
Technologie-Zentrum Informatik

ReportTechnical 43

TZI-Bericht Nr. 43
2007

Enhancement of document
readability

G. Frieder, A. Lüdtke A. Miene,



TZI-Berichte

Herausgeber:
Technologie-Zentrum Informatik
Universität Bremen
Am Fallturm 1
28359 Bremen
Telefon: +49-421-218-7272
Fax: +49-421-218-7820
E-Mail: info@tzi.de
http://www.tzi.de

ISSN 1613-3773



Enhancement of document readability

G. Frieder† (gfrieder@gwu.edu)
A. Lüdtke‡ (aluedtke@tzi.de)

A. Miene‡ (miene@tzi.de)

†The George Washington University, Washington DC, USA

‡Center for Computing Technologies (TZI), University of Bremen,
Bremen, Germany

May 2006∗

Introduction and background

This report intends to introduce the reader to TZI and the preliminary work
done in Bremen in April 2006, regarding the enhancement of the readability
of faded, unclear and damaged complex documents.

TZI (http://www.tzi.de), the German acronym for the Center for Com-
puting Technologies, is a research and development center associated with
the University of Bremen, funded partially by the university but mainly by
external funds. It involves more than 140 researchers, also on the senior pro-
fessorial level. A large part of the work of TZI is done as part of doctoral
dissertations research. For details, see the cited web site, available both in
German and in English.

Dr. Gideon Frieder has long standing ties with the TZI. The work re-
ported here is a joint effort to solve an actual problem based on results

∗Updated August 20, 2007

1



achieved in the TZI. The second author is a doctoral student in the TZI de-
partment of Image Processing in the University of Bremen. The third author
was a member of the TZI department of Image Processing until April 2006.
The TZI has done a considerable amount of work in Image Processing since
its start in 1995.

1 Problem definition, preliminary tools and

image representations

Given an image of a faded, washed out, damaged, crumpled or otherwise
difficult to read document, with mixed handwriting, typed or printed mate-
rial, with possible pictures, tables or diagrams, enhance the readability and
comprehensibility of the document. Documents may have multiple languages
in a single page.

The basic idea is to create a tool that utilizes the image processing basic
methods available in TZI, through the use of the OpenCV library 1 and other
programs that implement algorithms and interfaces. OpenCV is the name
of the Intel Open Source Computer Vision Library [Int01]. Images can be
viewed through the specifically developed tool, which provides a range of
capabilities as described below. They also can be viewed through utilities
available in the Windows environment or other such programs.

Each document is considered to be an image composed from a two dimen-
sional matrix of pixels, each described by three bytes, each byte representing
one of the RGB (Red Green Blue) components of the pixels. The image is
available as stream of input from multiple possible channels. These are the
whole color image, each of the RGB inputs, a gray tone image produced by a
generalized linear combination of the RGB channels (see below), or a linear
combination of all of these. Details and formulas are provided later in this
report.

The presumption is that any document can be (manually if necessary)
segmented into textual and non textual parts, so as to isolate any pictures
and diagrams. Tables are considered as text. As we noted before, our goal is
to process the isolated text, which can be an arbitrary mix of typed, printed
or handwritten materials, so that the resulting image of the text will be easily

1see http://www.sourceforge.net/projects/opencvlibrary

2



readable.

At this stage, we do not worry about the segmentation, as there are no
algorithmic or technical issues in implementing it. We have a large corpus
of sample documents that we can use for our experimentation without any
need for segmentation.

2 Gray level generalized transformation and

image representation

The original RGB color image, representing each pixel by three bytes, can be
transformed into a byte per pixel gray tone image (or gray level image - a
frequently used term), where each pixel represents a light intensity denoted
by I, computed by I = aR + bG + cB where a, b, c are positive numbers so
that a + b + c = 1.

