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Abstract

In the recent decades modern information technology has made possible to store and process
huge amounts of data. Companies and organizations have identified the chances of collecting
and utilizing data and the field of knowledge discovery in databases and data mining methods
have attracted attention. In many domains temporal or sequential information plays an im-
portant role and thus, in the recent years many researchers also addressed temporal pattern
mining. Many of the approaches take simple event or item sequences as learning input but
some works also address events with temporal extent or sequences of relational data. In this
work an approach to temporal pattern mining from time interval-based relational data is pre-
sented. Additionally, hierarchical class information can be provided for objects as well as for
arguments in the relations. For support computation an observation time semantic as used
by Höppner is used. We introduce a dynamic scene representation and show how it can be
transferred in a way that it can be handled by the relational association rule mining algorithm
WARMR. For a simple test scenario the created WARMR input files as well as the output are
presented for illustration.

1 Introduction

Modern information technology allows for storing and processing huge amounts of data and
thus the interest in taking advantage of the available data by applying data mining methods
has increased in the last decades. While knowledge discovery in databases (KDD) has been
defined as the whole “process of finding knowledge in data” including preprocessing and in-
terpretation of the results, data mining is one step in this process where data mining methods
are applied to actually search for patterns of interest [FPSS96]. In the case of temporal data
mining temporal information is available in the data, e.g., annotated times when some items in
transaction databases have been purchased or a sequential order of some events. In temporal
data mining such temporal information shall be exploited in order to mine interesting rules
including temporal information.

In the recent years, temporal data mining has been addressed by many researchers (cf.
[ZSS03, LS06]). Many approaches to temporal pattern mining are based on Apriori like al-
gorithms where patterns are created level-wise and only frequent patterns of one level are
combined to form the next level candidates. The original Apriori algorithm mines association
rules in transaction databases without time information [AS94]. It has been extended to mine
sequential patterns from databases where the transactions have a timestamp. Many differ-
ent approaches address the mining of patterns from such a representation or event sequences
(without temporal extent of events), e.g., [AS95, SA96, MTV97]. In other works events can
have a duration with start and end times and thus, temporal patterns with interval relations
can be mined (e.g., [Höp03]). Another extension of association rule mining is the identification
of association rules from more complex data than transactions. WARMR, for instance, mines
association rules over multiple relations [DT99], and there are also works that can deal with
both relational and sequential data (e.g., [Lee06]).

In many domains different kinds of objects can be in various relationships and events or
actions can have a duration. Agents in dynamic environments, for instance, have to deal with
complex situations including various temporal interrelations of actions and events. If more
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Figure 1: Test scenario

elaborated technologies like planning should be used, the representation of the agent’s belief
including background knowledge for its behavior decision can become very complex, too. It is
necessary to represent knowledge about object classes and their properties, actual scenes with
objects, their attributes and relations. If even more complex scenes with temporal extents
shall be described this additional dimension must also be incorporated in the formalism. Fig.
1 shows an example sequence from the soccer domain. Here, time proceeds from left to right
and the bars represent the duration of certain relations or actions. For instance, there is a
player p9 who passes the ball to player p8 in the interval 〈15, 17〉. This example sequence is
used throughout the paper for illustration purposes.

To the best of our knowledge there is no approach to temporal pattern mining learning
from a relational and time interval-based representation and also taking class information into
account in the mining process. In this report we present an interval-based representation for
describing dynamic scenes and set up a temporal pattern mining task based on this represen-
tation. We show how WARMR [DT99] can be used to mine frequent temporal patterns from
such a representation.

It should be mentioned that WARMR has already been used for sequential pattern mining
tasks [DT99, JB01]. However, in these cases patterns have been mined from event sequences
without temporal extension.

The next section provides some definitions and describes the problem to solve. In the
subsequent section it is shown how WARMR can be used to mine the intended temporal
patterns. After presenting a sample run with input and output data for WARMR the report
ends with some concluding remarks.

2 Definitions and Problem Statement

The goal of the mining task is to find the set of all frequent temporal patterns from a dynamic
scene as it is shown in Fig. 1. Before it is described how WARMR is used for the mining task
we provide some definitions. Let V, O, C, and IR be the sets of variables, objects, classes,
and temporal interval relations, respectively.

Definition 2.1 (Dynamic Scene) A dynamic scene is described by the 4-tuple ds = (P,O, i,
DSS) where P is the set of predicate instances, O is the set of objects in the dynamic scene,
i : O → C maps objects to classes (instance-of relation), and DSS is the dynamic scene
schema. �
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Definition 2.2 (Dynamic Scene Schema) The schema of a dynamic scene DSS = (C, sc,
PD, IR) consists of all schematic information. C is the set of classes and sc : C → C maps
classes to their super classes and thus describes the class hierarchy. C consists of at least one
element which denotes the most general class (object). PD is the set of predicate definitions
and IR the set of the temporal interval relations. �

Predicate definitions consist of the identifier, the arity, and the allowed ranges for the
objects in their instances.

Definition 2.3 (Predicate Definition) A predicate definition pd is defined as pd = (pdname,
pdarity, pdclasses) with pdclasses = (c1, c2, . . . , cpdarity ). All ci denote classes in the dynamic
scene schema, i.e., ci ∈ C with 1 ≤ i ≤ pdarity. �

Definition 2.4 (Predicate Instance) Predicate instances pi = (pd, pobjects, 〈s, e〉) are in-
stances of predicate definition pd, consist of a list of object identifiers pobjects = (o1, o2, . . . ,
opdarity ) with ∀oi : oi ∈ O of the dynamic scene, and additionally contain an interval of validity
〈s, e〉 with start time s and end time e. �

For a better understanding we denote predicate instances in a more readable way: holds(
predicate(o1, o2, . . . , opdarity ), 〈s, e〉) represents a predicate with pdname = predicate, pobjects =
(o1, o2, . . . , opdarity ), start time s, and end time e. An example for a predicate in this notation
is: holds(inBallControl(p7), 〈17, 42〉).

