
Technologie-Zentrum Informatik

ReportTechnical 45
MicHanThi

Design and Implementation of a System
for the Prediction of Gene Functions

in Genome Annotation Projects

Diploma thesis

TZI-Bericht Nr. 45
2007

Christian Quast

TZI-Berichte

Herausgeber:
Technologie-Zentrum Informatik
Universität Bremen
Am Fallturm 1
28359 Bremen
Telefon: +49-421-218-7272
Fax: +49-421-218-7820
E-Mail: info@tzi.de
http://www.tzi.de

ISSN 1613-3773

Diploma thesis

MicHanThi -

Design and Implementation of a System
for the Prediction of Gene Functions

in Genome Annotation Projects

Christian Quast
Janurary 13, 2006

Universität Bremen Fachbereich 3

Max Planck Institut für Marine Mikrobiologie

Universität Bremen Max Planck Institut für Marine Mikrobiologie
Fachbereich 3 Mikrobielle Genomforschungsgruppe
Postfach 33 04 40 Celsiusstrasse 1
28334 Bremen 28359 Bremen

Diplomarbeit

zur Erlangung des akademischen Grades eines Diplom-Informatikers
an der Universität Bremen vorgelegt von Christian Quast.

Erstgutachter: Prof. Dr. Otthein Herzog
Zweitgutachter: Prof. Dr. Frank Oliver Glöckner

Abstract

Introduction: The technological power of high-throughput sequencing has revolu-
tionised our capabilities to examine the genetic complexity of organisms at the whole
genome level. Since the first microbial genome was completed in 1995, the number
of sequenced genomes and metagenomes has increased exponentially. To cope with
this huge amount of sequence data, automated systems for functional assignment are
urgently needed. The MicHanThi software predicts gene functions based on similar-
ity searches using the NCBI nr (including SWISS-PROT) and InterPro databases and
provides the human annotator with a starting point for thorough investigations.

Implementation: The first step when annotating a gene is to select reliable re-
sults for a functional description of the gene from the set of observations obtained by
similarity searches. To ensure that only the most reliable observations are used for the
annotation of a gene, each observation is rated by a reasoning system. The reliabil-
ity of an observation is calculated based on the characteristics of the tool / algorithm
which created it. To appropriately represent human knowledge about these tools, the
reasoning is implemented using fuzzy logic. BLAST observations for a single gene are
diverse in terms of potential functions and identical functions are often represented by
different semantically equivalent descriptions. To derive a consistent gene product from
this heterogeneous list of observations, they are grouped according to functional terms
found in their description. Depending on the inconsistencies among the created groups,
one or more annotations can be found by MicHanThi. Each annotation is assigned
a reliability value to help the human annotator to decide which annotation can be
“trusted” and which annotation needs further attention. Once the gene product is set,
MicHanThi tries to add additional information such as a gene name, an EC number,
and a list of GO numbers. These information is assigned based on SWISS-PROT and
InterPro observations found in the list of observations supporting an annotation.

Results: The software was evaluated within the annotation jamboree of the ma-
rine bacterium ‘Gramella forsetii’ KT0803. Compared to the annotation created by
the human annotator, about 60% of the annotations predicted by MicHanThi were
syntactically identical and in addition, about 10 percent were semantically equivalent.
The program performed best if clear rules exist. This is the case for hypothetical and
conserved hypothetical genes, with or without transmembrane regions and signal pep-
tide predictions. In these cases the program gave consistent results and outperformed
the human annotator. Taking the results of MicHanThi into account, the human
annotations could be improved significantly in the subsequent manual cross-checking
phase.

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Outline . 1

2 Application Background 3
2.1 Genome Annotation . 3
2.2 Similarity Searches . 5

2.2.1 Pairwise Sequence Alignment 6
2.2.2 Pattern / Profile (Motif) Searches 10
2.2.3 Fold Recognition [1, 2] . 13
2.2.4 Comparative Genomics . 14

2.3 Databases . 15
2.3.1 Sequence Databases . 15
2.3.2 Pattern / Profile Databases 18

2.4 Tools . 21

3 State of the Art 23
3.1 Annotation Systems . 23

3.1.1 Manual Genome Annotation 23
3.1.2 Computer Aided Annotation Systems 24
3.1.3 The GenDB database (v.2.0) 30

3.2 Automatic Annotation . 33
3.2.1 Strategies for the Prediction of Gene Functions 33
3.2.2 Tools for the Prediction of Gene Functions 35

4 MicHanThi 41
4.1 The Algorithm . 41

4.1.1 Preprocessing Observations 42
4.1.2 Rating Observations . 46
4.1.3 Selecting Observations for the Annotation Process 52
4.1.4 Predicting the Gene Function - Annotation 54
4.1.5 Assigning additional Annotation Features 58
4.1.6 Genome Re-Annotation 59

iv CONTENTS

4.2 Design and Implementation . 59
4.2.1 Module IO . 60
4.2.2 Module DATA . 62
4.2.3 Module TOOLS . 66
4.2.4 Module ANNOTATOR . 67
4.2.5 The CQ Framework . 68

4.3 Additional Tools implemented within the Diploma Thesis 70
4.3.1 MOBH - Mark ORFs based on best BLAST hit 70
4.3.2 UPGENEC - UPdate GENe name and EC number 71
4.3.3 GenannD . 71
4.3.4 SPIMP . 72

5 Results 73
5.1 The Test Run . 73

5.1.1 The Test Setup . 73
5.1.2 The KT0803 Annotation Jamboree 73
5.1.3 The Performance of MicHanThi 74
5.1.4 The Evaluation . 74
5.1.5 The Cross-Checking . 79
5.1.6 The Problem of Semantics 82
5.1.7 The Missing 19 Annotations 83

5.2 Limitations of the Prototype . 84
5.2.1 The Rating of Observations 84
5.2.2 Prediction of Gene Functions 85

5.3 Conclusions . 86
5.4 Perspectives . 87

A Rulesets 89

B Presentations of this Thesis 91

C Manual 93
C.1 Hardware Requirements . 93
C.2 Software Requirements . 93
C.3 Installation from Source Code . 93
C.4 Usage . 94
C.5 Configuration . 95

D CD-ROM 97

List of Abbreviations

E-value Expect Value or Expectation Value
BIBIS Bremerhaven Institute of Biological Information Systems
BLAST Basic Local Alignment Search Tool
CDS coding sequence
contig Contiguous sequence
CPU Central Processing Unit
DDBJ DNA Database of Japan
DNA deoxyribonucleic acid
DSR Dissimilatory Sulfate Reductase
DUF Domain of Unknown Function
EC number . . Enzyme Commission number or Enzyme Classification number
EMBL European Molecular Biology Laboratory
FSA Finite State Automaton
GCB German Conference on Bioinformatics
GHz Gigahertz - One billion cycles per second
GI number . . . Unique Identifier in the GenBank database
GiB Billion Information Bytes - 1GiB equals to 1024MiB
GO number . . Gene Ontology number
GSA Global pairwise Sequence Alignment
GUI Graphical User Interface
HDD Hard Disk Drive
HMAP High-quality Automated and Manual Annotation of microbial

Proteomes
HMM hidden Markov models
HSP high scoring pair
IUB International University Bremen
JRE Java Runtime Environment
KiB Thousand Information Bytes - 1KiB equals to 1024 Bytes
LSA Local pairwise Sequence Alignment
MGG Microbial Genomics Group
MiB Million Information Bytes - 1MiB equals to 1024KiB
MPI Max Planck Institute
mRNA messenger RNA

vi CONTENTS

MSA Multiple Sequence Alignment
NCBI National Center for Biotechnology Information
NCBI nr NCBI non-redundant protein sequence database
NCBI nt NCBI non-redundant nucleotide sequence database
O2DBI Object to Database Interface
ORF Open Reading Frame
PDB Protein Data Bank
PDF Portable Document Format
PIR Protein Identification Resource
PRF Protein Research Foundation
RAM Random Access Memory
RCSB Research Collaboratory for Structural Bioinformatics
RefSeq Reference Sequence
RNA Ribonucleic acid
SGE Sun Grid Engine
TREMBL Translated EMBL
TTZ Technologie-Transfer-Zentrum
TZI Technologie Zentrum Informatik (Center for Computing Tech-

nologies)
UML Unified Modelling Language
UniProt Universal Protein Resource
XML Extensible Markup Language

List of Figures

2.1 Illustration of the transcription / translation process of a gene into
a protein as it is found in eukaryotes. Prokaryotes lack introns
and the terms exon and gene constitute the same concept. Source:
http://www.genome.gov/glossary.cfm?key=gene 4

2.2 The search space of the alignment of two sequence reduced into
seeds . 8

2.3 Extending seeds diagonally to either side. 9

2.4 Remaining HSPs after the evaluation process. 9

2.5 Extract from a multiple sequence alignment of five ORFs coding for
‘serine protease do-like precursor’ (degP). The clustal algorithm
[3] was used to create the alignment. 10

2.6 An exemplary profile. The X-axis specifies the position in the
sequence. The Y-axis shows the frequencies of the letters within
the graph (amino acids) at a given position within the sequence.
At position 7 should be either amino acid F or amino acid C. F and
C do not summon up four bits (100%) because any other amino
acid may occur at position 7 as well, it is “just” unlikely. 12

2.7 Gene neighbourhood of the dissimilatory sulfate reductase (DSR)
operon in different sequenced organisms. 16

2.8 Example of the description of an entry in the NCBI nr database
(gi|16121437|ref |NP 404750.1|) 17

2.9 Homology relationships among a group of proteins. Proteins A
and B are paralogous proteins while speciation of these proteins
form an equivalog. 20

3.1 Subset of tables of the GenDB v.2.0 database model used by
MicHanThi. a) Tables storing the results of a similarity search b)
Tables holding information about the genome (the sequence and
all predicted ORFs, tRNAs, rRNAs,. . .) c) Tables used for the
annotation information d) Tables for different types of annotators
(human / computer)) . 34

viii LIST OF FIGURES

3.2 AutoFACT methodology. Sequences are classified into one of six
annotation categories (purple boxes). The user decides which bit
score cutoff to use (default 40) before a BLAST hit is considered
significant. Figure taken from [4] 37

4.1 Embedding of MicHanThi in an annotation system 41
4.2 Four different cases of sequence alignments. The sequences de-

picted are scale free. 48
4.3 Modelling of BLAST attributes 53
4.4 Modelling of InterProScan attributes. 53
4.5 A) A list of example observations, B) descriptions split into atoms,

