifies besides the fact that
the agent should use a test behavior the skill which is to be tested. The Behavior Evaluator then
simply chooses the matching test behavior. For game behaviors the Behavior Evaluator chooses the
concrete behavior according to the role the agent currently occupies. There are four possible roles:
ROLE GOALIE, ROLE DEFENDER, ROLE MIDFIELDER and ROLE FORWARD. For each of these
roles an especially adjusted concrete behavior is provided. In the unlikely case that an agent for some
reason occupies an invalid role instead of one of the behaviors above a simple fall-back behavior is used
which still allows the agent to play decently most of the time. At this point it is worthwhile to mention
that the Behavior Evaluator is not responsible for an adaption of agent roles. This task belongs to the
mapper formation.

12.2 Game Behaviors

The behaviors which are used in normal simulated soccer games adhere to a certain internal design which
is enforced by the inheritance hierarchy for game behaviors. The first game behavior to be implemented
historically and probably the most important in terms of design considerations is the Behavior Soccer.
This behavior has two functions. First of all it implements a complete simplified soccer behavior for field
players. It is complete in the sense that it is able to handle all play-mode situation that can possibly
occur in a game of simulated soccer. It has thus a 100% coverage over the course of a game. The
Behavior Soccer is also parent class for all specialized game behaviors.

The design of the game behaviors was influenced by the fact that at each moment the agent can tell
with certainty which play-mode is currently active. Therefore the Behavior Soccer introduces an design
where a control method first determines the current play-mode and then delegates the task to act
according to that play-mode to a specialized handler method. Since the Behavior Soccer can actually
be used in games each of these handler methods is fully implemented which brings a lot of flexibility to
the development of the specialized classes.
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Since the play-mode control method which manages the task assignments to the handle methods is
generic it is used by all derived behaviors as well. The handler methods may or may not be reused as well.
In fact due to inheritance it is possible to specify only parts of derived behaviors by reimplementation
of only a subset of the handle methods. In our experience gathered during the implementation of the
Virtual Werder agent framework especially during the first development phases of new behaviors this
mechanism is quite comfortable, since development can be done on a per-method basis.

As mentioned earlier we implemented four special game behaviors one of which is the behavior for
our goal keeper while the others are used for defenders, midfielders and forwards. We considered to
specialize the behaviors even further which would go together with more detailed role descriptions but
during an inspection of the decision trees used for our behaviors we found out that these are rather
simplistic. This fact stresses the importance and the relative independence of our skill implementations.

Subsequently we will describe the behaviors in a graphical way since it is probably the best way to
comprehend and follow the decision process in our behavior trees. Note that so far all of our behaviors
are basically based on decision trees. So there is no use of other mechanisms such as Bayesian or neural
networks involved. Furthermore, we do not use planning yet which means that we basically implemented
reactive soccer behavior.

12.2.1 Defense Behavior

This section describes the Defense Behavior in terms of a graphical representation of the internal
structure (decision tree based) of the handle methods implemented for the various play-modes. For
those play-modes which are not mentioned in this section please refer to the ‘Fall-back Behavior’ on
page 50.

The graphic above shows the simple decision tree for

• PLAYMODE GOAL MYTEAM,

• PLAYMODE CORNERKICK MYTEAM,

• PLAYMODE KICKOFF ENEMYTEAM,

• PLAYMODE GOALKICK MYTEAM and
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• PLAYMODE GOAL ENEMYTEAM.

Note that the decision tree presented here corresponds to the general fall-back behavior for a defender
(simple repositioning). In order to save space in the graphics presented below the fall-back is collapsed
as shown below.

The graphic above shows the simple decision tree for PLAYMODE CORNERKICK ENEMYTEAM,
PLAYMODE KICKIN ENEMYTEAM, PLAYMODE GOALKICK ENEMYTEAM
and PLAYMODE FREEKICK ENEMYTEAM.