The customary transformations are a = b = c = 1/3, which is just the
arithmetic mean, or the classical gray scale transformation where a = 0.299,
b = 0.587, and c = 0.114. In the literature, there is also a transformation via
a geometric mean, but we did not find a need to consider it in our context.
In our tool, at this time, we used the gray level transform with the classical
parameters.

Through the processing steps, we produce images that are conceptually
binary. These are referred to as masks, and are traditionally viewed as being
represented as zero or one values. In our approach, however, we shall use
smoothing methods that work on gray level values. Therefore, in our system,
binary images or masks are represented as gray level images with values of
either zero or 255.

3 Basic Approach

The underlying idea of the approach is to produce a binary mask that is used
to emphasize regions (the characters) in the input image. This binary mask
can be obtained through a foregorund – background separation [SP00, TT95]
by various algorithms whose details are described below. As stated before,
the binary mask thus produced is then converted to a gray level image. This
image is then convolved with a Gaussian kernel [Jae97] to produce an overlay

3



image. The overlay is superimposed on the background image, selected by
the user, to raise the contrast of the characters and make the document
more readable. The Gaussian smoothing of the gray level representation of
the binary image is used to obtain a more smooth and natural-looking result.
Figure 1 illustrates the overall process flow.

Figure 1: Overall process flow.

4 The ENH tool – general description

The tool, denoted currently as ENH, is driven by a GUI (see figure 2) which
provides for multiple methods for the major steps illustrated above, and
the selection of parameters for each of these and other, more minor steps.
The GUI presents five consecutive steps; these are the selection of the input
component, the method to create the binary image, isolated regions filter,
background image selection and overlay image creation. Each of these has
parameters whose input template is provided in the interface. It is important
to read carefully the full description of the parameters that are described
below, as the actual values used in the programs are sometimes a function
of the input (see, for example, Window Size), or the input is described as
percentage, so that 80 really has the value 0.8 (see, for example, Factor).
Once selected, sets of input parameters can be stored in a file, and obviously,
once a file of parameters exists, it can be loaded into the tool.

4



The options and their parameters are as follows: (bold letters reflect the
caption in the GUI uppermost level)

1. Selection of the Input Components.

• Combination (the I transformation with the classic parameters)

• Red Component (as a gray tone image)

• Green Component (as a gray tone image)

• Blue Component (as a gray tone image)

2. Creation of the Binary Image

• Weighted Mean (locally adaptive thresholding)

– Window Size

– Threshold

• Min/Max (locally adaptive thresholding)

– Factor

– Min Delta

– Window Size

• Sobel (edge detection)

– Threshold

– Aperture Size

• Canny (edge detection)

– Threshold 1

– Threshold 2

– Aperture size

3. Filter dust regions

• Region Size (in pixels)

4. Selection of the Background Image

• Color Image (the original)

• Combination (the I transformation with the classic parameters)

• Red Component (as a gray tone image)

• Green Component (as a gray tone image)

• Blue Component (as a gray tone image)

5



5. Overlay image creation

• Gaussian Mask Size

• Input:

– Sampled Color

– Gray (classical transformation)

• Overlay Amount

Some of these steps and their parameters are self explanatory, but for
completeness we shall describe all of them.

The selection of the input provides flexibility to deal with all the com-
ponents or part of them. We intend, in the future, to provide the general
transformation as provided. At this stage, we did not find any real need for
it. Inasmuch as its addition is trivial, we delay it to a time of need. In almost
all of our experimentation, we used the gray level transform.

The main power of the tool is in the selection of the the method for
the creation of the binary image. Here we provide four methods, which
are the locally adaptive thresholding method (Weighted Mean), a variant of
the adaptive thresholding method (Min/Max), the Sobel [DH73] based edge
detection method and the Canny [Can86] edge detection based method.