C) non-redundant list of atoms. 55
4.6 Functional grouping of observations 57
4.7 The integration of MicHanThi with the GenDB System and ex-

ternal data sources and the possibilities of the user to interact with
the system. 60

4.8 The package structure of MicHanThi 61
4.9 Classes of the IO module . 63
4.10 Classes of the DATA module . 66
4.11 Classes of the TOOLS module . 67
4.12 Classes of the ANNOTATOR module 68
4.13 Classes of the cq-framework . 70

5.1 Annotation of ORF orf7. The C-terminus of the protein is al-
ways matched by proteins involved in sugar binding. The N-
terminus is always matched by proteins coding for sensor histidine
kinase/response regulator, hybrid 87

B.1 Poster presented at the German Conference on Bioinformatics
2005 (http://www.gcb2005.de) 92

List of Tables

2.1 Two unaligned random DNA sequences 6
2.2 Exemplary global alignment of the two sequences shown in table 2.1. 7
2.3 Exemplary local alignment of the two sequences depicted in ta-

ble 2.1. The asterix character (’*’) denotes to unaligned bases of
the two sequences. 7

2.4 An exemplary pattern taken from: http://www.expasy.org/cgi-
bin/nicedoc.pl?PDOC00013. C is the lipid attachment site. Ad-
ditional rules: (1) The sequence must start with Met. (2) The
cysteine must be between positions 15 and 35 of the sequence in
consideration. (3) There must be at least one Lys or one Arg in
the first seven positions of the sequence. 11

5.1 Statistics from the comparison of the preliminary annotations cre-
ated by the human annotator and those created by MicHanThi. 75

5.2 Number of matches between the preliminary annotations created
by the human annotators (ha) and those created by MicHanThi
(aa). 75

5.3 Detailed comparison of the preliminary annotations created by the
human annotators and those created by the computer. 78

5.4 Statistics from the comparison of the final annotations created by
the human annotator and those created by MicHanThi. 79

5.5 Number of matches between the final annotations created by the
human annotators (ha) and those created by MicHanThi (aa). . 79

5.6 Detailed comparison of the final annotations created by the human
annotators and those created by the computer. 81

5.8 Semantically comparable annotations within the first 100 ORFs,
which are not reported by the statistics tool. 82

A.2 Ruleset used to rate InterPro observations 89
A.4 Ruleset used to rate BLAST observations 90

D.1 Contents and structure of the CD-ROM 97

Chapter 1

Introduction

1.1 Motivation and Objectives

The technological power of high-throughput sequencing has revolutionised our
capabilities to examine the genetic complexity of organisms at the whole genome
level. Since the first microbial genome of Haemophilus influenzae was sequenced
in 1995 [5] the number of sequenced genomes and metagenomes has increased ex-
ponentially. Automated systems for the prediction of gene functions are urgently
needed, to cope with this huge amount of sequence data.

The goal of this thesis is the development of a software tool (MicHanThi)
for the prediction of gene functions to support the biologist in the interpretation
of genomes. The functional description of genes (gene annotation) involves the
integration of different kinds of information as well as the integration of informa-
tion from different sources. Especially, the different kinds of information and the
ever increasing number of publicly available genomic sequences make this task
time consuming and complex. Therefore, the prototype implemented as part of
this thesis should be able to provide the biologist with a basis for thorough inves-
tigations of the studied organism or metagenome fragment. It should be able to
unambiguously identify those genes for which no functional description is possible
because explicit rules exist for the annotation of such genes.

1.2 Outline

This thesis is divided into four major parts. It starts with an introduction of
the Application Background (chapter 2). The term genome annotation and
its relation to the functional description of genes (gene annotation) is discussed
in section 2.1. Section 2.2 explains different approaches used to find similarities
of a sequence of interest within bioinformatics databases. These databases are
then introduced in the following section 2.3. The chapter ends with a brief
introduction of two tools used to search the databases for similarities that have

2 1. Introduction

be applied within this thesis.
The second part of this thesis offers an overview of the State of the Art in

the field of genomics (chapter 3). It presents genome annotation systems which
are used to aid the human annotator in the annotation of a genome (section 3.1).
The focus of this section is on the introduction of the GenDB annotation system
that provides a framework used by MicHanThi. The chapter ends with the pre-
sentation of different tools used for the prediction of gene functions (section 3.2).

Chapter 4 (MicHanThi) introduces the algorithm developed as part of this
thesis. The implementation of the algorithm is explained in section 4.2. The
chapter ends with the description of additional tools implemented as part of this
thesis.

An evaluation of the implemented prototype is presented in the last chapter of
this thesis (chapter 5). It introduces the method used to evaluate the prototype
as well as it gives an overview of the prototype’s performance. In sections 5.1.4
and 5.1.5, the annotations created by MicHanThi are compared to the human
annotation of the organism ‘Gramella forsetii’ KT0803. The comparison is fo-
cused on the evaluation of the annotation of ORFs without an assigned function
because clear annotations rules exists for this kind of ORFs. The problem of
semantics when comparing annotations created by a human annotator and those
created by a software tool are discussed in sections 5.1.6. Section 5.2 talks about
limitations of MicHanThi. The chapter ends with conclusions that can be drawn
from this work (section 5.3) and perspectives of future work (section 5.4).

Chapter 2

Application Background

2.1 Genome Annotation

The background of this thesis is Genome Annotation. The annotation of a genome
is the analysis of an organism’s genomic sequence according to certain criteria:
the taxonomic identification of the organism according to some marker genes,
the prediction and annotation of genes, and the reconstruction of the organism’s
metabolic capabilities.

Sequencing Before an organism can be annotated its genome must be se-
quenced. Prior to the introduction of new sequencing strategies and capillary
sequencers in the early 1990’s , it took a scientist days to sequence a few hundred
basepairs. Once introduced, the throughput could be increased dramatically. At
present, more than 6e10 basepairs are sequenced every year [6] (page 665) and
the rate of sequencing is ever increasing.

The most popular sequencing approach today is shotgun sequencing [7]. First,
the genome is randomly sheared into small (1-3Kb) DNA-pieces (fragmentation),
which are then sequenced using the Sanger method1 to produce reads. To obtain
multiple overlapping reads, the fragmentation and sequencing steps are repeated.
Computer programs assemble a contiguous sequence (contig) by searching over-
lapping reads.

ORF prediction Once a genome is sequenced, tools are applied to predict pos-
sible protein-encoding sequences (open reading frames - ORFs). This is the part
of a genomic sequence (gene) that is transcribed to mRNA and later translated
into protein [8]. The definition of the term gene however is ambiguous. For
eukaryotes a gene includes non-coding sequence (introns) which is spliced out
of the pre-mRNA once the gene is transcribed. Alternative splicing of introns
allows for different proteins to be encoded by the same gene. An illustration of

1reference: http://www.csun.edu/ hcbio027/biotechnology/lec3/sanger.html

4 2. Application Background

this definition of a gene is depicted in figure 2.1. Prokaryotic sequences usually
lack introns. Therefore, the terms exon and gene refer to the same concept (→
gene equals ORF).

Figure 2.1: Illustration of the transcription / translation process of a
gene into a protein as it is found in eukaryotes. Prokaryotes lack in-
trons and the terms exon and gene constitute the same concept. Source:
http://www.genome.gov/glossary.cfm?key=gene

The end of an ORFs is always identified by the same triplets of DNA bases
either ‘TAA’, ‘TAG’, or ‘TGA’ (stop codon). If one of these triplets is encoun-
tered within the sequence the transcription of the genomic sequence is stopped.
However, the triplet coding for the start of the ORF (start codon) is ambigu-
ous. In most cases, the start codon is the triplet ‘ATG’ but it can be others.
Furthermore, the transcription process is not always started if a start codon is
encountered since ‘ATG’ can also code for the internal amino acid methionine.
Therefore, a lot of effort is spend in the correct prediction of the start codon.
In eukaryotes, prediction of protein-encoding genes is more difficult because un-
translated introns have to be removed from the (pre-)mRNA using a complex

2.2. Similarity Searches 5

splicing mechanism. Since this process and the corresponding signals are not
fully understood thus far, it is difficult to correctly predict the mature mRNA in
silico.

But even the prediction of ORFs in bacteria is a complicated process and
several different approaches / tools are currently used. Since the prediction of
the start position is ambiguous, tools either predict too many ORFs or only
those which are most likely real ORFs / genes (over prediction of ORFs vs.
quality of the ORFs). Therefore, the quality of the predicted ORFs is rather
unreliable which has to be considered when annotating the ORFs. MORFind is
a meta ORF-finder developed by Jost Waldmann and Hanno Teeling (Microbial
Genomics Group) to increase the quality of predicted ORFs. It combines the
results of different ORF prediction tools and creates a non-redundant list of
ORFs. Overlapping ORFs are considered to be errors in the ORF prediction and
a sophisticated reasoning process is applied to solve discrepancies.

Gene Annotation Gene annotation is the process to associate certain informa-
tion with the predicted ORFs describing their function. Among this information
is: the function of the protein, a short “unique” name describing the function
(gene name), and the classification of the ORF. The classification of an ORF can
be done using different schemes. The more popular schemes are EC numbers,
which classify the ORF corresponding to its metabolic pathway [9], as well as
GO numbers which classify the ORF according to its molecular function, cellular
component, and biological process [10]. The assignment of this set of information
is the main topic of this thesis.

After the ORF prediction, all possible genes are unannotated. To derive a
function for a particular ORF, its sequence is compared to already annotated
genes in sequence databases (Pairwise Sequence Alignment 2.2.1). Additionally,
tools can be used to assign an ORF to a certain protein family by matching its se-
quence to patterns or profiles describing one of the currently available protein fam-
ilies (Pattern / Profile Searches 2.2.2). Sometimes, fold recognition (2.2.3)is used
to provide additional evidences for the function of an ORF. A recent approach to
estimate the function of an ORF is comparative genomics (section 2.2.4), which
focuses on whole genome comparisons rather than the analysis of single ORFs.

2.2 Similarity Searches

Similarity searches are the basis for the functional description of genes. Normally,
a genomic sequence of interest (the query sequence) is compared to genomic
sequences or a group of genomic sequences (pattern or profiles) found in various
databases (see section 2.3 for details about the different databases). The different
approaches which are applied to compare two or more sequences are explained in
this section. The comparative genomics approach uses different techniques then

6 2. Application Background

the other approaches introduced in this section. Nevertheless, it can be used to
create a hypothesis about the function of a query sequence. Tools which utilise
these approaches are introduced in section 2.4.