On the left side of the graphic below the decision tree for PLAYMODE KICKIN MYTEAM is shown
while on the right side the decision tree for PLAYMODE KICKOFF MYTEAM is shown.
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The graphic below shows the decision tree which is used in the handle methods for PLAYMODE PLAYON
and PLAYMODE FREEKICK MYTEAM. The handle method for the latter play-mode just calls that
for PLAYMODE PLAYON.
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12.2.2 Midfield Behavior

This section describes the Midfield Behavior in terms of a graphical representation of the internal
structure (decision tree based) of the handle methods implemented for the various play-modes. For
those play-modes which are not mentioned in this section please refer to the ‘Fall-back Behavior’ on
page 50.

The graphic above shows the simple decision tree for

• PLAYMODE GOAL MYTEAM,

• PLAYMODE CORNERKICK MYTEAM,

• PLAYMODE KICKOFF ENEMYTEAM,

• PLAYMODE GOALKICK MYTEAM and

• PLAYMODE GOAL ENEMYTEAM.

Note that the decision tree presented here corresponds to the general fall-back behavior for a midfielder
(simple repositioning). In order to save space in the graphics below the fall-back is collapsed as shown
below.
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The graphic above shows the simple decision tree for PLAYMODE CORNERKICK ENEMYTEAM,
PLAYMODE KICKIN ENEMYTEAM, PLAYMODE GOALKICK ENEMYTEAM
and PLAYMODE FREEKICK ENEMYTEAM.

On the left side of the graphic below the decision tree for PLAYMODE KICKIN MYTEAM is shown
while on the right side the decision tree for PLAYMODE KICKOFF MYTEAM is shown.
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The graphic below shows the decision tree which is used in the handle methods for PLAYMODE PLAYON
and PLAYMODE FREEKICK MYTEAM. The handle method for the latter playmode just calls that for
PLAYMODE PLAYON.

The decision tree is a slightly modified version of that already shown in ‘Defense Behavior’ on page 36.
In situations where a midfielder is not responsible for the ball it does not insist upon covering the enemy
but in the case of a advantageous situation for the own team the agent tries to find a good position to
drive forward the game of its own team.
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12.2.3 Forward Behavior

This section describes the Forward Behavior in terms of a graphical representation of the internal
structure (decision tree based) of the handle methods implemented for the various play-modes. For
those play-modes which are not mentioned in this section please refer to the ‘Fall-back Behavior’ on
page 50.

The graphic above shows the simple decision tree for

• PLAYMODE GOAL MYTEAM,

• PLAYMODE CORNERKICK MYTEAM,

• PLAYMODE KICKOFF ENEMYTEAM,

• PLAYMODE GOALKICK MYTEAM,

• PLAYMODE GOAL ENEMYTEAM,

• PLAYMODE GOALKICK ENEMYTEAM,

• PLAYMODE KICKIN MYTEAM,
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• PLAYMODE FREEKICK ENEMYTEAM,

• PLAYMODE KICKIN ENEMYTEAM and

• PLAYMODE CORNERKICK ENEMYTEAM.

Note that the decision tree presented here corresponds to the general fallback behavior for a forward
(simple repositioning). In order to save space in the graphics below the fallback is collapsed as shown
below. As you can see from the multitude of covered play-modes good repositioning is quite important
for attackers.
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The graphic below shows the decision tree which is used for PLAYMODE KICKOFF MYTEAM. It is
more articulated than the equivalent in the ‘Defense Behavior’ on page 36 or ‘Midfield Behavior’ on
page 40 since in our team the closest attacker is supposed to perform the kickoff action.
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The graphic below shows the decision tree which is used in the handle methods for PLAYMODE PLAYON
and PLAYMODE FREEKICK MYTEAM. The handle method for the latter playmode just calls that for
PLAYMODE PLAYON.

The structure of the decision tree for an attacker matches that of a defender (cf. ‘Defense Behavior’
on page 36).
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12.2.4 Keeper Behavior

This section describes the Keeper Behavior in terms of a graphical representation of the internal structure
(decision tree based) of the handle methods implemented for the various play-modes. For those play-
modes which are not mentioned in this section please refer to the ‘Fall-back Behavior’ on page 50.

The graphic above shows the simple decision tree for

• PLAYMODE GOAL ENEMYTEAM,

• PLAYMODE GOAL MYTEAM,

• PLAYMODE GOALKICK ENEMYTEAM,

• PLAYMODE CORNERKICK MYTEAM.

