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Abstract. Despite of intense research in shot boundary detection meth-
ods hardly any standards have been established that would be fairly
reliable for most video processing applications. On the other hand, auto-
matic analysis of full-length feature movies has experienced an increasing
interest during the past few years and among others, it requires a reli-
able shot boundary detection. Thus, the following work aims at review-
ing current shot boundary detection methods in order to determine the
most suitable technique for movie footage. Next to an analysis of shot
boundaries in six Hollywood action movies, several current shot bound-
ary detection methods have been thoroughly tested on these movies.

1 Introduction

The research on automatic detection of shot boundaries in digital video, like hard
cuts, fades, dissolves, wipes, etc. has been actively done for more than 15 years
now, however no methodology has proved yet a 100 % (or at least 99.x %) relia-
bility throughout various types of video. From the related work discussed in the
next section it can be concluded that at the most, results achieve precision and
recall values at around 95–98 % for cuts, and 90–95 % for gradual transitions1.
However, these values are only achieved with a particular selection of thresh-
olds of the corresponding methods applied to a particular set and type of video
footage and so it is uncertain how these methods will perform in a different envi-
ronment. Very often slight changes of the thresholds cause significantly different
results without making clear which method or which threshold is suitable for a
specific application.
Therefore, there are two possibilities of dealing with automatic shot boundary
detection techniques. First, with the best combination of methods and thresholds
investigated for a test set of various video types one can apply these methods
to the target video footage with an expected error rate somewhere between 2 %
and 20 %. The other way – which is the approach of this work – is to adjust the
detection methods for a specific type of footage in order to lower the range of
uncertainness concerning the expected accuracy.

1 See Section 4 for the definition of the terms precision and recall.
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In the past few years, there has been an increasing interest in information re-
trieval from full-length feature movies [7, 19, 38, 2, 45] wherein a shot boundary
detection was one of the essential components of the particular retrieval systems.
Hence, this work investigates some of the existing detection methods in order to
provide further suggestions for shot boundary detection techniques when applied
to full-length feature movies. Due to time constraints this work will focus on the
Hollywood action movie genre but future work will analogously deal with other
movie genres.
The following report is organized as following: in section 2 an overview of the
very active field of research of shot boundary detection methods is given. In sec-
tion 3 shot boundary statistics of six Hollywood action movies are given which
help to determine the strategy for selecting a specific detection method. Follow-
ing to that a selection of existing detection techniques is provided in section 4
along with detection results for the movies presented in section 3. Finally, the
results are discussed in section 5 also providing perspectives for future work in
this topic.

2 Related Work

There has been a lot of research on shot boundary detection techniques. The
most recent detailed overview is given in [13]. The following section will just
focus on presenting samples of the most commonly used techniques.
Due to their characteristic properties, abrupt shot transitions, i. e. hard cuts,
are generally modeled as sudden visual discontinuities in the video signal while
gradual shot transitions, like dissolves, fades or wipes, are usually detected by
a continuous, regular change of a specific visual feature. The methods vary in
the selection of the relevant features and metrics which will be discussed in the
following.

2.1 Hard Cut Detection Methods

Pixel Intensity Differences The simplest technique to determine a visual discon-
tinuity is to calculate average pixel intensity differences between two adjacent
video frames. Hanjalic [13] and Boreczky et al. [4] refer to several older works
based on this technique but even with modifications like smoothing filters or
adaptive thresholds this technique has turned out to perform insufficiently due
to its sensitivity to motion or illumination changes. Thus, in recent publications
this technique is hardly mentioned for the detection of cuts except if the results
of the shot detection are not crucial to a system’s performance like in [7], or if
it is part of a multi-feature detector [53, 31].

Histogram-based Statistics Until today the most popular discontinuity feature
is a gray-level or color histogram difference between two adjacent frames (see
fig. 1). The main reason is that despite of its simplicity the computational load
of histogram-based methods is low while the performance is relatively good.
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Hence, many variations of this technique exist.
Especially in older works gray-level histograms have been used for the difference
calculations [48, 14, 5, 9, 50, 23, 53, 38]. Meanwhile experiments also have been
done with other color spaces like RGB [22, 52, 49], HSV [35, 22, 43, 8], YUV [18,
33, 10, 28], or the so-called opponent color representation of RGB [56]. The num-
ber of bins used for histograms varies from 24 to 256 bins.
The basic idea of histogram-based cut detection is to add up all bin-wise absolute
differences and normalize this sum by the number of bins, as done in [48, 14, 9, 44,
53, 22]. This corresponds to the mathematical L1 norm. Niblack et al. [27] applied
the L2 norm to a shot boundary detection algorithm, while Stricker et al. [40] ar-
gued that both norms do not fully satisfy the notion of similarity and proposed
the L∞ norm for shot boundary detection. Nagasaka et al. [24] used the χ2-test
which was adopted by several works [29, 55]. Miene et al used a similar metric
which they refer to as Gray Histogram X2 [23]. Cabedo et al. [5] introduced the
cosine measure and compared it to the above mentioned L1, L2, L∞ and χ2