2.2.1 Pairwise Sequence Alignment

Pairwise sequence alignment is a scheme of writing two strings on top of each
other where the characters in one position are deemed to have a common evolu-
tionary origin (positional homology). In bioinformatics, this approach is applied
to compare two DNA sequences or two protein sequences, highlighting their sim-
ilarities. The sequences are arranged so that when ever possible identical bases
(matches) of the sequences are placed next to each other in the alignment. If nec-
essary, gaps (usually denoted by dashes ’-’) are introduced into the alignment.
Gaps can be seen as deletions or insertions in the evolutionary process of a gene,
whereas mismatches correspond to mutations. Table 2.2 shows an example align-
ment of the two random DNA sequences depicted in table 2.1. In bioinformatics,

I: c t c g t c t g c a t c c t c a a

II: c t g g t a t c t g c a c a t g g g c a a

Table 2.1: Two unaligned random DNA sequences

pairwise sequence alignment is the most important approach to derive a function
for an unidentified query sequence. Conserved regions, these are long stretches of
matches, within a sequence alignment provide clues for the functional description
of the query sequence. These conserved regions can also be used to describe the
evolutionary distance between two sequences as shown in [11]. Broadly, two types
of pairwise sequence alignments can be distinguished, local sequence alignment
(LSA) and global sequence alignments (GSA). An extension of the pairwise se-
quence alignment is the multiple sequence alignment (MSA) aligning more than
two sequences.

Global Sequence Alignment (GSA) A global sequence alignment of two
sequences is an alignment that spans along their entire length and it is most
useful for aligning / finding closely related sequences. Gaps are introduced into
the aligned sequences to make up for differences in length of the two sequences.
A drawback of the GSA is the inability to handle evolutionary mechanism such
as domain shuffling. The function of a protein is affected by its domain compo-
sition. The rearrangement of these domains within the evolutionary process is
called domain shuffling. This as well as the fact that closely related sequences
are also found by algorithms implementing local sequence alignment make the
global sequence alignment a deprecated technique. The Needleman-Wunsch al-

2.2. Similarity Searches 7

gorithm [12] is the most known algorithms for the global pairwise alignment of
two sequences.

I: c t c g - - t c t g c a t c c t - - - c a a
| | | | | | | | | | | | | |

II: c t g g t a t c t g c a - c a t g g g c a a

Table 2.2: Exemplary global alignment of the two sequences shown in table 2.1.

Local Sequence Alignment (LSA) The alignment of subsequences of two
sequences is called local sequence alignment. This approach aligns a subset of
characters of sequence I with a subset of characters of sequence II. Neglecting
the positions of the subsequences within their parent sequences allows for greater
flexibility regarding evolutionary mechanisms such as domain shuffling compared
to GSA. A local alignment of the two sequences taken from table 2.3 using the
Smith-Waterman algorithm [13] is shown in table 2.3.

I: * * * * t c t g c a * * * * * * *
| | | | | |

II: * * * * * * t c t g c a * * * * * * * * *

Table 2.3: Exemplary local alignment of the two sequences depicted in table 2.1.
The asterix character (’*’) denotes to unaligned bases of the two sequences.

BLAST - The Basic Local Alignment Search Tool (BLAST) [14, 15] al-
gorithm is the most known algorithm for the local alignment of two sequences.
Unlike the Smith-Waterman algorithm, it returns a number of statistically sig-
nificant alignments rather than just the “best” one. Another difference between
the two algorithms is that the Smith-Waterman is guaranteed to find the best
local alignment between two sequences while BLAST uses a heuristic to reduce
the search space (as it is depicted in figure 2.2). Using a heuristic increases the
search speed at the cost of sensitivity. This means that an optimal alignment
between two sequence may not be found. However, the alignment returned by
the algorithm should be very close to the optimal alignment regarding its score.
The heuristic used by BLAST uses three layers to refine potential alignments
(high scoring pairs - HSPs): seeding, extension and evaluation. .

Seeding: BLAST uses the concept of words to reduce the search space (fig-
ure 2.2). A word is a number of characters that are considered to be ‘one’
character. For example, if a word is defined to be three letters long, then
the sequence ‘BLAST’ has three words: ‘BLA’, ‘LAS’, and ‘AST’. Before
BLAST starts to align two sequences, it creates a list of all words that are

8 2. Application Background

common to both sequences. Some alignments may not contain any identi-
cal words, therefore BLAST use the word’s neighbourhood to compare two
sequences. The neighbourhood of a word is defined as the substitution of
any character within the word that yields a score higher then T when the
two words are compared via a scoring matrix. By adjusting the value of
T , the neighbourhood of a word can be increased or decreased. The size of
the search spaces changes accordingly. Another attribute that controls the
size of the search space is the word length W . Choosing the “right” values
for T and W regarding the scoring matrix used, is critical for the perfor-
mance of the BLAST algorithm. Regions of the search space containing
word matches are called seeds.

Sequence 1

Se
qu

en
ce

 2

Figure 2.2: The search space of the alignment of two sequence reduced into seeds

Extension: Seeds are extended diagonally in both directions in order to find
the longest local alignment starting form a certain seed (figure 2.3). The
ends of the alignments are reached, if to many mismatch would occur in
the alignment. Smith-Waterman “knows” when to end a local alignment
because it evaluated the whole search space before looking for the “best”
local alignment. However, BLAST only searches a subset of the search
space and therefore needs some additional mechanism to find the end of a
local alignment. BLAST uses simulated annealing [16] (page157) to do this.
Once the first mismatch is encountered in the alignment, the current score
R of the alignment is kept. Additional words are added to the alignment,
until the score of the new alignment drops beneath R minus some threshold
X. The algorithm may get stuck in a local maximum if the value of X is
chosen too low. If the value chosen for X is too large, then the algorithm
may search for to long without finding a significantly better score. After
terminating, the alignment is trimmed back to its maximum score.

2.2. Similarity Searches 9

Sequence 1

Se
qu

en
ce

 2

Extension

Alignment

Figure 2.3: Extending seeds diagonally to either side.

Evaluation: Once the seeds are extended, the alignments are evaluated to deter-
mine if they are statistically significant. Simplified: Significant alignments
(termed HSP) are those that have a score larger then a given threshold
S. The goal of the evaluation is to remove as many overlapping seeds as
possible and then select a consistent group of HSPs that stretches from the
upper left corner of the search space to the lower right (figure 2.4). A group
of HSPs is consistent if no word is contained in two or more HSPs and each
HSP starts to the lower right of the previous HSP. Finally, the best scoring
consistent group of HSPs is returned as the gapped local alignment of two
sequences.

Sequence 1

Se
qu

en
ce

 2

Inconsistent

Consistent

Figure 2.4: Remaining HSPs after the evaluation process.

10 2. Application Background

A measure for the statistically importance of the alignment returned by the
BLAST algorithm is the Expectation value (or Expect value) short E-value
[17]. This is the number of alignments expected by chance E during a sequence
database search of search space m× n, where m denotes the length of the query
sequence and n is the size of the database in characters (the length of the con-
catenation of sequences within the database).

Multiple Sequence Alignment (MSA) Multiple sequence alignments are
used to identify conserved regions among a group of sequences. These conserved
regions are often used to create profiles describing a group (or family) of proteins
which are used by Hidden Markov models or the PSI-BLAST program to search
for homologous sequences in databases. Furthermore MSAs are used to build
phylogenetic trees. Multiple sequence alignment is computationally difficult and
is classified as an NP-Hard problem.

Figure 2.5: Extract from a multiple sequence alignment of five ORFs coding for
‘serine protease do-like precursor’ (degP). The clustal algorithm [3] was used to
create the alignment.

2.2.2 Pattern / Profile (Motif) Searches

Pattern or profile searches predict the function of a query sequence by comparing
the query sequence with entries in a database as do sequence similarity searches.
Unlike sequence similarity searches, pattern and profile searches do not compare
two sequences directly, instead they compare the query sequence to a pattern
or profile describing a domain or family of proteins This approach seems to be
worth wile because different domains of a protein are subject to different selective
pressures [18]. This means that some parts of a protein are more conserved
among a group of proteins then others. Patterns or profiles which characterise
the conserved regions of a protein family can be observed by aligning multiple
sequences of the same family using tools that implement a MSA algorithm.

2.2. Similarity Searches 11

Patterns are regular expressions describing each position of the MSA that is
relevant to identify a protein family. Each position of the pattern represents one
or more characters of the alphabet that are observed at the position of the MSA.
Only these characters are allowed to occur a that position in a query sequence. If
a character is found in the query sequence, that is not represented by the pattern
for that particular position, then the query sequence is called a mismatch. This
problem can be solved by allowing a number of mismatches within the pattern.
Another problem of patterns is that patterns do not consider the frequency of
the occurrence of a character at a particular position within the MSA. If a MSA
constitutes at a specific position X of the characters ‘A’ (found in 75% of the
sequences), ‘B’ (15%), and ‘C’ (10%), then a query sequence S1 with character
‘A’ at position X should score better than a query sequence S2 with characters
‘B’ or ‘C’ at position X that is otherwise equal to S1. This is not possible with
patterns. An example of a pattern is shown in table 2.5.

{DERK}(6) - [LIVMFWSTAG](2) - [LIVMFYSTAGCQ] - [AGS] - C

Table 2.4: An exemplary pattern taken from: http://www.expasy.org/cgi-
bin/nicedoc.pl?PDOC00013. C is the lipid attachment site. Additional rules:
(1) The sequence must start with Met. (2) The cysteine must be between posi-
tions 15 and 35 of the sequence in consideration. (3) There must be at least one
Lys or one Arg in the first seven positions of the sequence.