Definition 2.5 (Interval Relation Function) The interval relation function ir : 〈N, N〉 ×
〈N, N〉 7→ IR maps time interval pairs to interval relations. �

It depends on the used interval relations IR how the actual mapping from the interval
pairs to the interval relation has to be performed. Using, for instance, Allen’s interval relations
ir(〈s1, e1〉, 〈s2, e2〉) = b (before) if (and only if) e1 < s2 [All83].

An atomic pattern consists only of one predicate. The difference to predicate instances is
that the list of arguments do not need to denote objects. In the general case the elements of
the pattern are variables that can be bound to objects while pattern matching. However, it is
also allowed to have arguments bound to objects in the pattern already.

Definition 2.6 (Atomic Pattern) An atomic pattern is defined as p = (pd, parg) where pd
denotes a predicate definition and parg specifies a list of terms parg = (v1, v2, . . . , vpdarity ). All
vi are either elements of O as defined in the dynamic scene or are elements of V, the set of
variables, i.e., it holds ∀vi ∈ V ∪ O . �

Definition 2.7 (Conjunctive Pattern) A conjunction of atomic patterns is called conjunc-
tive pattern. It connects the atomic patterns by a conjunction (logical AND): p1 ∧ p2 ∧ . . .∧ pn

where the pi are atomic patterns with 1 ≤ i ≤ n; n is called the size of the pattern. �

Note that conjunctive patterns do have an implicit temporal order of their atomic patterns,
i.e., each atomic pattern pj must have the same or a greater start time than all its predecessor
pi with i < j. Similarly to the predicate instances above we introduce a short notation for
conjunctive patterns: predicate 1(v11 , . . . , v1pdarity

)∧ . . .∧predicate n(vn1 , . . . , vnpdarity
). An

example of a conjunctive pattern with two predicates is uncovered(X) ∧ pass(Y, X).

Definition 2.8 (Class Restriction) The class restriction defines for each variable vi of a
conjunctive pattern its least general class ci. For a given variable list (v1, v2, . . . , vn) the class
restriction is represented by a class list (c1, c2, . . . , cn). �

Variable unifications define if certain variables in a (conjunctive) pattern should refer to
the same object in the assignment during pattern matching, i.e., if variables are unified.

Definition 2.9 (Variable Unification) A variable unification of a pattern p is defined as
the unification of two different arguments v1 and v2 of one or two predicates of p, i.e., it must
hold that v1 = v2. �
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B r2 C
A r1 B < <c |= >c >

< < < < <, <c, |=, >c <, <c, |=, >c, >
<c <, <c <, <c <c <c, |=, >c <c, |=, >c, >
|= <, <c <, <c |= >c >
>c <, <c <, <c, |=, >c, > >c, > >c, > >
> <, <c, |=, >c, > >c, > >c, > >c, > >

Table 1: Composition table for the temporal relations

Binding a variable to a constant (i.e., to an instance) is denoted as instantiation:

Definition 2.10 (Instantiation) A variable vi is instantiated if it is bound to an instance
of the set of objects in the dynamic scene, i.e., if vi = o with o ∈ O. �

A temporal restriction defines the constraints w.r.t. the validity intervals of two predicates
in a conjunctive pattern. The order of the predicates in a pattern defines a temporal order
implicitly already. A predicate must have an earlier or identical start time as all its succeeding
predicates. Therefore, we define IRolder ⊆ IR including those temporal relations where the
start time of the first interval s1 is before the start time of the second interval s2, i.e., s1 < s2

and for the “head to head” temporal relations we define IR|= ⊆ IR where the start times are
equal, i.e., s1 = s2.

Definition 2.11 (Temporal Restriction) The temporal restriction T R = {T R[1, 2], . . . ,
T R[n− 1, n]} of a conjunctive pattern p with size n is defined as the set of pairwise temporal
relations between all atomic patterns. For each predicate pair (predi, predj) of the pattern p
where predi appears before predj in the pattern, i.e., i < j, the possible temporal relations
between these two intervals are defined by the set T R[i, j]. It must hold that ∀trk ∈ T R[i, j] :
trk ∈ IRolder ∪ IR|= with 1 ≤ i < n and i < j ≤ n due to the implicit temporal order
of the predicates. If the name pdname,j of predj is smaller than pdname,i of predi w.r.t. a
lexicographic order it must hold that ∀trk ∈ T R[i, j] : trk ∈ IRolder in order to have a
canonical representation of the sequences. �

In the sample run described in section 4 we use just five temporal relations which can be
seen as a condensed subset of the temporal relations introduced by [Fre92] and [All83]: before
and after (<, >), older & contemporary and younger & contemporary (<c, >c), and head to
head (|=). Thus, in our case IR = {<, <c, |=, >c, >}, IRolder = {<, <c}, and IR|= = {|=}.
The motivation for these temporal relations is due to keeping complexity low and still having
the relevant temporal relations for setting up prediction rules. The composition table for these
temporal relations is shown in Table 1.

Definition 2.12 (Temporal Pattern) Temporal patterns tpi = (cpi, T Ri, cri) are defined
as a 3-tuple of a conjunctive pattern cpi = api,1 ∧ api,2 ∧ . . . ∧ api,size, a temporal restriction
T Ri, and a class restriction cri. �

After having defined dynamic scenes, their schemata, and temporal patterns, we can de-
fine how to match such patterns to a dynamic scene. Pattern matching is essential for the
computation of the support of a pattern. Basically, a match can be seen as a successful query
to a database [Deh98]. In order to match a temporal pattern all predicates in the conjunc-
tion must be true (within a defined window size), the temporal restrictions between these
predicates must be satisfied, and for the variable assignment the class restriction must not be
violated.