metrics. Another metric is the histogram intersection defined by Swain et al. [42]
and used by [35, 49, 52] for cut detection.
Despite of this broad range of variations there is no selection of color space,
bin number or metric that would be clearly bad or good. In general, histogram-
based cut detection algorithms are able to detect around 90 % (± 5 %) of hard
cuts. The more influential and therefore very subtle aspect about these methods
is to determine the appropriate thresholding technique in order to distinguish
between cuts and non-cuts (see section 2.3).

Fig. 1. Hard cut detection by histogram differences. The bigger histogram difference
in the middle indicates a hard cut between the 2nd and the 3rd frame.
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Edge-based Statistics After computing edges by applying a filter like Sobel or
Canny, edge direction histograms can be computed as done by [8]. Petersohn [31]
used edge energy which is the sum of edge intensities in a frame. Mainly due
to the higher efficiency of histogram-based approaches edge-based methods have
rarely been considered for cut detection.

Color Anglograms Zhao et al. [54] developed a shot boundary detection based
on color anglograms. For each HSV channel of the source frame they connected
pixel blocks of similar intensity to each other by a triangulation algorithm. Then
they created histograms counting the angles of the resulting connections for
each possible HSV color. Cuts were detected by comparing these anglograms for
adjacent frames.

Motion Compensation Porter et al. [32] used block-matching motion compensa-
tion to compute inter-frame differences (block size: 32× 32). A similar approach
was done by Hanjalic [13]. The more blocks were not matched to each other
from frame to frame the higher the probability of a hard cut in between. Pe-
tersohn [31] also included such a technique in his multi-feature cut detector.
Whitehead et al. [47] checked the loss of inter-frame features detected by the
Lucas and Kanade tracker [21]; a sudden high loss of features indicated a cut.

Wavelet Statistics Wavelets provide representations of images with spatial and
frequency information. Miene et al. [23] proposed to apply the Fast Fourier Trans-
form to each frame. As part of a multi-feature cut detection Ciocca et al. [8]
applied a low-pass and a high-pass filter to different resolutions of the image.
Tahaghoghi et al. [43] used the coefficients of a 6-tap Daubechies wavelet trans-
form of each frame.

Spatio-Temporal Coherency The basic idea of spatio-temporal-based shot detec-
tion is to align the same sub-region of each frame, for example a pixel row, next to
each other. This results in a new 2D image with specific patterns at shot bound-
aries, as for example a vertical discontinuity at a hard cut (see fig. 3), which are
then detected by image segmentation. Ngo et al. [26, 25] used the center pixel row
and column and a diagonal scan of each frame. Kim et al. [17] and Seo et al. [37]
who referred to this technique as visual rhythm, experimented with different re-
gion forms and selected the diagonal scan as most effective. Guimarães et al. [11]
aligned whole frame histograms as vertical gray-scale lines.

Information Theory-Based Statistics Černeková et al. [6] computed the mutual
information of a video signal and searched for sudden discontinuities in order to
detect cuts.

Multi-Feature Algorithms Petersohn [31] combined edge energy and pixel inten-
sity differences with motion compensation. Ciocca et al. [8] used color and edge
direction histograms combined with wavelet statistics. After computing frame
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and block wise histogram differences Qi et al. [33] compared inter-frame cam-
era motion. Ren et al. [36] set up two machine learning algorithms (k-nearest
neighbor (kNN) and neural network) scanning up to 139 computed features
including standards, like difference mean, histogram difference, χ2-test or The
Earth Mover’s Distance (EMD), and own ones, like b-coefficient (based on im-
age moments) or c-coefficient (based on gray-level medians). Boccignone et al. [3]
developed a novel inter-frame similarity metric: attention consistency. Adopting
the idea of human attentive vision at images, a path with so-called “focus of
attention” (FOA) regions was computed by intensity, color and orientation con-
trast (see fig. 2). Then, this saliency map was tested for spatial, temporal and
visual consistency in order to detect cuts (and dissolves).

Fig. 2. Boccignone et al. [3] computed a saliency map for each frame which adopts the
idea of human attentive vision. From the 2nd to 3rd frame the significant change of
the saliency map indicates a hard cut.