Profiles like Patterns describe conserved regions of a MSA. Unlike patterns,
profiles specify for each position within the conserved region the probability for
each character of the input alphabet by which it may occur at that particular
position. Hence, profiles implicitly allow mismatches at any given position of the
profile because it is “just” more likely for some characters to occur at some posi-
tion of the alignment between a query sequence and a profile. Characters which
do not occur in the MSA are assigned a probability close to zero. This means
that it is very unlikely that one of those characters will occur. An exemplary
profile is depicted in figure 2.6

Hidden Markov Models (HMM) Before being applied in sequence analysis
in 1994 [19], Hidden Markov models were already being applied to problems
in speech recognition [20]. Hidden Markov models are probabilistic finite state
automatons (FSA) that represent a Markov chains. The states of the FSA are
considered to be matches, insertions, or deletions. For each state a substitution
matrix exists, which describes the probability of each character of the input
alphabet to be “emitted” by a certain state (emission probability). The transition
from one state to the next is based on probabilities (transition probability) rather
then a true / false decision made in a deterministic FSA. A sequence of “visited”
states that describe the alignment of a query sequence to a profile is called state

12 2. Application Background

Figure 2.6: An exemplary profile. The X-axis specifies the position in the se-
quence. The Y-axis shows the frequencies of the letters within the graph (amino
acids) at a given position within the sequence. At position 7 should be either
amino acid F or amino acid C. F and C do not summon up four bits (100%) be-
cause any other amino acid may occur at position 7 as well, it is “just” unlikely.

path. An HMM is a Markov chain, this means that the transition from the
current state to the next state according to the input sequence is solely based on
the current state of the FSA. In other words, to predict the future the FSA only
needs to known the present, not the past. This is also the main weakness of HMMs
because they do not deal well with correlations between residues. An example is
the analysis of RNA secondary structure where HMMs are usually inappropriate
because RNA base pairs include long-range pairwise correlations; one position
may be any residue but the base-paired partner must be complementary [21].
The field of application of HMMs in bioinformatics includes gene finding, profile
searches, and regulatory site identification. In profile searches, HMMs are used
to associate residues of the query sequence with homologous residues of a profile
describing a certain protein family.

The probability P (S, π|HMM, θ) that an HMM with parameter θ generates
an observed sequence S and a state path π is the product of all emission probabil-
ities and transition probabilities used. For complex problems, an HMM generates
a large number of paths. To choose the optimal path, Bayesian probability theory
can be applied because an HMM is a full probabilistic model. That is, the models
parameters and the sequence ‘scores’ are all probabilities. Many algorithms can
be used to find the optimal state path. An efficient algorithm that is guaranteed
to find the most probable state path is the Viterbi algorithm [20].

2.2. Similarity Searches 13

What is hidden about a Hidden Markov Model - The HMM gen-
erates two strings of information. The state path and the observed sequence
emitted by the HMM. A Markov model is called hidden if the state path is hid-
den from the user. In this case, only the observed sequence is reported as a result
of the analysis.

2.2.3 Fold Recognition [1, 2]

According to literature, a sequence alignment of two sequences should show at
least 30% of matches to be able to unambiguously derive a function for the query
sequence. Pattern or profile searches expect certain regions of a group of proteins
to be highly conserved. If these two criteria are not meet, then a function should
not be assigned to a query sequence. The fold recognition provides a measure to
assign a function to a query sequence independent of the approaches presented
above. The assignment of functions derived from fold recognition is based on
the assumption that the function is conserved on the 3D level better than on
the sequence level [22]. Structures of proteins with at least 50% matches on the
sequence level will be closely related. If the sequence similarity between two
sequences drops below 20% then there will be large structural differences that
are impossible to predict. However, the structure of the active site of distantly
related proteins can still be very similar and a functional prediction based on this
similarity is possible.

Two categories of fold recognition can be distinguished: those that validate
the predicted three-dimensional (3D) structure of a protein and those that pre-
dicted the function of a query sequence. To assign a function to a gene based on
fold recognition, its 3D structure has to be known. The structure can be either
experimentally identified (e.g. using x-rays) or predicted in silico. The predic-
tion of the 3D structure is done by first finding the closest relative in a database
containing proteins with known 3D structures (e.g. PDB [23] which contains
about 34,500 structures at the moment 2) based on a sequence alignment and
then manipulating the 3D structure according to the differences in the sequence
alignment. Methods of the first category mentioned above can be used the as-
sign a quality measure to these predicted structures. The quality values can be
considered when searching for similar 3D structures and deriving a function for
the query sequence.

One important drawback to this approach is the low number of structural
descriptions found in databases. Even though this number constantly increases,
the number of known proteins increases even more rapidly, resulting in an ever-
larger number of proteins that have no known 3D structure. Therefore, the
prediction of 3D structures in silico is rather unreliable because the coverage of
the search space is very low. A function derived from this approach should be

2A daily update of this number can found at: http://www.rcsb.org/pdb/Welcome.do

14 2. Application Background

considered with caution and its reliability greatly dependents on the reliability
of the 3D structure predicted for the query sequence.

2.2.4 Comparative Genomics

The large amount of sequenced genomes available today allows for new techniques
to analyse genomic sequences. One of these new techniques is the comparative
genomics approach. Comparative genomics focuses on the whole genome rather
then individual genes within one genome. Two categories to analyse genomes can
be distinguished, the gene independent and the gene dependent analysis methods.
A detailed summary and application of this approach can be found in the work
of Michael Richter [24].

Gene Independent Analyses: Methods which belong to the group of gene
independent analysis methods (Genome Linguistics) focus on the structure of nu-
cleotide sequences and the positioning of bases within a sequence. These methods
are especially applied to analyse fragments of prokaryotic sequences. Gene inde-
pendent analysis methods are used, among other things, for the prediction of the
replication start (origin) and replication stop (terminus) positions within circular
genomes. Another analysis method is the TETRA approach as described in [25].
This method uses the distribution of tetranucleotides3 within fragments of ge-
nomic sequences to assign these fragments to a certain species or to a taxonomic
group. In metagenome studies, these methods can be used to assign genomic
fragments to artificial organisms (organism-bins). This approach is implemented
by Marcel Huntemann as part of his diploma thesis at the University of Bremen
and the Microbial Genomics Group at the Max Planck Institute for Marine
Microbiology.

Gene Dependent Analyses: Gene dependent analysis methods are applied
to amino acid sequences. More precisely, these methods compare the ORFs pre-
dicted within one genome with all predicted ORFs of at least one other genome.
To compare ORFs of different genomes, sequence similarity search tools such as
BLAST are used. The results derived from these comparisons can be take as ad-
ditional evidences for the functional description of ORFs because it is possible to
discriminate between orthologous and paralogous sequences. Furthermore, gene
dependent analysis methods take into account:

• the percentage of a sequence coding for e.g. an ORF,

• the arrangement of ORFs within the genome,

3A tetranucleotide is a four character subsequence of nucleotides within the genomic frag-
ment. 256 (44) tetranucleotides exist in a four character alphabet, ranging from aaaa to tttt

2.3. Databases 15

• the average length of an ORF,

• the number of ORFs, for which a similarity could be found in sequence
databases,

• the number of ORFs, for which a prediction of the function is possible, and

• the number of predicted rRNAs and tRNAs.

Even though a large number of genomes have been sequenced today, significant
similarities can only be found in bioinformatics databases for about 40 to 60
percent of the ORFs predicted in a prokaryotic genome. Comparative genomics
can be used to help to understand the function of ORFs without similarities in
databases because functional related ORFs tend to be clustered on the genome
(operon) [26, 27]. If such a operon can be identified in a newly analysed genome
and some of the genes mandatory for that operon are missing, then ORFs missing
a functional prediction within the operon’s gene neighbourhood may code for the
missing genes.

Figure 2.7 shows the operon structure of the dissimilatory sulfate reductase
(DSR) cluster. This cluster can be divided into two larger operons4 (indicated
by the rho-independent transcription terminators): the operon dsr[ABD] and the
operon yellow ORF, dsr[MKJ], and the two ORFs following dsr[MKJ]. The two
organisms Desulfitobacterium hafniense and Chromatium vinosum use a different
substrate, therefore this organisms do not need the dsrD ORF. The yellow ORF is
a unique gene which only occurs in this group of organisms. The two fosmids are
genomic fragments and its host organism is unknown. In Fosmid Anke42c9, the
yellow ORF is missing. Comparing the genomes of the different organisms with
comparative genomics techniques yields that the grey ORF in front of dsrM may
be an orthologous of the yellow ORF found in the other organisms. Supporting
this assumption is the fact that the sequences of the yellow ORFs within the
different genomes are rather diverse. Information presented in this paragraph are
based on discussions between Michael Richter and the author of this thesis. The
information is directly related to the work of Michael presented in [24]

2.3 Databases

2.3.1 Sequence Databases

DDBJ [28] / EMBL [29] / GenBank [30]: The databases DDBJ, EMBL,
and GenBank are the primary databases which collect nucleotide sequences.
Whenever a paper is published that presents new sequence information, the se-
quences must be deposited in one of these databases. Hence, the DDBJ, EMBL,

4An operon is a group of genes that are contiguously transcribed.

16 2. Application Background

Figure 2.7: Gene neighbourhood of the dissimilatory sulfate reductase (DSR)
operon in different sequenced organisms.

and GenBank databases are comprehensive collections of all publicly available se-
quences. The databases are not curated to be able to cope with the huge amount
of available sequences at present (e.g. more than 100 billion bases in GenBank5)
and its exponential growth. All three databases exchange newly added entries on
a daily basis to ensure timeliness.

Nucleotide sequence databases are the basis for any kind of data mining. Pro-
tein sequence databases like TREMBL keep translations of all protein-encoding
sequences (CDS) found in the primary databases. Most of the protein sequence
databases are manually curated and provide more quality and additional infor-
mation over comprehensiveness. Pattern and profile databases are build from
protein sequence databases and use their content to their description of protein
families regarding accuracy and comprehensiveness.

5source: http://www.ncbi.nlm.nih.gov/Genbank/index.html

2.3. Databases 17

Data Integration - The three primary databases are integrative, which
means that all three databases store information of the same kind. To guarantee
that the information is comparable, the database maintainers agreed to use the
same data definitions (definition sharing form of data integration). Whenever
the shared definition is changed, all three databases have to change all their
records accordingly. This solves the problem of the definition copy and the value
copy forms of data integration, where the semantically meaning of data in the
different databases may independently change over time. A drawback of the
definition sharing approach is that some resources may be outdated and there is
no way of telling which of the resources contains the most recent records, other
than comparing the entries of all databases.