Definition 2.13 (Pattern Match) A match of pattern p = (cp, tr, cr) is a valid assign-
ment for each atomic pattern pi ∈ cp in the conjunctive pattern cp with size n to a corre-
sponding (instantiated) predicate pinsti ∈ P of the dynamic scene where both predicate def-
initions of the atomic pattern pi = (pdi, piarg ) and the assigned predicate instance pinsti =
(pdinsti , pinstobjects,i , 〈si, ei〉) are identical, i.e., pdi = pdinsti and all arguments at the same
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Figure 2: Pattern matching example

indices are pairwise unifiable. Furthermore, it must hold that no predicate instance is assigned
more than once, i.e.: ∀i, j : pinsti 6= pinstj with i 6= j and 1 ≤ i, j ≤ n.

Additionally, the match must be within the sliding window range. Let ws be the window’s
start position, w be the window size, we = ws + w be the window’s end position, and Pmatch

be the set of all predicate instances of the match. For all assigned predicate instances pinstj ∈
Pmatch with pinstj = (pdinstj , pinstobjectsj

, 〈sj , ej〉) it must hold that sj < we and ej ≥ ws,
i.e., that the start time of the predicate instance has already passed and that it can still be seen
within the window.

Furthermore it must hold that none of the restrictions is violated. Let Omatch = (o1, o2, . . . ,
om) be the list of objects in the assigned predicate instances and cr = (c1, c2, . . . , cm) the class
restriction of the pattern. Then it must hold that ∀i : instanceoftrans(oi, ci) with 1 ≤ i ≤ m
where instanceoftrans is a transitive instance-of relation utilizing the class hierarchy defined
by sc in DSS.

In order to satisfy the temporal restriction tr it must hold that ∀r, s : ir(〈sr, er〉, 〈ss, es〉) ∈
T R[r, s] with 1 ≤ r < n and r < s ≤ n. �

As the frequency of a pattern is directly related to its support we first introduce how the
support is computed in our case. In the task of frequent pattern discovery in logic, [Deh98]
introduced an extra key parameter in order to determine what is counted. Entities are uniquely
identified by each binding of the variables in key [Deh98, p. 34]. A disadvantage of this support
definition is that the key parameter must be part of each pattern in order to get a support
greater than zero. Thus, it is not possible to compare two different patterns if they do not
share this key parameter.

We decided to use the observation time semantic for support computation as stated by
Höppner. Here, the support is defined as “the total time in which (one or more) instances of
P can be observed in the sliding window” [Höp03, p. 52]. The advantages of using observation
time as support are the clear semantics and the better efficiency as not all matches have to
be collected or maybe even further processed. The monotonicity property for this support
definition holds and the support intervals of previous steps (i.e., of more general patterns) can
be reused in order to restrict the search to parts of the temporal sequence in the subsequent
levels.

Definition 2.14 (Support) Let p be a temporal pattern, ds the dynamic scene, and M the
set of matches. The validity interval of a single match mi ∈ M is defined as vi = [smaxi −
w + 1, emini + w] with smaxi being the maximal start time and emini the minimal end time of
all predicate instances in mi. The support of p w.r.t. ds is defined as the length of the union
of all validity intervals of the matches:

supp(p) = length
“S|M|

k=1 vk

”
. �

This support definition computes the length of intervals where at least one match for a
pattern can be found for a given window size. The frequency is the probability to find a match
of a pattern at a random window position for a given dynamic scene and window size (cf.
[Höp03]).
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Algorithm 1 Warmr [DT99]
Input: Database r; Wrmode language L and key; threshold minfreq
Output: All queries Q ∈ L with frq(Q, r, key) ≥ minfreq
1: Initialize level d := 1
2: Initialize the set of candidate queries Q1 := {?− key}
3: Initialize the set of infrequent queries I := ∅
4: Initialize the set of frequent queries F := ∅
5: while Qd not empty do
6: Find frq(Q, r, key) of all Q ∈ Qd using Warmr-Eval
7: Move the queries ∈ Qd with frequency below minfreq to I
8: Update F := F ∪Qd

9: Compute new candidates Qd+1 from Qd, F , and I using Warmr-Gen
10: Increment d
11: end while

12: Return F

Algorithm 2 Warmr-Eval [DT99]
Input: Database r; set of queries Q; Wrmode key
Output: The frequencies of queries Q
1: for each query Qj ∈ Q do
2: Initialize frequency counter qj := 0
3: end for
4: for each substitution θk ∈ answerset(?− key, r) do
5: Isolate the relevant fraction of the database rk ⊆ r
6: for each query Qj ∈ Q do
7: if query Qjθk succeeds w.r.t. rk then
8: Increment counter qj

9: end if
10: end for
11: end for
12: for each query Qj ∈ Q do
13: Return frequency counter qj

14: end for

If the support value is divided by the sequence length of the dynamic scene plus the two
times the window size minus one (sliding window at the start and the end of the sequence;
the window must include the start time of the first interval in order to match a pattern) we

get the frequency of the pattern, i.e., freq(p) = supp(p)
seqlength+2w−1

.

Fig. 2 illustrates the matching of a pattern and the covered support interval by this match
(〈21, 47〉). The pattern in this examples matches the first time at window start position 21
when pass(p8, p7) <32,45> is visible in the window. It still matches as long as no end time
point of a predicate in the match was left behind the window.

The goal of this work is to identify all frequent temporal patterns from a dynamic scene.
The patterns language is defined as L = {tp|tp = (cp, T R, cr)∧ freq(tp) ≥ minfreq}∪ ε with
|cp| > 1. The most general empty pattern is denoted by ε.