2.2 Gradual Transition Detection Methods

Pixel Intensity Differences Truong et al. [44] detected fade-out/fade-in pairs by
searching for parabolic shapes in the luminance variance and mean curves. Ad-
ditionally, they took the corresponding 1st order derivative curves into account,
and they also used these in order to detect dissolves. Ciocca et al. [8] just con-
sidered the pixel intensity standard deviation but only from the central frame’s
region detected by a low-pass filter. Han et al. [12] determined blocks of inter-
est (BOI), that are blocks with higher color variance relative to frame variance,
and used the variance correlation of corresponding BOIs of two adjacent frames
in order to detect dissolves. Joyce et al. [15] take even three subsequent frames
(A,B,C) into consideration. For frame pairs (A,B) and (B,C) correlation dis-
tances are calculated based on inter-frame intensity differences. The difference
of these two correlation distances is then considered as a feature for dissolve
detection.

Histogram-based Statistics In contrast to cut detection, only few approaches
included a histogram-based technique in order to detect gradual transitions.
Mas et al. [22] filtered the color histogram difference curve by morphological
operators and combined it with mean pixel block intensities. Zhai et al. [52] used
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the histogram intersection but both, Mas et al and Zhai et al, did not detect the
exact type of gradual transition. Cabedo et al. [5] used his own developed cosine
measure for histogram-based detection of dissolves. Joyce et al. [15] calculated
the correlations of two adjacent inter-frame histogram differences in order to
detect wipes.

Edge-based Statistics Zabih et al. [51] introduced the edge change ratio (ECR)
which indicated the ratio of appearing and disappearing edges. Lienhart [20]
used a ratio of strong and weak edges while Song et al. [39] simply added up
edge intensities in each frame and searched for U-shapes in this edge energy
curve.

Motion Compensation Hanjalic [13] used a block-matching algorithm for 4 × 4
pixel blocks and added up the differences of the best matches in a frame pair. Spe-
cific changes of the difference curve indicated dissolves or wipes. Porter et al. [32]
used double block-matching motion compensation: one for blocks covering the
whole frame and the other only for blocks of interest, i. e. blocks with higher
color variance. Tracking these 32 × 32 pixel blocks over time both calculations
were compared to each other in order to indicate fades.

Spatio-Temporal Coherency The spatio-temporal slices of Ngo et al. [26, 25] and
the visual rhythm segementation of Kim et al. [17] and Seo et al. [37] allowed a
detection of wipes and dissolves (see fig. 3). Guimarães et al’s [11] histogram-
based spatio-temporal analysis detected only fades.

Information Theory-Based Statistics Černeková et al. [6] searched for parabolic
shapes in the joint entropy curve in order to detect fade-ins/fade-outs.

Multi-Feature Algorithms Zhang et al. [53] combined histogram differences with
average intensity differences in order to find gradual transitions, however with-
out detecting the exact transition type. In their dissolve detector Su et al. [41]
looked for a monotonous intensity change and checked the motion vectors. Pe-
tersohn [30] combined several features in order to detect dissolves: edge energy,
image and histogram differences, dissolve linearity and evenness, and global mo-
tion. The wipe detection of Petersohn [31] comprised evenness, image differences
and Hough transforms. Ren et al’s huge machine learning system [36] mentioned
above detected fades and dissolves. The kNN-classifier of Qi et al. [33] detected
gradual transitions but not the exact type. Finally, as mentioned before Boc-
cignone et al. [3] used their attention consistency measure for detecting dissolves.

2.3 Classification Techniques

The crucial element of all shot boundary detection methods remains the clas-
sification decision which usually means to select an appropriate parameter or
threshold for a specific signal. Thus, different approaches exist for this problem.
In a basic scenario a global threshold is heuristically set based on some test
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Fig. 3. For spatio-temporal analysis a specific sub-region of each frame is vertically
aligned in a new image. Below, three such images have been produced with diagonal
sampling of the source video. Shot boundaries cause specific patterns in the visual
rhythm. Source: Kim et al. [17].

data. In order to adapt a threshold technique to various types of video footage
Miene et al. [23] used a percentage value. The more common way is to move a
sliding window over n frames and to calculate a local threshold. Then for ex-
ample, an outlier is detected if a feature value is maximum in the window and
if it is x times greater than the 2nd-largest value in the window [48, 44]. Often
the mean value of the window (or the left and right side of the window) is taken
as a threshold [14, 9, 44, 53, 18, 56]. Zhang et al. [53] updated the local threshold
only if the new mean did not vary too much in order to omit false positives.
Joyce et al. [15] filtered the input signal by subtracting the mean of past values.
Yusoff et al. [50] proved that such locally adaptive thresholds usually perform
better than global ones.
Some approaches try to integrate a higher-level statistically founded classifica-
tion technique. Pardo [28] calculated a probability for a shot boundary based
on the previous n frames. Vascencelos et al. [46] introduced a Bayesian frame-
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work that sets the threshold according to pre-computed frequencies of usual
shot length in movie trailers. Whitehead et al. [47] defined a rule system to de-
termine an automatic thresholding level.
Especially in complex, multi-feature algorithms with several decision steps the
configuration of the whole system becomes extremely difficult and subtle. Thus,
several approaches include a machine learning algorithm for training, like sup-
port vector machines (SVM), neural networks or k-nearest neighbor (kNN) clas-
sifiers [49, 10, 25, 36, 33].