Non-Redundant Databases - The most known databases for alignment
based similarity searches are the NCBI nt and NCBI nr databases. Both data-
bases are a non-redundant collection of entries found in the different databases.
Multiple entries describing the same sequence found in different databases merged
into a new entry. The description of the new entry contains the description of each
merged entry, separated by the merged entry’s unique identifier in the GenBank
database (GI number). An example of an NCBI nr entry is shown in figure 2.8. Its
structure is explained in detail in section 4.1.1. The NCBI nt database integrates

putative membrane protein [Yersinia pestis CO92] gi|45440854|ref|NP_992393.1|

putative membrane protein [Yersinia pestis biovar Medievalis str. 91001]

gi|22126919|ref|NP_670342.1| hypothetical protein y3042 [Yersinia pestis KIM]

gi|51595516|ref|YP_069707.1| putative membrane protein [Yersinia

pseudotuberculosis IP 32953] gi|21959957|gb|AAM86593.1| hypothetical [Yersinia

pestis KIM] gi|45435712|gb|AAS61270.1| putative membrane protein [Yersinia

pestis biovar Medievalis str. 91001] gi|51588798|emb|CAH20412.1| putative

membrane protein [Yersinia pseudotuberculosis IP 32953]

gi|15979204|emb|CAC89982.1| putative membrane protein [Yersinia pestis CO92]

gi|25510076|pir||AC0140 probable membrane protein YPO1140 [imported] -

Yersinia pestis (strain CO92)

Figure 2.8: Example of the description of an entry in the NCBI nr
database (gi|16121437|ref |NP 404750.1|)

nucleotide sequences while the NCBI nr database integrates protein sequences.
The NCBI nr database contains sequences from

• the Protein Research Foundation (PRF) database [],

• the Protein Identification Resource (PIR) database [31],

• the RCSB Portein Data Bank (PDB) [23],

• the NCBI RefSeq database [32],

• the SWISS-PROT database [33], and

18 2. Application Background

• translations of the CDS found in the three primary sequence databases
DDBJ, EMBL, and GenBank.

TREMBL [34]: The TREMBL database is a supplement to the SWISS-PROT
database which is not curated in order to be comprehensive. It contains trans-
lations of all CDS found in primary databases which are not already in SWISS-
PROT. Additionally, it contains sequences extracted from literature and sequence
that were submitted to SWISS-PROT but which have not yet been added to the
SWISS-PROT database.

SWISS-PROT [33]: The SWISS-PROT database contains only annotated
protein sequence. Sequence entries in the SWISS-PROT database originate from
three different databases: the protein sequence database Protein Identification
Resource (PIR) [31], translation of entries from the EMBL nucleotide sequence
database, and literature. SWISS-PROT emphasises three criteria by which it
tries to distinguish itself from other protein sequence databases: annotation,
minimal redundancy, and integration with other databases. Each sequence entry
contained in SWISS-PROT is manually curated and revised by an expert for the
protein family a sequence is member of. Single entries or a group of entries (of
the same protein family) are periodically updated if new information is available.
The SWISS-PROT team reduces redundancy in the database by merging separate
entries of the same sequence found in the source databases. SWISS-PROT entries
contain cross-references to external databases which provide further information.
At present, about 100 external databases are cross-referenced by SWISS-PROT6.

Among other databases, SWISS-PROT and TREMBL are integrated by the
newly established UniProt database [35].

2.3.2 Pattern / Profile Databases

Blocks [36] Blocks are ungapped regions of a multiple sequence alignment
which describe related proteins. Entries in the Blocks database are auto-
matically created from patterns found in the PROSITE database. These
patterns are then refined by aligning additional proteins to the MSA found
in the SWISS-PROT database. Recent versions of the Blocks database use
InterPro as an additional source of highly conserved regions among proteins
of the same family.

Pfam [37] The Pfam database contains multiple sequence alignments and hid-
den Markov models derived from these alignments. Pfam is divided into two
databases: Pfam-A and Pfam-B. Pfam-A is a manually curated database
and contains the descriptions of more than 8000 protein families. About

6source: http://www.expasy.ch/cgi-bin/lists?dbxref.txt

2.3. Databases 19

75% of all proteins which can be found in public databases have at least one
match in this database7. Pfam-B is a collection of automatically created
MSAs and HMMs describing families taken from PRODOM that do not
overlap with protein families in Pfam-A. Pfam-B is of lower quality than
Pfam-A but it gives a more comprehensive coverage of known proteins (an
additional 19% to the protein covered by Pfam-A). A protein may belong
to more than one Pfam family.

PRINTS [38] The PRINTS database is a collection of fingerprints of protein
families. A fingerprint is a group of motifs describing the same protein
family. According to the PRINTS user manual, a motif is any conserved
element of a multiple sequence alignment whose function or structure is
known8. It is unclear whether a motif is a pattern or a profile. Since
PROSITE calls patterns motifs [39] it is likely that a fingerprint is a pattern
as well. Fingerprints are derived from MSAs created by manual alignment
tools and only a small number of sequences are used to create the initial
alignment. Fingerprints are then refined by scanning the SWISS-PROT and
TREMBL databases for new members of a protein family and iteratively
adding sequences to the MSA.

ProDom [40] ProDom is a database of protein families automatically created
from entries in the SWISS-PROT and TREMBL databases. Proteins found
in these databases are pairwise aligned, in order to find a set of homolo-
gous proteins. Then multiple sequence alignments are created based on the
sets of homologous proteins. A consensus sequence is calculated and fi-
nally a ProDom ‘domain’ is derived from the consensus sequence. ProDom
domains normally correspond to domains found in protein families, but do-
main boundaries should be treated with caution. It is unclear if the ProDom
database uses patterns or profiles for the description of conserved regions
in a MSA.

PROSITE [39] PROSITE is the oldest database that uses patterns to describe
a family of proteins. Its development started in 1988 and it was released
in 1991. PROSITE is mainly based on patterns derived from multiple
sequence alignments. Patterns, which were published in literature have
also been added to the database. Pattern found in the PROSITE database
are designed to describe a protein family as specific as possible to reduce
the number of false positives to a minimum while being sensitive enough
to include most of the proteins that belong to the family. The patterns
described by PROSITE are periodically reviewed by the authors.

7source: http://www.sanger.ac.uk/Software/Pfam/
8source: http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/printsman.html

20 2. Application Background

SMART [41] The SMART database is specialised on signal proteins which are
inadequately represented by the SWISS-PROT and Pfam databases. This
type of proteins is often composed of multiple domains which complicates
the identification of such proteins in a genome annotation project. Most of
the profiles included in the SMART database had been published previously.
The multiple sequence alignments, these profiles are based on, have been
refined according to certain constraints: minimisation of insertions and
deletions in the conserved regions of the MSA, optimisation of amino acid
property conservation, and closing of unnecessary gaps.

TIGRFAMs [42] The TIGRFAMs database contains manually curated protein
families. These families are based on hidden Markov models derived from
multiple sequence alignments. The database maintainers introduced the
term equivalog. A group of equivalog proteins necessarily share the same
function, unlike members of a protein family which could be paralogous
proteins. Proteins which are by definition not orthologous like proteins re-
lated by lateral gene transfer can be equivalogs as well. Figure 2.9 describes
a protein family that contains two equivalog ‘subfamilies’. Proteins A and
B are paralogous proteins while speciation of either protein share the same
function and are therefore equivalog.

Gene loss

Duplication

Speciation

A B

B1 B2 B3A3A2A1

Figure 2.9: Homology relationships among a group of proteins. Proteins A and
B are paralogous proteins while speciation of these proteins form an equivalog.

InterPro [43]: Like the cooperation between the maintainers of the databases
DDBJ, EMBL, and GenBank, InterPro is an integrative database. Among oth-
ers, the InterPro database integrates the data contained within the pattern and

2.4. Tools 21

profile databases mentioned in this section. The integration of data is done on
the database level by keeping a local copy of each data set contained in one of the
integrated databases (value copy form of data integration). Semantically equiva-
lent data sets from the different sources are then integrated into a new InterPro
entry to provide a common view on the different sources of information. An
InterPro entry provides cross-references to all entries integrated by this entry.

2.4 Tools

Observations generated by two different tools are use by MicHanThi to de-
rive a function for an ORF: NCBI BLASTP [14] and InterProScan [44]. NCBI
BLASTP is used to search the NCBI nr databases for sequence similarities. It
is an implementation of the BLAST algorithm developed by the NCBI. Several
other implementations of the BLAST algorithm exist. Among the more widely
known are the WU-BLAST implementation and an implementation optimised
for PowerPC processors from IBM and Motorola featuring an AltiVec unit. In-
terProScan is a meta tool which is used to scan a query sequence against protein
signatures found in the InterPro database. It uses different tools based on the
InterPro member database it searches. To find observations within the Pfam
database, which is the only type of InterPro observations currently considered by
MicHanThi, InterProScan uses the hmmpfam tool that is part of the HMMER
package. This tool is an implementation of hidden Markov models used to match
a sequence against a protein domain or family profile.

Chapter 3

State of the Art

3.1 Annotation Systems

This section provides an overview of commonly used annotation systems. The
annotation systems are presented in chronological order, showing how such sys-
tems evolved over the years. The section begins with the very basic approach
of manual genome annotation. It then explains different annotation approaches
ranging from basic systems that only automate simple tasks to systems with ad-
vanced reasoning. The section ends with an in-depth introduction of the GenDB
system (version 2), with special focus of underlying database schema and data
model.

3.1.1 Manual Genome Annotation

The most basic approach to annotating genomes or genes is to annotate manually.
The genome is represented by a list of genes stored in a spreadsheet or similar files.
The structure of the spreadsheet varies from annotation project to annotation
project, or it may even differ from annotator to annotator. All tools that are
used to analyse the genes are run by hand or semi-automatic scripts. Often on-
line tools made available by the database providers are used (see section 2.3 for
more details on the different databases). Manual annotation is time-consuming
and it can be very tedious to transfer data from the website to the spreadsheet.
Most of the time the results of the on-line tools used for similarity searches are
printed for archival and purposes of future verification. Different types of data,
i.e. data from expression profiling, biochemistry, and search tools can not be
cross-referenced easily, leaving the annotator with several sources to consider.
This makes it more complicated for the annotator to validate his assumptions
using the data from different sources. Also, it is very difficult for the annotator
to find relations between a genes because every gene is looked at separately, and
this approach does not provide an sufficient overview of the genome and the
arrangement of the genes within.

24 3. State of the Art

3.1.2 Computer Aided Annotation Systems

The increasingly obvious drawbacks of manual genome annotation, and the grow-
ing number of available genomic sequences lead to the development of systems
to aid the human annotator. The main objective of these systems is to automate
most of the repetitive tasks, like the prediction of open reading frames (ORFs),
similarity and motive searches, and the prediction of additional evidence for cod-
ing, e.g. signal peptides and trans membrane helices. Further objectives were
the accessibility and cross-referencing of data, and the storage and retrieval of
results. Therefore most of the systems use a database engine as their back-end.
The use of a database engine makes it easy to query the database and to provide
relationships between the different types of data. Overall, such systems are sup-
posed to simplify the annotation process, make it easier to annotate in teams,
and make more information accessible and cross-referenced.

A tool for the prediction of gene functions benefits from a framework that
stores data, and offers an interface for the user to interact with. The major
advantages for function prediction tools are the coherent data model and the
automated tool pipeline. The discussion of the annotation systems presented in
the following paragraphs will be focused on the reason why it was developed,
the type and structure of the database used, the tool pipeline, and the front-end
offered.