Note that the decision tree presented here corresponds to the general fall-back behavior for the keeper
(simple repositioning in terms of move to a certain point in the goalie area). In order to save space in
the graphics below the fall-back fallback is made implicit.
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On the left side of the following graphic the decision tree for PLAYMODE CORNERKICK ENEMYTEAM
is shown. On the right side the decision tree for PLAYMODE GOALKICK MYTEAM is shown.

Two remarks are required at this point in order to understand the following graphics for the keeper.
First, even though within the decision trees the move skill is used in different situations that does not
imply that the keeper actually does the same thing. Please refer to the comments in the code in order
to find out where the keeper is moving in each situation. Second, the keeper is the only player in our
team that uses multi-actions (besides view control skills which are used concurrently). Even though
this is also possible for field players due to the hierarchical structure of the skills the keeper behavior is
the only place where multi-actions are actively triggered directly within the handle methods.

The graphic on the following page shows the decision tree which is used in the handle methods for

• PLAYMODE KICKIN MYTEAM,

• PLAYMODE KICKIN ENEMYTEAM,

• PLAYMODE FREEKICK MYTEAM,

• PLAYMODE FREEKICK ENEMYTEAM,

• PLAYMODE KICKOFF MYTEAM,

• PLAYMODE KICKOFF ENEMYTEAM and

• PLAYMODE PLAYON.
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12.2.5 Fall-back Behavior

This section describes the Fall-back Behavior in terms of a graphical representation of the internal
structure (decision tree based) of the handle methods implemented for the various play-modes.

This behavior is the base for all other specialized behaviors that have already been introduced so far.
This behavior features a full set of handler methods. However, it is not really a competitive behavior.
It basically makes sure the agents act like dumb standard field players

The graphic above shows the simple decision tree for PLAYMODE BEFORE KICKOFF and PLAY-
MODE GAMEOVER.
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The graphic above shows the simple decision tree for PLAYMODE GOAL MYTEAM,
PLAYMODE KICKOFF ENEMYTEAM and PLAYMODE GOAL ENEMYTEAM.

The graphic below shows the decision tree which is used for all remaining play-modes.

12.3 Test Behaviors

Just like the game behaviors that have already been described in the previous pages the test behaviors
adhere to a certain internal design which however is much simpler than that of the fully-grown game
behaviors. That is due to the fact that test behaviors are used in special test scenarios which means
that the fine playmode distinction is usually not necessary.

The base class for test behaviors is Behavior Test. Just like Behavior Soccer it defines and implements
a control method which delegates the task to behave to adequate handler methods. However, Behav-
ior Test implements only the handler methods for the time before a game (preparation of tests), active
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game and the time after the end of a game. If any test behavior needs a finer granularity in playmode
handling this can still be done by reimplementation of the control method.

Behavior Test is not meant to be used directly since only by specialization it is possible to define the
test behaviors for the agent’s skills.

13 Math Classes

The Virtual Werder code contains several classes used for frequently needed mathematical calculations.
In particular, these are:

• Polar

• Polygon

• Vector2d

• Vector3d

13.1 Polar

The Polar class represents a relative position on the field, given as polar coordinates in relation to
oneself. We use it as container for position related data the agent receives from the server as that
comes in polar format. Apart from constructors and assignment operator, the class also has equality
and inequality operators.

13.2 Polygon

The Polygon class implements convex polygons for use in calculating a player’s Voronoi cell, which is
used in the repositioning skill. It offers a function for cutting an initial polygon to a player’s Voronoi
cell, given the positions of other relevant players and getter functions to extract information about this
reshaped polygon.

13.3 Vector2d

The Vector2d class represents a two-dimensional position (i.e., without elevation) on the field given in
cartesian coordinates. It can be used for both relative and absolute positions. As almost all position
related calculations in the skills and behaviours use cartesian coordinates, this class and its ‘brother’
Vector3d are frequently used. Operations available include addition, subtraction, length scaling (with
the special case of scaling to length 1 – normalizing), equality and inequality checks, distance between
two points, scalar product, angle between two vectors and rotation of the vector.