2.4 Feature Extraction from MPEG Streams

Several approaches deal directly with compressed video which is usually an
MPEG stream. Features like global motion, YUV image or histogram differ-
ences are computed by extracting DC images from I-, P- and B-frames of an
MPEG video [5, 55, 39, 13, 15]. Jun et al. [16] even used MPEG macroblocks as a
feature itself in order to detect dissolves. Kim et al. [17] and Seo et al. [37] used
the DC images for computing the visual rhythm for spatio-temporal analysis.
Feature extraction from MPEG stream often allows a real-time detection of any
type of shot boundaries for two reasons: first, complex decompression is omitted
and second, pre-computed encoded information is used as a feature. By that the
computational load of a shot detection method is heavily reduced. However, an
MPEG-based shot detection is naturally restricted to that type of video footage.

2.5 Testing Full Movies

Relating to the specific domain of movies it is worth noting that only very
few of the aforementioned related work tested their methods with full-length
movies [41, 15]. Due to time and feasibility constraints often only excerpts of
movies, for example 10-minute-sequences, are tested [39, 12, 3, 37]. However, in
order to provide normalized quality results for a movie shot boundary detection
it is by far more helpful to test the full movie especially because movies appear
as (relatively) standardized video footage.

3 Nature of Movie Shots

As mentioned above within the scope of this work we focus on Hollywood action
movies. Shot boundaries for six such movies were manually annotated through
which valuable information for the automation of shot boundary detection can
be derived. After a definition of the various boundary types, statistics for the
annotated movies are given. Some special borderline cases are then discussed in
the last subsection.
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3.1 Types of Shot Boundaries

Shot boundaries are usually grouped into abrupt and gradual transitions. Abrupt
transitions are made of significantly changes from frame to frame whereas grad-
ual transitions increasingly hide one shot and introduce a new one by slight
inter-frame changes.

Fig. 4. Some movies use two cuts very close to each other (often with white frames in
between) which causes a flashing effect. Hence, we refer to such editing effects as flash
transitions.

Abrupt Transitions The most popular transition is a (hard) cut which is simply
the result of concatenating two shots with each other (see fig. 1). In fact, a cut
itself cannot be noticed by humans as it lasts for a fraction of a second but it
is noticed because of differences between the adjacent shot contents. Further-
more, in contrast to all previous research work mentioned above we introduce
another abrupt transition, the flash transition. During the manual annotation
of Hollywood movies we observed a special transition type using two cuts very
close to each other (see fig. 4). Mostly, with white frames in between this sort of
transition causes a flashing effect which is not perceived by viewers as two cuts
but as one special transition. Interestingly, several shot detection approaches
included flash-sensitivity in order to avoid false positives [53, 31, 34, 11, 6] but in
these works the flash was not explicitly considered to separate two shots.

Gradual Transitions Gradual transitions can be subdivided into dissolves and
wipes (see fig. 5). Dissolves gradually blend a new shot into the previous one
while wipes gradually replace the previous shot by the new one. Blending from
or into one-colored frames (usually black, sometimes white) is usually treated
as a special case of dissolve and so we refer to these as fade-in and fade-out.
Wipes are usually further subdivided depending on their attributes (direction,
geometrical shape, speed etc.) but because of their rare occurrence in our movies
we do not specify these.

3.2 Shot Statistics

We manually annotated six different action movies adding up to 10h44m video
footage with 14,608 shot boundaries. In table 1 the absolute frequencies of shot
boundaries for all movies are given. The most striking aspect about these figures
is the high frequency of cuts because hard cuts are not only the most popular
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(a) (b) (c) (d)

Fig. 5. (a) A dissolve blends two shots into each other. Blending from or into a one-
colored shot is separately treated as fade-in (b) and fade-out (c), respectively. (d) shows
a horizontal wipe transition.