GeneQuiz [45]: The GeneQuiz system was developed in 1994 by the Protein
Design Group at EMBL Heidelberg1. The development of GeneQuiz was driven
by the experiences gained during the annotation of 171 proteins of Saccharomyces
cerevisiae (chromosome III), and the arising need for high-throughput methods
in computational genome analysis. At that time no genome had been sequenced
completely. The first genome was finished in 1995[5]. The system is divided into
a back-end, used to store the data, and run automated tasks such as similarity
searches, and a front-end for user interactions.

The back-end is written in PERL and stores the data in a database engine
called RDB2. The database is designed to be independent of the analysis tools
used. To achieve this independence the results are saved to a common directory
before being parsed and written to the database. Additionally the back-end
automates some of the more repetitive tasks. These automated tasks include
the update of local databases used for similarity searches, the indexing of local
databases for faster information retrieval, and the search for similarities in these
databases. Another task the back-end performs, is the creation of database cross-
references if such references are part of the downloaded database itself. The
front-end is written in C++. It displays the data in tabular form, and allows

1European Molecular Biology Laboratory Heidelberg (http://www.embl-heidelberg.de)
2Documentation can be found at http://www.sander.ebi.ac.uk/RDB/RDB.html but the link

is inaccessible

3.1. Annotation Systems 25

the user to browse the alignments and scores of similarity searches, and the
documentation available in sequence and bibliographic databases. The front-end
provides a command-line interface to the database as well. This interface can be
used to write additional tools for further data processing.

The GeneQuiz system does not provide any tools for the prediction of gene
functions.

MAGPIE [46, 47]: MAGPIE is the abbreviation for Multipurpose Auto-
mated Genome Project Investigation Environment and it was developed by
Gaasterland and Sensen in 1996. By the end of 1996, four complete genomes
were available and it was anticipated that fifty more genomes would be com-
pleted within the next five years.

Although the dramatic increase in genome data was foreseeable at that time,
the MAGPIE system does not use a database engine to store data. According to
its developers, a database engine was not chosen because a static database format
has to be defined before data can be collected, and therefore the database engine
poses an overhead. Additionally, they argue that MAGPIE can be adapted to use
new analysis tools more quickly. The system is designed around two independent
daemons. The two daemons execute rules written in Prolog to preprocess the
data. MAGPIE is the only system that uses advanced reasoning to analyse the
data and that points out problems that may have occurred during the processing
steps. The first daemon is the data-collection daemon. It imports new sequences
placed in the input directory if necessary converts these sequences to the FASTA
format, and copies each formatted sequence to its appropriate “group” directory.
Gene prediction is done by taking the furthest upstream start codon for each
stop codon in each frame with a minimum length of 100 amino acids3. For each
predicted gene, analysis tools are run either locally or on remote servers. Remote
tools are started by HTTP requests sent to the server. The data-collection dae-
mon then waits for the results of the analysis before a new request is sent. This
process would be feasible if only a few predicted genes had to be analysed, but in
today’s genome projects thousands of predicted genes have to be analysed with
multiple tools. MAGPIE is the only system known to the author to use remote
tools in its analysis pipeline. The second daemon is the analysis-and-report dae-
mon. It analyses the tool results and generates ASCII and HTML reports. The
MAGPIE system features six different types of HTML reports. The similarity
report reports the results of the similarity search. The frame shift report is based
on the similarity search reports and analyses the neighbourhood of the predicted
gene to detect and report frame shifts within the gene prediction. The EcoVec
report gives information about Escherichia coli and cloning vector contamina-
tions. Repeat reports and RNA reports point out repeats and RNA regions in the
genome sequence respectively. The last report is the pathway report. This report

3for prokaryotic genome projects this is sufficient

26 3. State of the Art

colours an enzyme of a pathway if the enzyme was found in the genome. In addi-
tion to HTML reports, ASCII reports are generated for quick data research. To
help the biologist interpret the data, MAGPIEoffers a reasoning process based
on Prolog rules. Among other things these rules help to decide whether a region
is a coding region or not.

Pedant [48]: Pedant was developed in collaboration between the MIPS4, and
the Biomax Informatics AG5. The project was founded by the Federal Ministry
of Education and Research (BMBF) and was finished in 2000. Its main purpose
is to automate most of the tasks of a genome annotation project. Furthermore, it
is a database for curating previously annotated genomes. The Biomax Informat-
ics AG took over the development of Pedant and distributes it as Pedant-PRO
which is commercially available only. The company curates the Pedant Genome
database as well. Both the Pedant and Pedant-PRO systems can be installed
locally.

The Pedant system is divided into three major modules, the database module
to store, modify, and access data, the processing module to run analyses, and
the user interface to communicate with the system. The database module uses
a DBMS to store the data. The database itself is composed of two types of
tables. Primary tables are used to store raw sequence data as well as raw data
as it is produced by bioinformatics tools. The secondary tables store the data
in structured form as it is generated by the processing module. The difference
between the two forms is that the data in the secondary tables can be accessed
separately while the data in the primary tables can be accessed as one record
only. An example is the ORF prediction of Orpheus. The primary tables hold
all predicted ORFs in one record while the secondary tables store each ORF as
a separate record. Additionally the database model allows the user to specify
custom fields for each ORF. The processing interface runs the different analysis
tools automatically. It parses the results and creates cross-references between
different types of the data.

Two different types of user interfaces are provided by the Pedant system. The
web interface is used by the annotator to communicate with the system. It of-
fers the annotator access to contigs, ORFs, and their annotations. The user can
select subsets of ORFs by restricting the predicted function to certain functional
categories. Furthermore, the annotator can perform text searches in annotations
and BLAST searches against all sequences in the database. The DNA viewer
provides a graphical view of the genome. This viewer is used to navigate through
the genome. Additionally, the annotator can perform six-frame translations. For
each ORF, a hyper-linked protein report is generated. This report provides a

4Munich Information Center for Protein Sequences a group at the Max Planck Institute for
Biochemistry

5the Biomax Informatics AG is a spin off from the Max Planck Institute for Biochemistry

3.1. Annotation Systems 27

summary on general features of the protein, functional information, and struc-
tural assignments. The annotator can access further information about the ORF
such as the DNA / protein sequence and the raw results of a particular bioin-
formatics method. The second interface is the command line interface. It is
used to manage the processing module as well as accessing the data stored in the
database module.

As well as running standard tools such as Orpheus and BLAST, Pedant fea-
tures basic automatic prediction of gene functions by running similarity searches
against yeast functional categories. The automatic annotation is considered to
be a starting point for thorough human investigations. To facilitate this, the
group designed and implemented the MIPS-FunCat classification [49] which is
used supported by Pedant as well.

ERGO [50]: ERGO was developed by Integrated Genomics Inc. (IG) in
2002. The focus of the ERGO system is the integration of data from differ-
ent sources. Besides data from analysis tools, the system provides the annota-
tor with data from biochemistry, high-throughput expression profiling, genetics,
and peer-reviewed journals. ERGO is the first annotation system that utilises
the “comparative genomics” approach in the annotation process. Like Pedant
the ERGO system offers a comprehensive curated database of publicly available
genomes.

ERGO is a web-only application and does not support any other kind of
graphical interface. It uses the PostgreSQL DBMS as its back-end but does not
provide any kind of API. Furthermore ERGO is an annotation system only. This
means that the system does not provide any kind of automated tool pipeline for
the prediction of ORFs and subsequent similarity searches. IG uses a number
of proprietary scripts for predicting ORFs. The sequence similarity searches are
done by running all newly predicted ORFs against the non-redundant database
of ORFs already present in the ERGO Genome database using the FASTA algo-
rithm. The DNA sequence, the predicted ORFs, and the results of the similarity
searches are then imported to the ERGO system.

Once a genome is imported, all ORFs are annotated automatically. Again
IG uses a variety of proprietary algorithms for the annotation of ORFs. The
next step in annotation is the manual inspection and refinement of all ORFs.
In addition to using the information present in ERGO the annotator has access
to a variety of publicly available tools, among others BLAST, Pfam, PROSITE,
and COG. Each ORF can be analysed manually by using these tools and sub-
mitting on-line queries to the NCBI, Pfam, and COG websites. The difference
between the ERGO approach and other systems is that it does not focus on a
single ORF, but rather considers the genes neighbourhood, also known as gene
context (comparative genomics). The theory behind this approach is that if genes
share the same neighbourhood, the functions of the genes are most likely related.

28 3. State of the Art

The third step in the annotation process is the metabolic reconstruction of the
organism. In this step, all functional genes are mapped to metabolic pathway
using the IG-Pathdb database.

Like the annotation systems presented above, ERGO features a user interface
displaying the properties of a single ORF. Furthermore, it displays information
about biochemistry, expression profiling, and genetics. Unique to the ERGO sys-
tem6 is the visualisation of the gene neighbourhood and the putative function of
the gene cluster, to which the gene belongs. Gene clusters can be inspected using
the WorkBench tool, which provides an overview of gene clusters that are unique
to a genome or shared among other genomes in the ERGO Genome database.
Another concept of comparative genomics is the comparison of two or more whole
genomes. To visualise this comparison, ERGO offers the GenomeWalk tool. It
supports the annotator in finding group specific regions across different genomes.

The ERGO Genome database is a collection of annotated genomes. As of
October 21th, 2005, the database contains approximately 640 completed genomes
and approximately 250 unfinished draft genomes. You are required to register to
access the database. Ergo-Light7 is a public version of the database containing
at the moment nine genomes. The IG-Pathdb database is based on the EMP
database and contains more than 5,000 pathways most of which are metabolic.

A stand-alone version of the ERGO annotation system can be purchase.

GenDB version 1 [51, 52]: GenDB is being developed by the Center for
Genome Research8. It was initially published in 2003. Development continued
within the framework of the EU founded project Marine Genomics Europe. The
GenDB system is a genome annotation system comparable to the Pedant system.
It features an annotation tool, a pathway inspection tool, a tool to infer GO
mappings, and a tool to generate genome plots. The software was released under
the terms of a proprietary license giving non-commercial users free access to the
software and its source code. Since version 2.2 GenDB has been released under
the terms of the GNU general public license (GPL).