3 Mining Temporal Patterns with WARMR

As the temporal validity intervals of predicates can be seen as just another dimension of
relations it should be possible to transfer the learning problem to relational association rule
mining. Intuitively, it seems to be unhandy but feasible to add information about start and
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Algorithm 3 Warmr-Gen [DT99]
Input: WRMODE language L; infrequent queries I; frequent queries F ; frequent queries Qd for level d
Output: Candidate queries Qd+1 for level d + 1
1: Initialize Qd+1 := ∅
2: for each query Qj ∈ Qd and for each immediate specialization Q′

j ∈ L of Qj do
3: Add Q′

j to Qd+1 unless:
4: (i) Q′

j is more specific than some query ∈ I, or
5: (ii) Q′

j is equivalent to some query ∈ Qd+1 ∪ F
6: end for

7: Return Qd+1

end time to every predicate and to regard it as additional dimensions. In this section we show
how WARMR can be used to mine temporal patterns from the defined representation. The
next subsection gives a brief introduction to WARMR and ACE. In the subsequent section
a small example scene is set up. The following sections describe how this example can be
transferred to ACE input in order to use WARMR for mining the patterns.

3.1 WARMR and ACE

As mentioned above WARMR extends Apriori for mining association rules over multiple rela-
tions [DT99, DT01]. The algorithms for the discovery of frequent Datalog patterns are shown
in Listings 1-3 (adapted from [DT99, p. 15-18]). Agrawal et al. present algorithms for the
generation of association rules in [AIS93, AS94]. Dehaspe and Toivonen [DT99, p. 19] intro-
duce the notion of query extensions which are the “first order equivalent” of association rules.
The created association rules are – similar to transaction-based association rules – expressions
of the form X ⇒ Y but here X and Y are sets of logical atoms of the form p(t1, . . . , tn) where
each term ti is a variable or a function (including constants as functions with arity 0). This
more expressive representation allows for discovering rules like (cf. [DD97]):

likes(KID, A), has(KID, B) ⇒ prefers(KID, A, B)

Similar to the original association rule mining the task here is to discover all rules with
a confidence about a minimum threshold minconf and a support above minimum support
minsup. The difference is that the database is a deductive relational database instead of a
simple transaction table.

The WARMR algorithm is based on Apriori but it exploits the lattice structure of atomsets
instead of itemsets. The basic algorithm of WARMR is almost identical to Apriori. It was
modified in the way examples are singled out and how the coverage test is performed [DD97].
The WARMR-gen algorithm extends the Apriori-gen algorithm by two pruning conditions
where a theorem prover verifies if atomsets are contradictory or redundant.

ACE is a data mining system maintained by the Declarative Languages and Artificial
Intelligence (DTAI) research group of the KU Leuven [BDD+02, BDR+06]. It provides a
number of different relational data mining algorithms including WARMR [DT99]. We have
used this system in our experiments.

3.2 Sequence and Schema Information

As shown in section 2 the description of dynamic scenes contains schematic information about
the predicate definitions and their ranges as well as the dynamic predicates with the start and
end times of the validity intervals. Fig. 3 represents the sample scene which is graphically
represented in Fig. 1. The range definitions determine the classes for each argument of a pred-
icate definition, i.e., instances of these predicates must have objects as arguments which are
instances of the corresponding classes of the range definition. In the example the ranges of the
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%Parameters
windowSize(12).
minFrequencyInPercent(10).
maxLevel(8).

%Predicate definitions
predicate(closerToGoal(_,_)).
predicate(pass(_,_)).
predicate(uncovered(_,_)).
range(closerToGoal, [object, object]).
range(pass, [object, object]).
range(uncovered,[object, object]).

%Class information
directSubClassOf(team1, object).
directSubClassOf(team2, object).
directInstanceOf(p6, team1).
directInstanceOf(p7, team1).
directInstanceOf(p8, team1).
directInstanceOf(p9, team1).
directInstanceOf(q6, team2).
directInstanceOf(q7, team2).
directInstanceOf(q8, team2).
directInstanceOf(q9, team2).

%Dynamic scene

holds(uncovered(q6, q6), 12, 14).
holds(pass(p9, p8), 15, 17).
holds(closerToGoal(p8, p9), 11, 19).
holds(uncovered(p8, p8), 13, 21).
holds(closerToGoal(q8, q9), 16, 26).
holds(pass(p7, p6), 27, 29).
holds(closerToGoal(p6, p7), 23, 31).
holds(uncovered(p6, p6), 25, 33).
holds(uncovered(q9, q9), 30, 36).
holds(closerToGoal(q8, q6), 36, 40).
holds(pass(p9, p7), 39, 41).
holds(closerToGoal(p7, p9), 35, 43).
holds(uncovered(q8, q8), 42, 44).
holds(uncovered(p7, p7), 37, 45).
holds(pass(p8, p6), 51, 53).
holds(closerToGoal(q7, q6), 50, 54).
holds(closerToGoal(p6, p8), 47, 55).
holds(uncovered(p6, p6), 49, 57).
holds(pass(p8, p7), 65, 67).
holds(uncovered(q6, q6), 58, 68).
holds(closerToGoal(p7, p8), 61, 69).
holds(uncovered(p7, p7), 63, 71).

Figure 3: Sample input

three predicates closerToGoal, pass, and uncovered are set to the most general class object,
Additionally, the description includes some parameters for learning, namely the window size,
the support and the maximal refinement level for the mining process. The dynamic scene with
the validity intervals are represented by holds relations with the predicate and the start and
end time of the duration interval.

We developed a converter which automatically transfers this format to ACE input files.
Different problems had to be solved in order to set up WARMR to mine the intended frequent
patterns (with observation time support calculation). The following sections describe how the
conversion is performed.

3.3 Transferring Class Information and Predicate Instances

The transformation of the class hierarchy and corresponding instances is straight forward. The
directSubClassOf and directInstanceOf relations can be kept and put to ACE’s knowledge
base file (Fig. 4). Transitive clauses for querying instances of classes and subclasses of a class
can are defined in the background knowledge file (Fig. 7 and 8). The holds predicates repre-
senting the validity intervals of relations are now represented by relations with an additional ar-
gument which stands for the time interval. The predicate instance holds(pass(p8, p7), 〈32, 45〉)
is converted to pass(1, p8, p7, i(32, 45)) where the first argument is a unique ID for the
predicate instances.