Blink 11

Movie Title C FL D FI FO W Total Tr/sec

Bad Boys (1995) 2559 3 1 1 8 0 2572 0.38

Blade (1998) 2524 18 5 4 18 0 2569 0.37

Charlie’s Angels (2000) 1798 0 18 3 3 20 1842 0.33

Terminator 2 (1991) 2654 13 8 1 5 1 2682 0.30

The Transporter (2002) 2391 0 19 3 4 0 2417 0.45

Transporter 2 (2005) 2487 2 17 8 10 2 2526 0.50

all movies 14413 36 68 20 48 23 14608 0.38

Table 1. Shot boundary type frequencies in six action movies. C: cut, FL: flash,
D: dissolve, FI: fade-in, FO: fade-out, W: wipe. Tr/sec is the ratio of the total number
of transitions and the movie length in seconds.

transition type but they virtually make up nearly all transitions in our annotated
movies. This becomes even more obvious when looking at the relative frequencies
listed in table 2. In total, 98.67 % of all shot boundaries in the tested movies
are hard cuts. Evenmore, it can be concluded from the location distribution
diagrams in fig. 6 that some of the rare non-cuts (non-green vertical lines) are
located at the beginning and end of movies. That is because title shots are
more often joint with gradual transitions, in particular fade-ins (gray), fade-outs
(black) and wipes (blue). Hence, the relevance of hard cuts is even higher for
movie segmentation within the actual movie plot.

As mentioned above, Vascencelos et al. [46] introduced a framework that com-
putes probabilities according to usual shot length in movie trailers. In fig. 7 shot
length histograms for our six movies are shown and actually, there are similari-
ties throughout all distributions, however it must be questioned to what extent
this can be generalized and used for automatic shot detection. First, among our
six movies there are differences big enough to cause false computations, compar-
ing the distribution curve of Charlie’s Angels and The Transporter, for example.
And second, for artistic reasons a movie editor could deviate from this typical
shot length histogram, as for example (very extremely) done by Alfred Hitchcock
when producing Rope (1948). This movie is made of only nine shots.

3.3 Borderline Cases

During the manual annotation a few problems arose when determining a certain
type of shot boundary. In one example a hard cut occurs in the background while
the title in the front does not change. In the strict sense, it is not a cut as only
part of the frame abruptly changed. The problem stems from the difficulty to
define how big the abrupt change has to be in order to cause a hard cut. Another
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Movie Title cut flash dissolve fade-in fade-out wipe

Bad Boys (1995) 99.49 % 0.12 % 0.04 % 0.04 % 0.31 % 0 %

Blade (1998) 98.25 % 0.70 % 0.19 % 0.16 % 0.70 % 0 %

Charlie’s Angels (2000) 97.61 % 0 % 0.98 % 0.16 % 0.16 % 1.09 %

Terminator 2 (1991) 98.96 % 0.48 % 0.30 % 0.04 % 0.19 % 0.04 %

The Transporter (2002) 98.92 % 0 % 0.79 % 0.12 % 0.17 % 0 %

Transporter 2 (2005) 98.46 % 0.08 % 0.67 % 0.32 % 0.40 % 0.08 %

all movies 98.67 % 0.25 % 0.47 % 0.14 % 0.33 % 0.16 %

Table 2. Shot boundary type frequencies in six action movies as a percentage. Cuts
are by far the most frequent transition type.

(a) Bad Boys

(b) Blade

(c) Charlie’s Angels

(d) Terminator 2

(e) The Transporter

(f) Transporter 2

Fig. 6. Every stripe illustrates the location of shot boundaries in the corresponding
movie. Each thin vertical line represents a shot boundary in order of appearance (from
left to right): green = cut, white = flash, yellow = dissolve, gray = fade-in, black = fade-
out, blue = wipe.
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(a) Bad Boys

(b) Blade

(c) Charlie’s Angels

(d) Terminator 2

(e) The Transporter

(f) Transporter 2

Fig. 7. Shot length histograms of six movies. Though general tendencies are recogniz-
able it is questionable to what extent this information can be integrated into a shot
detection algorithm.

example is a close-up of a flickering computer display showing changing contents.
During the manual annotation it was hard to determine the shot boundaries due
to the very fast changes combined with transparency effects. Similar to that,
problem arise if shots with high movement are joint by cuts and special effects.
And finally, in one case a multi-shot sequence which is made of two single scaled
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shots was enriched by wiping a third one into this sequence.
Due to a lack of a strictly formal description of all possible shot boundaries on
the one hand, and due to a vast range of possibilities in digital video editing
on the other hand, problems like the aforementioned cases will always appear in
automatic shot detection. However, some of these borderline cases are not that
crucial for the overall accuracy of a detection system, in particular cases like 8 (b)
and (c). Hence for this field of research, it might be a good idea to distinguish
between more and less relevant shot boundaries, in order to adjust the techniques
primarily for the more relevant ones. Thus, we may consider a differentiated
relevance for transitions in future manual annotation of video footage. However,
within the scope of this work all manually annotated transitions were treated
equally.