The design of GenDB is closely related to the design of the Pedant system. It
is divided into three modules, the analysis pipeline, the user interfaces, and at its
core a database engine. All tools and user interfaces are build around this core
using an abstraction layer called O2DBI - Object to Database Interface. O2DBI
is used to define the data model of an application in an UML-like description
language. It automatically creates the relational database model for supported
database engines as well as the APIs written in supported programming lan-
guages. At the moment, PERL is the only supported language. The analysis
pipeline uses the Sun grid engine (SGE) for the management and distribution of

6At the point it was released.
7reference: http://www.ergo-light.com
8Technische Fakultät and Department of Biology, Bielefeld University

3.1. Annotation Systems 29

jobs among nodes in a cluster environment. GenDB offers build-in support for
numerous publicly available sequence analysis tools and it can be easily extended
to use proprietary tools as well.

GenDB offers both a web-interface and a graphical user interface. Once a
project is opened using the GUI client the annotator is presented with a genome
browser giving an overview of the genome. It displays a list of all contigs the
annotator can select from within a project, the sequence of the selected contig and
its six reading frames, the predicted genes, and detailed information about the
selected gene. The visualisation of the sequence data is dynamic. Compared to
most of the other annotation systems introduced so far this offers the annotator an
easy and fast method to navigate within the genome. Furthermore the annotator
can switch to different views. These views include a pathway map, a genome
plot, and a GO inspection tool (GOPArc). From the genome browser the user has
access to further information about the selected gene or the whole genome. The
fact or observation viewer shows the results of a similarity search (observations).
These observations are ranked according to their reliability. The reliability is
assigned by GenDB , e.g. reliability assignments for BLAST observations are
based on the E-value. The region editor can be used to manipulate the start /
stop position of a predicted gene. It can be used to join, split, or delete predicted
genes. Also, search dialogs for basic information extraction tasks are provided.
These dialogs allow the annotator to search for gene products, gene names, EC
numbers, among other things. The web interface differs from the GUI client
mostly in the techniques it uses to display the data. Where the genome browser
uses scrollbars to zoom into and out of the contig and to navigate within the
complete contig, the web interface displays only a clipping of the contig as static
image. To view a different portion of the contig the web server has to render new
images and transfer these to the client.

TheSEED [53, 54]: The SEED was developed by an international collabora-
tion led by members of the Fellowship for Interpretation of Genomes (FIG) and
the Argonne National Laboratory. It is used in genome annotation in a com-
pletely different way than the annotation systems introduced so far. Rather than
focusing on the annotation of a single gene in a single genome, the SEED focuses
on the annotation of groups of genes which are functionally related (subsystems).
Also, the SEED allows the annotation of subsystems across several genomes at
the same time. The software is available as open source software released under
the terms of the GNU GPL.

The SEED is a web application based on a database engine and it offers an
API written in PERL and Python to access the data directly. The SEED can
be downloaded and installed locally. Local installations are self-contained and
provide a user management system to allow several annotators work on the same
or different projects. Additionally the SEED features a method of synchronis-

30 3. State of the Art

ing data from different installations using peer-to-peer techniques. This allows
different institutions to use the same data as a basis for their annotations, reduc-
ing the overhead of updating and maintaining local copies of publicly available
databases.

The SEED ’s main interface is the visualisation of subsystems. It displays a
subsystem based on the visualisation of metabolic pathways and the genes that
are members of the selected subsystem across several genomes. It shows the
annotation of each gene as well as its gene neighbourhood. This makes it easy to
find differences and inconsistencies within the annotation of the “same”9 gene in
different genomes. The annotator can update the annotation of a gene in one, all,
or a subset of genomes. This kind of annotation is known as vertical annotation
because the annotator annotates the “same‘ gene across several genomes which
are vertically aligned rather than annotating a continuous number of genes on the
same sequence strand (most commonly displayed horizontally). The system offers
a simple way to spot missing genes within a subsystem and to infer a function for
otherwise hypothetical genes. The SEED also features a database of synonyms.
This databases stores different descriptions, gene names and EC numbers for the
same gene in different genomes.

The initial release of the SEED contains about 180,000 different proteins in
2,133 distinct functional categories. It contains about 170 subsystems and about
380 genomes.

3.1.3 The GenDB database (v.2.0)

Since MicHanThi does not provide any tools for either gene prediction or simi-
larity searches it depends on an annotation system that offers these features. To
integrate MicHanThi into an annotation system, the annotation system has to
have an easy to use API in order to access the predicted genes as well as the results
of the similarity searches. Of the annotation systems presented in the previous
section, only Pedant and GenDB offer both a tool pipeline and an API to query
the database easily. No information about an API was found for the GeneQuiz
system. Also, the hyper-link referring to the documentation of the used database
engine is broken or out of date. The MAGPIE system has two serious drawbacks.
The first drawback is the use of a flat file-based database. While this might be
suitable for read-only access, it is a performance bottleneck for updating, delet-
ing, and modifying data in the database. The second and more serious drawback
is that it depends on on-line tools to run the similarity searches. ERGO and the
SEED do not provide a tool pipeline. Furthermore, the focus of the two systems
is the comparisons of two or more genomes, rather than the annotation of every
single gene in one genome. Pedant and GenDB are very similar in design and

9same in this case means that several genes in different genomes are functional equivalent,
e.g. they are orthologous

3.1. Annotation Systems 31

implementation. The systems use MySQL as their primary database engine, but
encapsulate it so they are somewhat independent. Both systems are implemented
in PERL, and are separated into a front- and back-end. The major differences
between these two systems are the design and functionality of the interface as
well as the licensing terms. The Microbial Genomics Group at the MPI in
Bremen has worked with both systems. Initially the Pedant system was used,
but it was replaced by GenDB later because GenDB was available under a less
restrictive license, allowing the modification of the source code and it provided
the interface with the better functionality. The following paragraph will focus
on the implementation of the GenDB system with focus on the design of the
database.

As mentioned earlier GenDB uses O2DBI to create its database schema as well
as its data model. Since O2DBI is an object-oriented modelling tool, the database
schema created is somewhat object-oriented as well. O2DBI uses four different
types of tables to implement object-orientation within a relational database en-
gine. Root tables are tables storing the most generic information about a group
of tables. Each of these tables are associated with a unique identifier (id) and
a class type (obj class). Each root table may have one or more subtables repre-
senting subclasses in a object-oriented programming language. These subtables
store more specific information about the class they represent and are linked to
their root table via the parent id field. This field points to the id field of the root
table and therefore it is the unique identifier of the subtable as well. All subtables
could be parents of even more specialised subtables. These tables are linked via
the parent id field, as well. Related tables share a common name. For exam-
ple, the Observation Function Blast table is a subtable of Observation Function
which in turn is a subtable of Observation. The third type of table stores infor-
mation contained in an array or list. These tables contain the value of an array
item, the index of the item within the array, a reference to the specific record in
the table to which the array belongs, and a unique identifier (id). The name of
the array table is the same as the name of the table it belongs to with the array
name appended to it in lowercase. Each of the tables mentioned so far have an
equivalent class to access it in the API. The last type of table used is the helper
table that can not be accessed by the user. These tables are used to control the
internal state of the database only. The GENDB DB counters table is an example
of a helper table used to store the next available unique identifier for every root
table and for every array table. The other helper table GENDB DB unique ids
stores unique identifier of other tables.

GenDB has ten root classes. The most important root classes for an automatic
annotation tool are the Annotation, Observation, and Region classes. These
classes, as well as their subclasses and relations, are depicted in figure 3.1 on
page 34. The other seven root classes are the Annotator, AssemblyInfo, FunCat,
Job, Sequence, Tool, and TrainingSeq classes.

32 3. State of the Art

Sequence: An instance of the Sequence class holds the complete genomic se-
quence of an annotation project. If the project has several contigs the
genomic sequence of each of the contigs is stored in its own instance of the
Sequence class.

Region: The Region class describes a subregion of the genomic sequence. Each
contig is associated with a Region object describing the whole sequence.
Gene finders and other tools analysing the genomic sequence, add further
subregions describing genes, tRNAs and rRNAs, and non-coding RNAs.
Each type of genomic sequence has it own subclass that contains the infor-
mation unique to the type of sequence.

Observation: Observations are the results of tools analysing the (sub)regions
of the genomic sequence. Two different types of Observations are derived
from the main Observation class, the Observation Region and the Obser-
vation Function classes. Observation Region and its subclasses store the
results of the tools defining subregions while Observation Function and its
subclasses store the results of the tools analysing the subregions found.
Each tool has its own subclass describing the special features of a tool.

Annotation: The information stored in the Annotation classes is an interpre-
tation of the information within the Observation classes. Two different
types of annotations are know to GenDB . First, annotations describing
(sub)regions based on structural observations and second annotations de-
rived from functional observations. Functional annotations are further di-
vided into annotations describing the function of a gene and annotations
describing tRNAs. Each Annotation object (regardless of its subtype) has
a list of associated observations it was derived from, as well as a list of ex-
ternal information sources used to define the role of the (sub)region. Each
functional annotation may be associated to a list of GO numbers.

Annotator: Each Annotation object is created by an annotator. The informa-
tion about the annotator is stored in this group of classes. GenDB dis-
tinguishes between two basic types of annotators, human annotators and
machine annotators. All tools supported by GenDB that create annotations
have their own subclass of Annotator Machine to store specific information
about the tool. Also, the subclasses define whether or not the tool may
update the latest annotation function or latest annotation region pointers
of the Region class.

AssemblyInfo: The AssemblyInfo class contains information about the assem-
bly method used to assemble the fragments generated by the sequencing
process. An instance of this class exists only if information about the as-
sembly process was provided by the user.

3.2. Automatic Annotation 33

FunCat: The FunCat class contains only a unique identifier and an object class
field and therefore seems to be unused at the moment.

Job: Whenever a tool is run to define or to analyse a specific (sub)region an
instance of the Job class is created. The Job class controls how the tool
is run by the grid engine and if the tool has any dependencies. The Job
class can be used to automatically run further tools if the tool the Job
was created for has finished. GenDB differentiates between two tool types:
mandatory tools which must be run for each Region instance and optional
tools. How and when optional tools are run is not documented.

Tool: The Tool classes describe the tools used by GenDB . Every tool must have
its own subclass of either Tool Function or Tool Region. Special parameters
for each tool can be set using this class. Some tools, i.e. InterProScan,
SignalP and others, have a subclass in the data model but do not have
their own subtables in the database schema. The reason for this could be
that all parameters used by these tools are hard-coded and therefore no
subtable is created by O2DBI. Again there is no documentation available.

TrainingSeq: Glimmer needs a set of training genes to adjust to the genomic se-
quence being analysed. These sequences are represented by the TrainingSeq
classes. Internal sequences are subsequences from within the project while
external sequences are not related to the project.