3.4 Refinement Operators

For setting up the learning bias in WARMR it is necessary to define rmode statements. These
statements define how a query can be extended during the generation of new query candidates.
Basically, a rmode consists of a predicate and specifications for the arguments, i.e., if an existing
(+), new (-), or unique variable (\) or if a constant should be used. It is also possible to define
constraints which must be satisfied in order to add an atom to the query. There are many
other possibilities to specify the language bias which are out of scope of this report. More
details can be found, for instance, in Dehaspe’s doctoral thesis and the ACE user’s manual
[Deh98, BDR+06].

There are different refinements which have to be modelled by the rmodes. For lengthening
(i.e., extending a query by a predicate) a rmode must be defined for each predicate definition.
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directSubClassOf(team1, object).
directSubClassOf(team2, object).
directInstanceOf(p6, team1).
directInstanceOf(p7, team1).
directInstanceOf(p8, team1).
directInstanceOf(p9, team1).
directInstanceOf(q6, team2).
directInstanceOf(q7, team2).
directInstanceOf(q8, team2).
directInstanceOf(q9, team2).

uncovered(1, q6, q6, i(12, 14)).
pass(2, p9, p8, i(15, 17)).
closerToGoal(3, p8, p9, i(11, 19)).
uncovered(4, p8, p8, i(13, 21)).
closerToGoal(5, q8, q9, i(16, 26)).
pass(6, p7, p6, i(27, 29)).
closerToGoal(7, p6, p7, i(23, 31)).
uncovered(8, p6, p6, i(25, 33)).
uncovered(9, q9, q9, i(30, 36)).
closerToGoal(10, q8, q6, i(36, 40)).
pass(11, p9, p7, i(39, 41)).
closerToGoal(12, p7, p9, i(35, 43)).
uncovered(13, q8, q8, i(42, 44)).
uncovered(14, p7, p7, i(37, 45)).
pass(15, p8, p6, i(51, 53)).
closerToGoal(16, q7, q6, i(50, 54)).
closerToGoal(17, p6, p8, i(47, 55)).
uncovered(18, p6, p6, i(49, 57)).
pass(19, p8, p7, i(65, 67)).
uncovered(20, q6, q6, i(58, 68)).
closerToGoal(21, p7, p8, i(61, 69)).
uncovered(22, p7, p7, i(63, 71)).

currentIndex(0).
currentIndex(1).
currentIndex(2).
currentIndex(3).
currentIndex(4).
currentIndex(5).
currentIndex(6).
currentIndex(7).
currentIndex(8).
currentIndex(9).
currentIndex(10).
currentIndex(11).
currentIndex(12).
currentIndex(13).
currentIndex(14).
currentIndex(15).
currentIndex(16).
currentIndex(17).
currentIndex(18).
currentIndex(19).
currentIndex(20).
currentIndex(21).
currentIndex(22).
currentIndex(23).

currentIndex(24).
currentIndex(25).
currentIndex(26).
currentIndex(27).
currentIndex(28).
currentIndex(29).
currentIndex(30).
currentIndex(31).
currentIndex(32).
currentIndex(33).
currentIndex(34).
currentIndex(35).
currentIndex(36).
currentIndex(37).
currentIndex(38).
currentIndex(39).
currentIndex(40).
currentIndex(41).
currentIndex(42).
currentIndex(43).
currentIndex(44).
currentIndex(45).
currentIndex(46).
currentIndex(47).
currentIndex(48).
currentIndex(49).
currentIndex(50).
currentIndex(51).
currentIndex(52).
currentIndex(53).
currentIndex(54).
currentIndex(55).
currentIndex(56).
currentIndex(57).
currentIndex(58).
currentIndex(59).
currentIndex(60).
currentIndex(61).
currentIndex(62).
currentIndex(63).
currentIndex(64).
currentIndex(65).
currentIndex(66).
currentIndex(67).
currentIndex(68).
currentIndex(69).
currentIndex(70).
currentIndex(71).
currentIndex(72).
currentIndex(73).
currentIndex(74).
currentIndex(75).
currentIndex(76).
currentIndex(77).
currentIndex(78).
currentIndex(79).
currentIndex(80).
currentIndex(81).
currentIndex(82).

Figure 4: Generated ACE input file “sample.kb”

In order to avoid the same predicate instance being used more than once in a match it must be
guaranteed that the predicate ID variable differs from all other predicate ID variables of this
query. This can be forced by the backslash modifier. The rmode rmode(closerToGoal(\Id,
-X0, -X1, -I, +WindowStart)) says that a closerToGoal predicate can be added to the
query where the Id must be unique (i.e., a new variable unequal to all existing ones), X0, X1,
and I which represent the two players and the time interval must be new variables, and that
WindowStart must be an existing variable. The WindowStart is used to check if a matched
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typed_language(yes).
type(currentIndex(index)).
type(getWindowPos(index, starttime)).
type(before(interval, interval)).
type(olderContemp(interval, interval)).
type(headToHead(interval, interval)).

type(unif(object, object)).
rmode(unif(+X, +Y)).
constraint(unif(X,Y), not_occurs(unif(_,X))).
constraint(unif(X,Y), X\==Y).