4 Comparison of existing methods

Based on the research review discussed in section 2 and based on the given
shot statistics for six Hollywood action movies (section 3), we compared a few
techniques in order to determine the one with the highest prospect of accuracy
for action movies. Following to the analysis given in the previous section, it
is obvious that a good movie shot boundary detection primarily depends on a
reliable hard cut detection. Hence, the main focus of our comparison is put on
corresponding detection methods.

4.1 Quality Measures

In order to evaluate shot detection methods, the majority of the related work
discussed in section 2 makes use of recall and precision measures defined as
following:

recall =
correct hits

ground truth
precision =

correct hits

all hits
(1)

In most cases, shot boundaries are counted as hits, so for example, recall is
the ratio of the number of correctly detected boundaries and the number of
all true boundaries [4, 16, 55, 32, 39, 12, 22, 54, 31, 47, 41, 3, 28, 15]. This way recall
and precision measures are sufficient for cuts but for gradual transitions an addi-
tional measure is necessary in order to check the frame range of a detected shot
transition. Thus, Ngo et al. [26] classified each video frame either as a transition
or non-transition frame and counted transition frames as hits. Truong et al. [44]
and Zhai et al. [52] calculated both, transition-based and frame-based recall and
precision values. Černeková et al. [6] computed an overlap ratio for gradual tran-
sitions.
In addition, recent works compute the so-called F1 measure in order to give one
comparative figure including recall and precision [33, 47, 3, 10, 28]:

F1 =
2 ∗ precision ∗ recall
(precision+ recall)

(2)
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In the following we will use transition-based precision, recall, and F1 for evalu-
ation of shot detection methods tested with six action movies.

4.2 Performance of Current TZI Cut Boundary Detection

In [23] Miene et al proposed the Gray Histogram Feature X2 (GHX2) for hard
cut detection which is currently used within the video analysis software at the
Center for Computing Technologies (TZI). This technique is based on gray-level
histogram bin value differences combined with a percentage threshold of the
maximum difference found in the video (tdiff ). Naturally, this kind of thresh-
olding forces the analysis of the whole video before retrieving any results which
is especially disadvantageous for such video data like full-length movies. Another
threshold needed for this cut detection is the minimum frame distance between
two cuts. If this distance is below a threshold tconc then the cut with the smaller
feature difference is disregarded.
In order to determine the best threshold pair for TZI Cut Detection, we per-
formed a batch analysis on six action movies with broad and reasonable ranges
for both thresholds. As we know from fig. 7 that a vast number of shots usually
lasts for less than 25 frames, we set tconc (denoting the minimum shot length)
within the interval of [1..25] frames. The other threshold tdiff has been tested
with all possible integer values, i. e. [1..100], (denoting the difference threshold
as a percentage). In fig. 9 the results for the particular movies are shown. The
bottom axes denote the two thresholds while the height axis denotes the F1
value achieved by the corresponding threshold combination. Despite of similar
characteristics for all six movies, the distribution varies, for example, the results
for Terminator 2 considerably differ from the other five movies. Thus, when se-
lecting a specific threshold combination it turns out that the highest achievable
accuracy for this six movies is F1 = 0.8661 (recall: 0.8661, precision: 0.8689). In
fig. 10 all possible recall/precision pairs are plotted and in table 3 the first 14
threshold combinations are listed providing the best F1 value.

4.3 Other Cut Detection Methods

In section 2 several techniques for shot boundary detection by histogram differ-
ences were mentioned. From that, we set up a specific selection of some tech-
niques to be tested with our six action movies. However, within the context of
this report we solely focus on this shot boundary type due to the given rele-
vance of detecting cuts. Hence, the majority of the chosen methods is based
on histogram differences but we also included a motion-based method and the
entropy-based method of Černeková et al. [6].

Histogram-based methods For the following formulas, let Hf denote an n-
bin histogram of video frame f , so that Hf (i) denotes the corresponding value
of ith bin, and Dif(f, f − 1) denotes the resulting histogram difference of two
subsequent video frames.
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(a) Bad Boys (b) Blade

(c) Charlie’s Angels (d) Terminator 2

(e) The Transporter (f) Transporter 2

(g) Mean of all six movies

Fig. 8. 2475 different threshold combinations of the TZI shot detection and their cor-
responding performance given by the F1 measure (0.0: bad, 1.0: perfect).
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tdiff tconc precision recall f1