13.4 Vector3d

This class is almost the same as the Vector2d class with the difference that it includes the third
dimension. It has the same operations as its 2D counterpart with the exception of rotating the vector,
which is not available for 3D.

14 Reinforcement Learning

Manually implemented skills often lead to suboptimal solutions and time consuming parameter tuning
efforts. Automated optimization techniques are thus a way to create (hopefully) better solutions and
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Figure 4: Learning

to be able to easily adapt to changes in the environment. Reinforcement learning has been successfully
applied to RoboCup (e.g., [MR02, KS04]). A reinforcement learning framework has also been integrated
to our agent. The following subsection describe how to use this framework. For more information about
reinforcement learning see, e.g., [KLM96, SB98].

The architecture of the learning framework is outlined in Fig. 4. The central classes are BehaviorLearn
for initiating the learning process and Skill Learn including its subclasses for actually control the learning
process and executing the actions (either random actions for exploration or the best action for using
the skill). In the following subsections it is described how to use the framework for learning and using
learned skills, how to map states and actions, how the Q update is performed and where the status is
stored, as well as how the policy performs the action selection.

14.1 Learning and Using Skills

In order to learn a skill some new classes must be implemented which are derived from existing ones in
the framework. The subclasses of the abstract class Skill Learn are the central components for learning.
In the learning mode a special behavior – BehaviorLearn – is used. This behavior has a reference to
the current skill to be learned. The active learning skill is selected in the configuration file (see section
7). The behavior initiates the learning process in this skill. There are different learning modes which
determine if learning is performed online or offline, and if in the current situation data for learning
should be created or processed in order to update the skill. If data is collected a new learning record
(RL Record) is created. This record consists of all relevant information for learning, i.e., previous state,
current state, executed action, immediate reward. This information can be used directly (online) for
updating the Q function or later in a batch mode if the update should be performed offline.

Learned skills can be used in the same way as regular skills are used. They also have an operator,
possibly with parameters, which can be called from the different soccer behavior classes. In the skill
execution mode the best action for the current state is selected and executed. If the skill has been
learned correctly this should lead to the best action (currently known due to learning).

14.2 State and Action Mappings

The representation of the current agent’s belief of the world can become quite complex. Taking all this
information into account for learning would lead to far too complex learning tasks. Thus, it is important
to reduce the world state to the parts relevant for the learning task. Here, it is advisable to use a concise
representation independent of the actual position or direction of objects (or object constellations), e.g.,
a translation and rotation invariant representation of the problem. For the creation of these learning
problem adequate state representations the concept of the extractors are used. For each learning task
a subclass of Extractor RL State must be implemented. The operator of this class creates RL State
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Parameter Default Description
RL LEARN MODE ACTIVE false Learning mode is active (i.e.,

the learning behavior is used)
if this is set to true.

RL LEARN OFFLINE true The actual update of the Q
table/function is done after
collecting the learning records
if this parameter is set to true.

RL LEARN OFFLINE EVALUATION false If this value is set to true the
batch processing of collected
records is performed.

RL LEARN SKILL skill learn kick Determines which learning skill
is used by the learning behav-
ior.

RL LEARN Q STORAGE q storage nn Determines which q storage
implementation is used.

RL POLICY rl policy boltzman Determines which policy is
used for action selection.

RL Q TEMPERATURE 0.03 The initial temperature value
for the Boltzmann distribution

RL Q GAMMA 0.9 The gamma value for the Q up-
date.

RL Q BETA 0.3 The beta value for the Q up-
date.

RL Q USE SINKING TEMPERATURE false If this value is set to true the
temperature for the Boltzmann
policy is decreased while learn-
ing.

RL Q TEMPERATURE DOWN VALUE 0.01 This indicates the step size for
decreasing the temperature.

RL Q TEMPERATURE DOWN TRIALS 100 The number of trials determine
after how many learning steps
the temperature is decreased.

Table 1: Learning parameters in the configuration file

instances for the learning task.