type(closerToGoal(id, object, object, interval, starttime)).
rmode(closerToGoal(\Id, -X0, -X1, -I, +WindowStart)).
type(useful_constant_closerToGoal_O0(_)).
type(eq_obj_closerToGoal_O0(object, _)).
rmode(#(C: useful_constant_closerToGoal_O0(C), eq_obj_closerToGoal_O0(+X, C))).
constraint(eq_obj_closerToGoal_O0(X, Y), occurs(closerToGoal(_,X,_,_,_))).
constraint(unif(_,Y), not_occurs(eq_obj_closerToGoal_O0(Y, _))).
constraint(instanceOf(X,_), not_occurs(eq_obj_closerToGoal_O0(X, _))).
constraint(eq_obj_closerToGoal_O0(Y, _), not_occurs(unif(_,Y))).
constraint(eq_obj_closerToGoal_O0(Y, _), not_occurs(instanceOf(Y,_))).

type(useful_constant_closerToGoal_O1(_)).
type(eq_obj_closerToGoal_O1(object, _)).
rmode(#(C: useful_constant_closerToGoal_O1(C), eq_obj_closerToGoal_O1(+X, C))).
constraint(eq_obj_closerToGoal_O1(X, Y), occurs(closerToGoal(_,_,X,_,_))).
constraint(unif(_,Y), not_occurs(eq_obj_closerToGoal_O1(Y, _))).
constraint(instanceOf(X,_), not_occurs(eq_obj_closerToGoal_O1(X, _))).
constraint(eq_obj_closerToGoal_O1(Y, _), not_occurs(unif(_,Y))).
constraint(eq_obj_closerToGoal_O1(Y, _), not_occurs(instanceOf(Y,_))).

type(pass(id, object, object, interval, starttime)).
rmode(pass(\Id, -X0, -X1, -I, +WindowStart)).
type(useful_constant_pass_O0(_)).
type(eq_obj_pass_O0(object, _)).
rmode(#(C: useful_constant_pass_O0(C), eq_obj_pass_O0(+X, C))).
constraint(eq_obj_pass_O0(X, Y), occurs(pass(_,X,_,_,_))).
constraint(unif(_,Y), not_occurs(eq_obj_pass_O0(Y, _))).
constraint(instanceOf(X,_), not_occurs(eq_obj_pass_O0(X, _))).
constraint(eq_obj_pass_O0(Y, _), not_occurs(unif(_,Y))).
constraint(eq_obj_pass_O0(Y, _), not_occurs(instanceOf(Y,_))).

type(useful_constant_pass_O1(_)).
type(eq_obj_pass_O1(object, _)).
rmode(#(C: useful_constant_pass_O1(C), eq_obj_pass_O1(+X, C))).
constraint(eq_obj_pass_O1(X, Y), occurs(pass(_,_,X,_,_))).
constraint(unif(_,Y), not_occurs(eq_obj_pass_O1(Y, _))).
constraint(instanceOf(X,_), not_occurs(eq_obj_pass_O1(X, _))).
constraint(eq_obj_pass_O1(Y, _), not_occurs(unif(_,Y))).
constraint(eq_obj_pass_O1(Y, _), not_occurs(instanceOf(Y,_))).

Figure 5: Generated ACE input file “sample.s” (1/2)

predicate instance lies within the scope of the sliding window. More details about the support
computation can be found in section 3.5.

Temporal relations between intervals are represented by clauses which check if the temporal
relation actually holds for the interval pair, i.e., for each temporal relation (here: before,
olderContemp, and headToHead) a clause exists and a rmode is created. In order to refine a
pattern by adding a temporal constraint one of the temporal clauses is added to the query by
relating two intervals of existing predicates of the query to each other. Thus, in the rmode
specifications (e.g., rmode(before(+I1, +I2))) the two interval variables must be existing
ones in order to set up a temporal constraint for them.

Unification is handled by a special unification clause (unif(X, Y)) which unifies two ex-
isting variables in the previous query. The rmode declarations of ACE also provide means to
define rmodes which do not introduce a new variable in the new atom but reuse an existing
one. However, our intended solution should also cover the instantiation of variables (i.e., using
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type(uncovered(id, object, object, interval, starttime)).
rmode(uncovered(\Id, -X0, -X1, -I, +WindowStart)).
type(useful_constant_uncovered_O0(_)).
type(eq_obj_uncovered_O0(object, _)).
rmode(#(C: useful_constant_uncovered_O0(C), eq_obj_uncovered_O0(+X, C))).
constraint(eq_obj_uncovered_O0(X, Y), occurs(uncovered(_,X,_,_,_))).
constraint(unif(_,Y), not_occurs(eq_obj_uncovered_O0(Y, _))).
constraint(instanceOf(X,_), not_occurs(eq_obj_uncovered_O0(X, _))).
constraint(eq_obj_uncovered_O0(Y, _), not_occurs(unif(_,Y))).
constraint(eq_obj_uncovered_O0(Y, _), not_occurs(instanceOf(Y,_))).

type(useful_constant_uncovered_O1(_)).
type(eq_obj_uncovered_O1(object, _)).
rmode(#(C: useful_constant_uncovered_O1(C), eq_obj_uncovered_O1(+X, C))).
constraint(eq_obj_uncovered_O1(X, Y), occurs(uncovered(_,_,X,_,_))).
constraint(unif(_,Y), not_occurs(eq_obj_uncovered_O1(Y, _))).
constraint(instanceOf(X,_), not_occurs(eq_obj_uncovered_O1(X, _))).
constraint(eq_obj_uncovered_O1(Y, _), not_occurs(unif(_,Y))).
constraint(eq_obj_uncovered_O1(Y, _), not_occurs(instanceOf(Y,_))).

rmode_key(currentIndex(I)).
root(currentIndex(I)).
rmode(1:getWindowPos(+Index, WindowStart)).
rmode(before(+I1, +I2)).
rmode(olderContemp(+I1, +I2)).
rmode(headToHead(+I1, +I2)).
constraint(headToHead(X,Y), not(X=Y)).

type(class(_)).
type(instanceOf(object, _)).
rmode(#(C: class(C), instanceOf(+X, C))).

constraint(instanceOf(X,Y), not_occurs(instanceOf(X,_))).
constraint(instanceOf(X,Y), not_occurs(unif(_,X))).
constraint(unif(_,X), not_occurs(instanceOf(X,Y))).
minfreq(0.1).
warmr_maxdepth(8).