7 9 0.86894074 0.86610393 0.86613869

7 10 0.85858924 0.87634365 0.86597079

7 8 0.87864553 0.85295533 0.86422034

8 10 0.84878550 0.88292150 0.86420885

8 9 0.85881880 0.87186280 0.86407937

7 11 0.84602532 0.88474833 0.86357157

6 10 0.86366970 0.86642853 0.86326432

6 9 0.87444963 0.85547919 0.86313097

8 8 0.86816427 0.86035236 0.86304330

8 11 0.83649211 0.88997457 0.86114927

6 8 0.88425802 0.84223373 0.86096395

6 11 0.85019777 0.87477341 0.86059252

7 7 0.88736983 0.83777933 0.86047855

9 9 0.84526013 0.87818282 0.86035808

Table 3. A list of TZI cut detection threshold combinations providing the best F1
value for six action movies.
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Fig. 9. Each dot stands for the accuracy achieved by TZI cut detection for six action
movies. The most top right position represents the best possible result.

– Histogram Intersection (INTERS)

Difinters(f, f − 1) =
n∑

i=1

Max(Hf (i), Hf−1(i)) (3)

– Histogram Correlation (CORR)

Difcorr(f, f − 1) =

n∑
i=1

H ′f (i) ∗H ′f−1(i)√
n∑

i=1

H ′f (i)2 ∗
n∑

i=1

H ′f−1(i)2
(4)

where:

H ′f (i) = Hf (i)− 1
n
∗

n∑
i=1

Hf (i) (5)

– χ2 (Chi-Square) Histogram Distance (CHISQR)

Difchisqr(f, f − 1) =
n∑

i=1

Hf (i)−Hf−1(i)
Hf (i) +Hf−1(i)

(6)
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– Bhattacharyya Histogram Distance (BHATTA)

Difbhatta(f, f − 1) =

√√√√1−
n∑

i=1

√
Hf (i) ∗Hf−1(i) (7)

– Gray Histogram X2 Distance (GHX2)

Difghx2(f, f − 1) =
n∑

i=1

(Hf (i)−Hf−1(i))2

Max(Hf (i), Hf−1(i))
(8)

Note that the GHX2 is the same histogram distance as used for the current TZI
shot detection. In contrast to that, we will use it with a different thresholding
method in our experiments.

Feature Movement As part of a TZI video analysis software [2], global mo-
tion is estimated based on inter-frame movement of features detected by the
Pyramidal Lucas Kanade feature tracker provided by the OpenCV library [1].
Assuming that a hard cut causes chaotic feature movement between two frames,
we calculate the average movement per feature (MPF) for each frame pair.

Difmpf (f, f − 1) =
1
m
∗

m∑
i=1

Movfeat(i, f, f − 1) (9)

where Movfeat(i, f, f −1) denotes the movement of ith feature from frame f −1
to frame f , and m denotes the number of tracked features. Difmpf then denotes
the average movement per feature and is considered as a measure for inter-frame
changes indicating cuts by sudden high peaks.

Information Theory According to [6], Černeková et al’s entropy-based shot
boundary detection performed very well, especially on movie footage. Hence,
we tested their Mutual Information (MI) metric which aims at detecting hard
cuts. We also included their Joint Entropy (JE) metric for cut detection which
was originally intended to detect gradual transitions. Refer to the corresponding
publication for detailed description of the two entropy-based metrics.

Classification Each differencing technique is tested with gray-level histograms
(256 bins) and HLS color histograms (180 bins). For the detection of outliers
(indicating possible cuts), we move a one-dimensional, sliding window (size: 7)
along all video frames and for each frame at the window center, the local dif-
ference mean µDif of the surrounding frames is calculated (without considering
the center frame). Furthermore, we calculate an estimated standard deviation
σDif of the difference mean within the sliding window.
In order to calculate a threshold t we then add a certain value to the mean. For
our experiments we use two different ways to determine the added value:

ta = a ∗ µDif (10)



20 Brachmann and Hermes

and
tb = µDif + b ∗ σDif (11)

Note that ta and tb can be smaller than µDif , which happens if a < 1 or b < 0.
In this case a cut is detected if

Dif(f, f − 1) < ta/b. (12)

For a > 1 and b > 0 a cut is detected if

Dif(f, f − 1) > ta/b. (13)

Method a b

Movement per Feature (Difmpf ) 4.0. . . 12.0 2.0. . . 14.0

Mutual Information (Difmi) 0.2. . . 0.8 -14.0. . . -2.0

Joint Entropy (Difje) 1.0. . . 1.4 2.0. . . 14.0

Histogram Intersection (Difinters) 0.75. . . 0.95 -14.0. . . -2.0

Histogram Correlation (Difcorr) 0.75. . . 0.95 -14.0. . . -2.0

χ2 (Chi-Square) Histogram Distance (Difchiqsr) 4.0. . . 12.0 2.0. . . 14.0

Bhattacharyya Histogram Distance (Difbhatta) 2.0. . . 5.0 2.0. . . 14.0

Gray Histogram X2 Distance (Difghx2) 4.0. . . 12.0 2.0. . . 14.0

Table 4. a and b ranges with which the corresponding cut detection methods were
tested.