4.1 Locally adaptive thresholding and variants thereof

The first variant of binary image creation, designated as ”Weighted Mean”
in our GUI, is simply the built-in adaptive thresholding from the OpenCV
library (implemented in the function cvAdaptiveThreshold for those familiar
with the OpenCV API). This calculates the weighted mean in a rectangular
neighbourhood of a pixel and takes this value, subtracted by a selected value,
as the local threshold. The weighting is given by a Gaussian mask of the
size of the neighbourhood, which is given by the parameter Window Size,
where the actual size of the neighbourhood, in pixels, is neghborhoodSize =
(2windowSize + 1)× (2windowSize + 1). The constant subtracted from the
weighted mean to calculate the local threshold is given by the parameter
Threshold.

One problem with the approach described above is that it depends on the
characteristics of the neighbourhood, e.g. near the borders of a text block

6



Figure 2: ENH user interface.

7



where most of the area in the neighbourhood is pure background, the thresh-
old tends to be higher than in the middle of a text block. As we know that we
always have to distinguish two classes of pixels (namely dark characters und
light pixels from the background) and pixels from each class can be assumed
to have a locally similar intensity, we implemented a variant of the approach
described above that depends on the minimum and maximum intensity in-
side the neighbourhood of a pixel. This method is named ”Min/Max” in the
GUI.

Any method that depends on minimum and maximum values is sensi-
tive to outliers, so in order to mitigate their effect, we start with an initial
smoothing by applying a 3×3 median operator. The local threshold is again
calculated from the local neighbourhood. The size of this neighbourhood
is given by the Window Size parameter and the actual size is calculated as
above.

Let gmin and gmax be the minimum and maximum gray value of the
smoothed image in this neighbourhood and delta = gmax − gmin the dif-
ference between the minimum and maximum values. The local threshold
is calculated by t = gmin + deltaf for a given coefficient f (the parameter
Factor). This parameter is expressed in the interface in percent value.

The main idea in this approach is not to subtract a constant from the
mean or value between the maximum and minimum gray value, but to be
adaptive to the local contrast. This is represented by delta, and thus is more
sensitive in image regions with low local contrast. Furthermore we only apply
this threshold if delta, and thus the local contrast, is above a threshold given
by the parameter Min Delta.

4.2 Edge detectors

Another way to produce the binary mask is the application of edge detectors.
We integrated two approaches for edge detection. The first one is done by
the convolution of the input image with a 3×3 Sobel [DH73] kernel in x- and
y-directions to gain an approximation of the gradient of the image function
in horizontal and vertical direction (Gx and Gy), and the computation of the

direction-independent gradient magnitude G =
√

G2
x + G2

y (note that in the

actual implementation Gx and Gy are represented as 8-bit gray level images,
so we take the absolute result of the application of the Sobel kernels and
divide it by 4 to scale it to the interval [0..255]). Then a threshold (Threshold

8



in the interface) is applied to the gradient magnitude to produce the binary
mask. Note remark below about the values of the parameter Aperture Size.

The other edge detector we integrated is the OpenCV implementation
of the Canny edge detection algorithm [Can86]. The Canny algorithm also
relies on the gradient of the image function, but further applies edge linking
starting at strong edge segments with a gradient magnitude larger than a
given threshold and tracking the edges as long as the image gradient is above
a certain threshold. The two thresholds are given as Threshold1 and Thresh-
old2 where the larger of these is used to find strong edge segments to start
edge tracking and the smaller is applied while tracking an edge. The aper-
ture size of the Sobel mask used for computation of the gradient of the image
function is also adjustable and given by the parameter Aperture Size. Note,
again, that this parameter is used to compute the actual neighbourhood size
as described above.

A note about Aperture Size: The Sobel kernel is always of size 3. The
”Sobel” and ”Canny” algorithm use of larger aperture does not mean that the
Sobel mask is larger than three. The customary interpretation of larger than
3 aperture size is that a Gaussian smoothing with mask size ApertureSize −2
is performed prior to the application of the Sobel operator.

4.3 Filtering

Step three, the filter dust regions step, is intended to eliminate small clusters
of pixels from the binary image. The various processes can produce noise
in form of small clusters of pixels that are scattered throughout the binary
image. This step will zero out (that is, set to maximum intensity) all clusters
of pixels who have less than Region Size pixels.