Similarly to the states the actions that can be executed must be defined for the learning task. In the
case of Q learning a discrete set of actions must be known. Each action is represented by a unique
identifier (the action ID). The learned skill holds the information which action ID is the best for a certain
situation (or has been selected randomly). In order to execute the action in the agent framework it
must be mapped to a concrete action, e.g., by using the effectors of the agent. For instance, it would
be possible to set up a number of fixed directions and power values for the drive effector and to use
this as the set of possible actions.

14.3 Q Storage

The Q storage is responsible for holding the information how good actions are in certain situations (the
Q values). Usually, this information is kept in a so called Q table where for each state-action pair a
Q value is stored indicating the expected performance when executing the action in this situation. A
disadvantage of the table representation is that the table can get quite big and that for continuous state
attributes it would be impossible to create an entry for all situations. In order to address this problem
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function approximators are used. In this case a function approximator represents the information that
would usually be hold by the Q table, i.e., the function returns a Q value for a given state-action pair.
The difference to the Q table is, that the function approximator can have a concise representation
of the Q function and that it is no problem to use continuous values if these can be handled by the
approximator.

In the current implementation the class Q Storage NN is derived from Q Storage. This Q storage uses a
neural network as function approximator, more precisely it uses the n++ library [Rie97] for representing,
updating, and forward propagating neural networks which approximate the Q function.

The update functionality for computing new Q values is also implemented in the subclasses of the Q
storage. The different results of learning steps are stored as RL Record objects which hold all relevant
information for performing an Q update. If desired, these records can also be collected for batch
processing at a later time.

14.4 RL Policy

The policy is responsible for action selection. Currently, there exists one one policy implementation:
RL Policy Boltzmann. Here, the Boltzmann distribution is used for random selection of the action to
perform. It depends on a parameter – the so called temperature – to what degree randomness should
be used. In the beginning of exploration different actions should be selected randomly. After some time
the learning process can be accelerated by decreasing randomness and selecting the best action (known
so far) more often.

14.5 Configuration Settings

There is a number of configuration settings in the vw3d.cfg configuration file which are relevant for
learning. Table 1 summarizes these parameters.

15 Evaluation Tool

After our framework and the vital behaviors and skills had been implemented the next step was to
evaluate and fine-tune them. Amongst other things we were interested in answering questions like:

• How fast can our agent move around the ball and kick it to a designated position?

• How good is our kick-accuracy? How good is it dependent on the distance to the target?

• How accurate is our self-localization? What is the average position error, both for the agent itself
as well as for other objects?

In addition we wanted to rate different sets of configuration values or different ways of handling certain
tasks against each other. In order to be able to do so we implemented a tool which is able to read the
server-created logfiles and create certain statistics about the game.

Though the monitor logfile holds a lot of information, the data contained only describes the game on a
global level. With only the monitor.log taken into account no agent specific statistics can be created.
As a consequence we needed the agent information, too, where the only source for these were the agent
logfiles. We implemented an appropriate debug stream and a mapper which allowed us to write all
needed data into the corresponding agent logfile. Using both the monitor logfile as well as the agent
logfiles allows us to combine and compare these date and create the requested statistics.
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Figure 5: Screenshots of the Eval Tool GUI

15.1 Statistics

• Position accuracy This statistic evaluates the position of the various objects. At first the average
position error for all objects is calculated. In addition a histogram is created for every object
giving the possibility to depict whether a suboptimal average position error may only be caused
by a few large imprecise values or if the majority of the data is incorrect.

• Shooting accuracy This statistic evaluates the shooting accuracy as well as the repositioning
function. A game is partitioned up into a number of segments. Each segment starts with an
agent approaching the ball followed by a repositioning phase, the actual kicking and ends with
the ball reaching close to zero speed. At the end of the game the average positioning error and
the average reposition time is calculated from all recognized segments.

15.2 Visualization

Though the creation of the statistics was the main reason for developing the evaluation tool, we found
a simple visualization of the game to be useful for both find parsing errors as well as reviewing games
on other platforms than Linux. The visualization consists of a simple 2D plan view implemented using
the Simple DirectMedia Layer - SDL11.

11http://www.libsdl.org
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