Results We tested the methods mentioned above with various ranges of a and
b (see table 4) using the thresholding from equations 10 and 11. In fig. 11 the cut
detection performance is shown for all methods applied to the six action movies
with the thresholding from equation 10 (ta). The methods GHX2, CHISQR and
MI prove to perform best. Among these, the histogram-based detection meth-
ods achieve higher precision values, while the entropy-based MI method achieves
higher recall values. With the exception of BHATTA all other methods achieve
unsatisfactory results with the thresholding type ta. In fig. 12 the same methods
were tested with the same movie footage but with thresholding tb from equa-
tion 11. In this case all histogram-based methods perform quite well, while the
other methods do not achieve any satisfactory results. Among the histogram-
based methods, GHX2 and CHISQR again prove to perform best.
Interestingly, histogram-based methods generally perform better with HLS im-
ages (lines with circles) than with gray-level images (lines with squares). Ap-
parently, more detailed image information leads to slightly better results. As
expected, the JE method does not apply to cut detection. The motion-based cut
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Fig. 10. Cut detection performance for the six action movies with thresholding using
equation 10 (ta). In the magnified extract below, the methods GHX2, CHISQR and
MI prove to perform best, the first two with better precision values and the latter one
with better recall values.
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Fig. 11. Cut detection performance for the six movies with thresholding using equa-
tion 11 (tb). All histogram-based detection methods perform well and better than the
other ones. In the magnified extract below, the methods GHX2 and CHISQR prove to
perform best, again.
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Fig. 12. Threshold a plotted against F1 of the corresponding cut detection method.

detection also fails to provide satisfactory results. Comparing the two threshold-
ing methods ta and tb, it can be seen that the best results in fig. 11 are higher
than the ones in fig. 12, but we will discuss this more detailed based on further
analysis later. An important aspect about any detection method is the selection
of an appropriate threshold. In fig. 13 and fig. 14 the selected parameters a and b,
respectively, are plotted against the F1 value, indicating the performance of the
corresponding cut detection method for a specific threshold selection. In table 5
the best method/threshold combinations sorted by F1 are listed. As already vis-
ible from the plots, the best three methods are MI, GHX2, and CHISQR, which
at most achieve F1 values above 0.91 for the six action movies. The following
methods are BHATTA, CORR and INTERS with maximum F1 values between
0.85 and 0.90. JE and MPF do not achieve any F1 values above 0.75.
Generally, all histogram-based methods perform slightly better with HLS images
than with gray-level (Y) images. For the two entropy-based methods (JE, MI)
there were only little differences between RGB-based and HLS-based analysis.
MPF was tested with gray-level images only.
Among the two thresholding methods we used for our experiments, the σ-based
thresholding (tb) is more suitable for the methods CORR, INTERS, and MPF,
while the ta-thresholding leads to better results with the methods MI, GHX2,
CHISQR, BHATTA, and JE.
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Fig. 13. Threshold b plotted against F1 of the corresponding cut detection method.
In the image below the upper plot region is magnified.
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The best TZI cut detection result from table 3 is ranked among the CORR and
INTERS methods although it is based on the same histogram distance calcu-
lation as GHX2. However, in the TZI cut detection a different thresholding is
used. Thus, by changing the TZI thresholding method into ta thresholding the
TZI software might improve its F1 performance by around 0.05 – at least for
movie footage.

5 Conclusion & Future Work

This work aimed at investigation of a reliable movie shot boundary detection
for movie footage. Starting from the current TZI shot boundary detection, we
manually annotated six contemporary Hollywood action movies and thoroughly
tested the TZI method. After that, we analyzed the characteristics of movie shot
boundaries through which we realized that a reliable movie shot boundary de-
tection needs to be a reliable cut detection, in the first place2. Thus, we then
selected a bunch of current cut detection methods based on our research of re-
lated work and tested them with the six action movies, too. The results show
that a thorough selection of a detection method can lead to quite good results
however there are still possibilities for improvement.
First, through our research on cut detection we came across other cut detection
methods that could be examined with our movie footage. Second, different com-
binations of detection methods should also be considered. And of course, more
video footage – especially movies – should be tested in order to substantiate
the investigation results. Furthermore, other transition types than the hard cut
should be included. Their impact on precision and recall values hardly matters,
however, their semantic importance for movie analysis surely is relevant.
Thus, starting from this work we will continue on further investigation of shot
boundary detection methods that perform best with feature movies.
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