Care has to be exercised when selecting this parameter, as many European
languages contain diacritics whose size, in pixel count, is very small. These
can be therefore accidentally lost by the filtering process. In the future, we
shall implement an option to filter selected regions only, thus limiting the
potentially harmful effect of this capability.

9



4.4 Overlay creation and its superimposition on the
background image

Now that all the preliminary steps are done, one has to proceed to the final
creation of the overlay and the selection of the background image on which
the enhancing overlay will be superimposed.

The sources of the background image, as detailed in the description of the
GUI, are obvious; they are chosen using the Background Image parameter.
The background image can be either the color input image, one of the RGB
components or a gray level, classical conversion.

As mentioned before, we may add in the future an additional source –
the generalized gray level transformation. In that case, there will be a need
for three parameters a, b and c. As with other parameters, upon loading
ENH, these will assume default values (the classical values).

If the background image is a single-channel image (it is either one of
the RGB components or the gray level conversion), the overlay and back-
ground images are combined by taking the minimum of the values in the
overlay image multiplied by the Overlay Amount and the pixel value of
the background image. Note that the Overlay Amount parameter is rep-
resented in the user interface by a percent value, so a chosen value of 80
means OverlayAmount = 0.8.

If the background image is a 3-channel color image (so it is the origi-
nal input image) the user can select between the method described above,
which is then applied to the three channels separately, and a second method
that uses a shaded sampled color from the original image. The new in-
tensity value for each of the three channels is then computed by gnew =
max(0, g − amount ∗ (255− goverlay)) where g is the intensity value from the
channel of the original image, goverlay is the value from the (single-channel)
overlay image and amount is the user-steered parameter Overlay Amount
that controls the amount of overlay. Note here that we deal with dark char-
acter regions on a light background, so the smaller and thus darker the value
in the overlay image is, the larger the value subtracted from the original value
of the channel.

10



5 Using ENH

The ENH system is written in Java, using the Java Development kit (JDK
1.5.0 04), and C++. When invoked, it presents to the user, side by side,
two panels. On the left is the image panel with its buttons. These include
the obvious buttons to select the input document and another one to save
the processed, enhanced image. It also includes a button for a rapid switch
between the original and the enhanced image, and, on the right upper corner,
a button to enable zooming and panning of the currently displayed image,
be it the original or the enhanced one.

The bottom of the display panel includes a line of information, displaying
coordinates of the current cursor position, as well as the RGB values of the
pixel at that coordinate.

In the future, we shall add capabilities to extract and store rectangular
regions, or to select regions for processing. A rudimentary capability to
compose a document from image components may be provided as well.

On the right is the algorithm panel, that includes the selections described
above, complete with the ability to create, store and retrieve parameter sets,
and to switch between algorithms. If the use of the whole screen is desired,
say after a processed image has to be viewed in great details, the right panel
can be hidden (and revealed at wish) so that all the screen area is fully
utilized.

ENH is currently mainly a development and experimentation tool. Once
it is determined what algorithm and which parameters should be used for a
group of documents, a batch facility may be provided, so that a production
system to enhance a large number of documents could be put in place. We
have such rudimentary facility at hand at this time, but elect to report on it
in a future appendix, as it behoves us first to gain some experience with it,
so that the final version will have the maximum usefulness.

The documents that were used as a preliminary test for our enhancement
tool and the algorithms implemented therein, were taken out of the diary
of Rabbi Dr. Avraham Abba (Armin) Frieder2 [Fri], covering the period
of 1933 to 1946. The diary is in the archives of the Yad Vashem museum
in Jerusalem3, and the pages that we have were scanned by the museum

2Available online at: http://ir.iit.edu/collections/frieder diaries README.
html

3http://www.yadvashem.org/

11



Document Description
193 67 mixed typed/handwritten in German, with bad

colorations of the paper
193 95 handwritten, Slovak language document with

bad coloration, with highly varying intensity, in
patches, of the background

194 194 a quite legible, typed document in German, with
reasonably consistent intensity both of type and
background. It is included to provide a test that
our methods will not destroy already available
readability