Figure 6: Generated ACE input file “sample.s” (2/2)

constants). Setting up rmodes for all cases (unification, constants, and new variables) and
their combinations in predicates with an arbitrary (potentially large) number of arguments
would have lead to a huge number of rmodes for the predicates. Thus, if a new predicate is
added to the query all actual arguments of the relation are new variables in the beginning.
These can be unified with another variable or can be bound to a constant in further refinement
steps.

For instantiation a rmode definition allows a variable to be unified with an instance
(e.g., eq obj uncovered O1(+X, C) for the second argument of the uncovered predicate).
The set of instance candidates depends on the predicate where the variable occurs. Only
those instances are taken into account which appear at least in one of the predicates at
the variable’s position in the dynamic scene, i.e., no “impossible” query will be generated
here. For each argument of each predicate definition a clause for finding the possible objects
exist (e.g., useful constant uncovered O1(C)). It is necessary to define all these different
useful constant clauses as the sets of relevant objects can differ for each argument.

Class refinement is performed by adding instanceOf predicates, constraining a variable
to a certain class (or one of its sub classes). A constraint definition makes sure that for each
variable just one instanceOf predicate will be added. Additional constraints ensure that a
variable will be used just for instantiation or class refinement and that unified variables are
not refined at all, e.g.,

constraint(unif(_,Y), not_occurs(eq_obj_uncovered_O1(Y, _))).

constraint(instanceOf(X,_), not_occurs(eq_obj_uncovered_O1(X, _))).

constraint(eq_obj_uncovered_O1(Y, _), not_occurs(unif(_,Y))).

constraint(eq_obj_uncovered_O1(Y, _), not_occurs(instanceOf(Y,_))).
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unif(X, Y) :-
X = Y.

createIndexList_(Start, End, List, List) :-
End < Start, !.

createIndexList_(Start, End, ListPart, List) :-
NewEnd is (End - 1),
createIndexList_(Start, NewEnd, [End|ListPart], List).

createIndexList(Start, End, List) :-
createIndexList_(Start, End, [], List).

getWindowPos(CurrentIndex, WindowPos) :-
windowSize(WindowSize),
FirstStart is (CurrentIndex - WindowSize),
createIndexList(FirstStart, CurrentIndex, IndexList),
member(WindowPos, IndexList).

validInterval(S, E, WindowStart) :-
windowSize(WindowSize),
WindowEnd is (WindowStart + WindowSize),
E > WindowStart,
S < WindowEnd.

before(i(_S1, E1), i(S2, _E2)) :-
E1 < S2.

olderContemp(i(S1, E1), i(S2, _E2)) :-
S1 < S2,
E1 >= S2.

headToHead(i(S1, _E1), i(S2, _E2)) :-
S1 == S2.

windowSize(12).

closerToGoal(Id, O0, O1, i(S, E), WindowStart) :-
closerToGoal(Id, O0, O1, i(S, E)),
validInterval(S, E, WindowStart).

useful_constant_closerToGoal_O0(C) :-
findall(X, closerToGoal(_,X,_,_), ConstList), setof(Y, member(Y,ConstList), ConstSet), !,
member(C, ConstSet).

eq_obj_closerToGoal_O0(X, Y) :-
X = Y.

useful_constant_closerToGoal_O1(C) :-
findall(X, closerToGoal(_,_,X,_), ConstList), setof(Y, member(Y,ConstList), ConstSet), !,
member(C, ConstSet).

eq_obj_closerToGoal_O1(X, Y) :-
X = Y.

Figure 7: Generated ACE input file “sample.bg” (1/2)

3.5 Support Computation

WARMR needs a counting attribute which is used for support computation, i.e., the number
of different values of this attribute where a query matches determines the support of the query.
In our case the support is defined to be the number of temporal positions where within a sliding
window a pattern holds. In order to let WARMR compute the intended support a predicate
currentIndex has been introduced and used as counting attribute. For each existing temporal
position a predicate is created in the knowledge base file (Fig. 4). In combination with another
predicate representing the window position (getWindowPos) for each temporal position it can
be checked if a pattern holds. This is needed in order to check for each temporal position if
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pass(Id, O0, O1, i(S, E), WindowStart) :-
pass(Id, O0, O1, i(S, E)),
validInterval(S, E, WindowStart).

useful_constant_pass_O0(C) :-
findall(X, pass(_,X,_,_), ConstList), setof(Y, member(Y,ConstList), ConstSet), !,
member(C, ConstSet).

eq_obj_pass_O0(X, Y) :-
X = Y.

useful_constant_pass_O1(C) :-
findall(X, pass(_,_,X,_), ConstList), setof(Y, member(Y,ConstList), ConstSet), !,
member(C, ConstSet).

eq_obj_pass_O1(X, Y) :-
X = Y.

uncovered(Id, O0, O1, i(S, E), WindowStart) :-
uncovered(Id, O0, O1, i(S, E)),
validInterval(S, E, WindowStart).

useful_constant_uncovered_O0(C) :-
findall(X, uncovered(_,X,_,_), ConstList), setof(Y, member(Y,ConstList), ConstSet), !,
member(C, ConstSet).

eq_obj_uncovered_O0(X, Y) :-
X = Y.

useful_constant_uncovered_O1(C) :-
findall(X, uncovered(_,_,X,_), ConstList), setof(Y, member(Y,ConstList), ConstSet), !,
member(C, ConstSet).

eq_obj_uncovered_O1(X, Y) :-
X = Y.

class(X) :-
directSubClassOf(X,_).

subClassOf(X, Y) :-
directSubClassOf(X, Y).

subClassOf(X, Y) :-
directSubClassOf(Z,Y),
subClassOf(X,Z).

instanceOf(Inst, Class) :-
directInstanceOf(Inst, Class).

instanceOf(Inst, Class) :-
directInstanceOf(Inst, SubClass),
subClassOf(SubClass, Class).