194 221 handwritten, vary faint document, with very little
contrast between writing and background (it is in
German)

194 246 typed in German, with reasonably constant back-
ground but with variations in the intensity of the
type

194 255 typed in German and Slovak, with reasonably con-
stant background but with very high variations in
the intensity of the type

194 259 very faint, variable contrast, German handwritten
document with reasonably constant background

194 271 mainly Slovak language typed document with very
high variation, in different lines, of the visibility of
the typed characters

Table 1: Selected test documents from [Fri].

12



personnel. The pages of the diary are identified by the archival number
M.5 19x yyy, where x identifies one of the four volumes, and yyy is the page
number. There are a total of approximately 880 pages in the diary

It is important to realize that archives are not the only source of damaged,
illegible and faded documents, so that the tool we are developing has a wider
use than enhancement of archives - in itself an important and worthwhile
task. As a general remark, large part of the problems of readability and
appearance of the currently used documents, such as bad coloration of the
background, came from the age of the documents, the ravages of keeping
them through WWII, and the effect of chemical preservation performed in
the 70s of the last century. For other documents, the damage can be heat,
fire, sunlight and so on, but we do consider the problems of our test set to
be representative for other document types.

We used eight documents (pages, listed in table 1), selected because they
present different problems of readability and clarity, they present handwrit-
ten and typed material and they are written in two different languages that
posses different diacritic marks and in handwriting sometimes slightly differ-
ent character forms.

6 Experimental results

The eight documents were processed using ENH, with different algorithms
applied to different documents. In this report we provide illustrative sample
results of three documents: The first one is one is 193 95, processed using the
Canny edge detection based method (see figure 3), the second one is 194 246
processed using the locally adaptive thresholding method based on minimum
and maximum (see figure 4) and the third one is 194 255, processed using lo-
cally adaptive thresholding based on the weighted mean (see figure 5). These
are among the worst in our sample set. The images are presented without
comment, as we are in the beginning, preparatory stage of this project, and
no general analysis was done to date. Even so, the results speak for them-
selves, and show promising potential for a further development of a rather
general tool for both research and actual archival enhancement for damaged
and illegible documents.

13



(a
)

(b
)

F
ig

u
re

3:
(a

)
O

ri
gi

n
al

d
o
cu

m
en

t
(1

93
95

).
(b

)
E

n
h
an

ce
d

d
o
cu

m
en

t.

14



(a
)

(b
)

F
ig

u
re

4:
(a

)
O

ri
gi

n
al

d
o
cu

m
en

t
(1

94
24

6)
.

(b
)

E
n
h
an

ce
d

d
o
cu

m
en

t.

15



(a
)

(b
)

F
ig

u
re

5:
(a

)
O

ri
gi

n
al

d
o
cu

m
en

t
(1

94
25

5)
.

(b
)

E
n
h
an

ce
d

d
o
cu

m
en

t.

16



References

[Can86] J. Canny. A Computational Approach to Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(6):679–698, 1986.

[DH73] R. Duda and P. Hart. Pattern Classification and Scene Analysis.
John Wiley and Sons, 1973.

[Fri] Dr. Avraham Abba Frieder. The Diaries of Rabbi Dr. Avraham Abba
Frieder. Available online at: http://ir.iit.edu/collections/

frieder diaries README.html.

[Int01] Intel Corporation. Open Source Computer Vision Library - Reference
Manual, 2001.

[Jae97] B. Jaehne. Digital Image Processing. Springer, New York, 1997.

[SP00] Jaakko J. Sauvola and Matti Pietikäinen. Adaptive document image
binarization. Pattern Recognition, 33(2):225–236, 2000.

[TT95] O.D. Trier and T. Taxt. Evaluation of binarization methods for doc-
ument images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(3):312–315, March 1995.

17