Figure 8: Generated ACE input file “sample.bg” (2/2)

there is a sliding window position with a match that actually covers this position. If we only
check for each time index if there is a match in the sliding window starting from this index
we might miss matches of earlier sliding window positions that also cover the current index.
Thus, we have to check for a match in all sliding window positions that cover the current
index. The validInterval clause in the background knowledge (Fig. 7) checks for a potential
predicate match if it is relevant w.r.t. the sliding window position.

4 Sample Run

Fig. 9 shows the ACE output after running WARMR with the generated input files sample.s,
sample.kb, and sample.bg (shown in Fig. 4 - 8). As it can be seen the first two levels are needed
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/** -------------------------------------------------
** Algorithm: Warmr
** Output type: freq_queries.out
** Date: 9/19/2006 16:15:52
** ACE version: 1.2.8-b1
** Hardware: adl4 : i686 running Linux
** -------------------------------------------------
**/

sample_size(83.0).
min_rel_freq(0.1).
min_abs_freq(8.3).

level(1).
freq(1,1,[currentIndex(A)],1.0).
c_counter(1,1).
f_counter(1,1).

level(2).
freq(2,1,[currentIndex(A),getWindowPos(A,B)],1.0).
c_counter(2,1).
f_counter(2,1).

level(3).
freq(3,1,[currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B)],0.975903614457831).
freq(3,2,[currentIndex(A),getWindowPos(A,B),pass(C,D,E,F,B)],0.903614457831325).
freq(3,3,[currentIndex(A),getWindowPos(A,B),uncovered(C,D,E,F,B)],0.987951807228916).
c_counter(3,3).
f_counter(3,3).

level(4).
freq(4,1,[currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B),closerToGoal(G,H,I,J,B),not(G=C)],

0.746987951807229).
freq(4,2,[currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B),eq_obj_closerToGoal_O0(D,p6)],

0.662650602409639).

(...)

level(8).
freq(8,1,[currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B),closerToGoal(G,H,I,J,B),not(G=C),unif(I,E),

closerToGoal(K,L,M,N,B),not(K=C),not(K=G),closerToGoal(O,P,Q,R,B),not(O=C),not(O=G),not(O=K),
eq_obj_closerToGoal_O0(P,p6)],0.156626506024096).

(...)

freq(8,47019,[currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B),pass(G,H,I,J,B),not(G=C),unif(I,D),
unif(E,H),uncovered(K,L,M,N,B),not(K=C),not(K=G),olderContemp(N,J)],0.903614457831325).

(...)

freq(8,96613,[currentIndex(A),getWindowPos(A,B),uncovered(C,D,E,F,B),uncovered(G,H,I,J,B),not(G=C),
instanceOf(I,team1),instanceOf(H,team1),instanceOf(E,team2),instanceOf(D,team2)],0.939759036144578).

freq(8,96614,[currentIndex(A),getWindowPos(A,B),uncovered(C,D,E,F,B),uncovered(G,H,I,J,B),not(G=C),
instanceOf(I,team2),instanceOf(H,team2),instanceOf(E,team2),instanceOf(D,team2)],0.204819277108434).

c_counter(8,105235).
f_counter(8,96614).

Figure 9: Part of the ACE output file “sample.freq queries.out”

for setting up the structure for the support computation (currentIndex(A),getWindowPos(A,B)).
In the third level the initial patterns consisting of just one predicate are generated (e.g.,
currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B)). These patterns are refined
in the further steps by the refinement operators defined above. For instance, the pattern

freq(8,47019,[currentIndex(A),getWindowPos(A,B),closerToGoal(C,D,E,F,B),

pass(G,H,I,J,B),not(G=C),unif(I,D),unif(E,H),uncovered(K,L,M,N,B),

not(K=C),not(K=G),olderContemp(N,J)],0.903614457831325).

says that there must be three predicates, namely closerToGoal(D,E), pass(H,I) and uncovered(L,M)

where D and I are unified as well as E and H, and where the temporal constraint that
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uncovered(L,M) must be older and contemporary in relation to pass(H,I) is satisfied. The
support of this pattern is 0.904.

The result file shows (we just present a snippet in Fig. 9) that the number of created
patterns grows quite fast. In the eighth refinement level more than 100000 patterns have
been created. The number of created patterns depends on the minsupport threshold and
additionally, in the small example the support for many patterns is quite high.

5 Conclusion

In this report we gave a motivation for more complex descriptions of dynamic scenes and
temporal patterns including event duration and hierarchical class information to be mined
from such scenes. We showed that the validity intervals of predicates can be represented by
two additional arguments in relations, and how the relational association rule mining algorithm
WARMR – to the best of our knowledge – can be used for mining such temporal patterns.

Although mining the intended temporal patterns is possible, there are some drawbacks
of the created solution. First of all, redundant patterns with identical matches and patterns
which cannot have a support greater than zero are created. This could be avoided by exploiting
the implicit information about variables’ classes and temporal interrelations, i.e., by using a
composition table as shown in Table 1 to remove all impossible temporal relations due to
already known temporal relations between predicates. Avoiding redundancy and avoiding to
check or to create “impossible” pattern candidates at all would be a great help to reduce
complexity.

Another drawback is the current matching process. The realization of the sliding window
by an extra predicate does not take advantage of the sequential structure of the dynamic
scene representation. If just the currently visible predicates are taken into account at pattern
matching the support computation should be faster as no irrelevant predicate instances have
to be checked. However, it should be stated that WARMR is a generic approach to relational
association rule mining and not specialized to temporal representations. The temporal data
mining approach MiTemP [LH06] exploits information about temporal relations as well as
hierarchical class information and addresses the problems identified here.
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