3.2 Automatic Annotation

3.2.1 Strategies for the Prediction of Gene Functions

Best matching Tool Result: The data set is analysed using one tool only.
The annotation is then created from the “best” matching tool result. The def-
inition of “best” depends on the features of the tool used. For BLAST this
is normally the result with the smallest E-value. The approach is problematic
because the functional assignment is only based on one observation only. For
example if this observation describes an hypothetical protein because at the time
that protein was annotated no other information was available, then the query
sequence would be annotated as hypothetical protein as well. Another problem is
that the quality of annotations differs among annotations projects. If the best ob-
servation in the list is badly annotated then incorrect information is transferred.
However, this approach as the advantage of considering ‘new’ information. If a
‘new’ function was discovered in a genome annotation project it is likely that this
function is under represented in a list of observations. Therefore, reasoning pro-
cesses which consider the frequency of the occurrence of a functional description
in a set of observations may not find the “correct” description.

34 3. State of the Art

O
b

F
u

n
c
_
S

ig
n

a
lP

#
h
m
m
_
m
a
x
_
c
l
e
a
v
a
g
e
_
s
i
t
e
_
p
r
o
b

:

d
o
u
b
l
e

#
h
m
m
_
s
i
g
p
e
p
_
p
r
o
b

:

d
o
u
b
l
e

#
h
m
m
_
c
l
e
a
v
a
g
e
_
s
i
t
e

:

i
n
t

#
n
n
_
c
l
e
a
v
a
g
e
_
s
i
t
e

:

i
n
t

R
e
g

io
n

#
a
s
s
o
c
i
a
t
e
d
_
r
e
g
i
o
n
_
i
d

:

i
n
t

[
1
]

#
p
a
r
e
n
t
_
r
e
g
i
o
n
_
i
d

:

i
n
t

[
1
]

#
s
t
a
t
u
s
_
f
u
n
c
t
i
o
n

:

i
n
t

#
_
o
b
j
_
c
l
a
s
s

:

S
t
r
i
n
g

#
s
t
a
t
u
s
_
r
e
g
i
o
n

:

i
n
t

#
n
a
m
e

:

S
t
r
i
n
g

#
s
t
a
r
t

:

i
n
t

#
s
t
o
p

:

i
n
t

A
n

n
o

ta
to

r

#
u
p
d
a
t
e
_
l
a
t
e
s
t
_
a
n
n
o
t
a
t
i
o
n

:

i
n
t

#
_
o
b
j
_
c
l
a
s
s

:

S
t
r
i
n
g

#
n
a
m
e

:

S
t
r
i
n
g

S
e
q

u
e
n

c
e

#
d
e
s
c
r
i
p
t
i
o
n

:

S
t
r
i
n
g

#
_
o
b
j
_
c
l
a
s
s

:

S
t
r
i
n
g

#
r
n
e
i
g
h
b
o
r
_
i
d

:

i
n
t

#
s
e
q
u
e
n
c
e

:

S
t
r
i
n
g

#
l
n
e
i
g
h
b
o
r
_
i
d

:

i
n
t

#
n
a
m
e

:

S
t
r
i
n
g

#
e
m
a
i
l

:

S
t
r
i
n
g

#
r
o
v
e
r
l
a
p

:

i
n
t

#
l
o
v
e
r
l
a
p

:

i
n
t

#
l
e
n
g
t
h
_

:

i
n
t

#
u
r
l

:

S
t
r
i
n
g

O
b

F
u

n
c
_
H

M
M

P
fa

m

#
m
o
d
e
l
_
n
a
m
e

:

S
t
r
i
n
g

#
m
o
d
e
l
_
a
c
c

:

S
t
r
i
n
g

#
d
o
m
a
i
n
_
s
t
a
r
t

:

i
n
t

#
d
o
m
a
i
n
_
s
t
o
p

:

i
n
t

#
e
v
a
l
u
e

:

d
o
u
b
l
e

#
s
c
o
r
e

:

i
n
t

O
b

F
u

n
c
_
B

L
A

S
T

#
d
b
_
r
e
f
e
r
e
n
c
e

:

S
t
r
i
n
g

#
e
_
v
a
l
u
e

:

d
o
u
b
l
e

#
d
b
_
l
e
n
g
t
h

:

i
n
t

#
d
b
_
f
r
o
m

:

i
n
t

#
i
d
e
n
t
i
t
y

:

i
n
t

#
d
b
_
t
o

:

i
n
t

#
s
c
o
r
e

:

i
n
t

O
b

F
u

n
c
_
C

o
B

ia
s

#
a
v
e
r
a
g
e
_
s
c
o
r
e

:

d
o
u
b
l
e

#
p
r
o
b
a
b
i
l
i
t
y

:

S
t
r
i
n
g

#
S
c
o
r
e

:

d
o
u
b
l
e

O
b

F
u

n
c
_
T

M
H

M
M

#
e
x
p
_
a
a
_
n
u
m

:

d
o
u
b
l
e

#
e
x
p
_
a
a
_
f
6
0

:

d
o
u
b
l
e

O
b

s
e
rv

a
ti

o
n

#
d
e
s
c
r
i
p
t
i
o
n

:

S
t
r
i
n
g

#
_
o
b
j
_
c
l
a
s
s

:

S
t
r
i
n
g

#
t
o
o
l
_
i
d

:

i
n
t

#
s
t
a
r
t

:

i
n
t

#
s
t
o
p

:

i
n
t

O
b

R
e
g

io
n

#
c
o
m
m
e
n
t
_

:

S
t
r
i
n
g

#
r
e
s
u
l
t

:

S
t
r
i
n
g

O
b

F
u

n
c
_
In

te
rP

ro

#
i
n
t
e
r
p
r
o
_
t
o
o
l

:

S
t
r
i
n
g

#
a
c
c
_
n
u
m
b
e
r

:

S
t
r
i
n
g

#
i
p
r
_
n
u
m
b
e
r

:

S
t
r
i
n
g

#
i
n
t
e
r
p
r
o
_
i
d

:

S
t
r
i
n
g

#
t
o
o
l
_
r
e
s
u
l
t

:

S
t
r
i
n
g

O
b

F
u

n
c
_
H

T
H

#
s
t
d
_
d
e
v
i
a
t
i
o
n

:

d
o
u
b
l
e

#
s
c
o
r
e

:

d
o
u
b
l
e

O
b

F
u

n
c
_
P

F
S

c
a
n

#
a
c
c
_
n
u
m
b
e
r

:

S
t
r
i
n
g

#
r
a
w
_
s
c
o
r
e

:

S
t
r
i
n
g

#
e
n
t
r
y
_
i
d

:

S
t
r
i
n
g

#
s
c
o
r
e

:

S
t
r
i
n
g

G
E

N
D

B
_
D

B
_
c
o

u
n

te
rs

#
o
b
j
e
c
t

:

S
t
r
i
n
g

#
n
e
x
t
_
i
d

:

i
n
t

A
n

n
M

a
c
h

T
M

H
M

M

#
m
i
n
_
e
x
p
_
a
a
_
n
u
m

:

d
o
u
b
l
e

#
m
a
x
_
e
x
p
_
a
a
_
f
6
0

:

d
o
u
b
l
e

A
n

n
M

a
c
h

C
o

B
ia

s

#
t
h
r
e
s
h
o
l
d

:

S
t
r
i
n
g

#
p
r
o
p
e
r
t
y

:

S
t
r
i
n
g

A
n

n
_
M

a
c
h

M
ic

H
a
n

T
h

i

A
n

n
o

ta
to

r_
H

u
m

a
n

#
f
u
l
l
_
n
a
m
e

:

S
t
r
i
n
g

#
e
m
a
i
l

:

S
t
r
i
n
g

A
n

n
M

a
c
h

B
la

s
t

#
t
h
r
e
s
h
o
l
d

:

S
t
r
i
n
g

#
r
e
g
_
e
x
p
r

:

S
t
r
i
n
g

A
n

n
M

a
c
h

H
T

H

#
t
h
r
e
s
h
o
l
d

:

S
t
r
i
n
g

A
n

n
M

a
c
h

S
ig

n
a
lP

#
t
h
r
e
s
h
o
l
d

:

S
t
r
i
n
g

A
n

n
o

ta
to

r_
M

a
c
h

in
e

#
a
n
n
o
t
a
t
i
o
n
_
s
t
a
t
e

:

i
n
t

#
d
e
s
c
r
i
p
t
i
o
n

:

S
t
r
i
n
g

G
E

N
D

B
_
D

B
_
u

n
iq

u
e
_
id

s

#
_
u
n
i
q
u
e
_
i
d

:

i
n
t

#
_
c
l
a
s
s

:

S
t
r
i
n
g

#
_
o
b
j
_
i
d

:

i
n
t

O
b

R
e
g

_
F

e
a
tu

re

O
b

R
e
g

_
G

li
m

m
e
r

#
p
r
o
b
a
b
i
l
i
t
y

:

i
n
t

O
b

R
e
g

_
tR

N
A

#
a
n
t
i
c
o
d
o
n

:

S
t
r
i
n
g

O
b

R
e
g

_
R

B
S

R
e
g

S
ig

n
a
lP

ro
m

o
te

r

#
t
r
a
n
s
c
r
i
p
t
i
o
n
_
s
t
a
r
t

:

i
n
t

#
o
f
f
s
e
t

:

i
n
t

R
e
g

P
C

R
P

ro
d

u
c
t

#
r
i
g
h
t
_
p
r
i
m
e
r

:

S
t
r
i
n
g

#
l
e
f
t
_
p
r
i
m
e
r

:

S
t
r
i
n
g

R
e
g

C
D

S

#
m
o
l
w
e
i
g
h
t

:

d
o
u
b
l
e

#
i
e
p

:

d
o
u
b
l
e

R
e
g

S
rc

T
C

R
e
g

S
o

u
rc

e

#
t
a
x
o
n
o
m
y

:

S
t
r
i
n
g

#
o
r
g
a
n
i
s
m

:

S
t
r
i
n
g

#
t
i
s
s
u
e

:

S
t
r
i
n
g

R
e
g

S
rc

C
o

n
ti

g

R
e
g

S
rc

C
o

n
ti

g
_
a
s
s
In

fo

#
_
a
r
r
a
y
_
v
a
l
u
e

:

i
n
t

#
_
i
n
d
e
x
_
n
o

:

i
n
t

R
e
g

S
rc

T
C

_
a
s
s
In

fo

#
h
a
s
h
V
a
l
u
e

:

S
t
r
i
n
g

#
h
a
s
h
K
e
y

:

S
t
r
i
n
g

R
e
g

A
lt

e
rn

a
ti

v
e
N

a
m

e
s

#
_
a
r
r
a
y
_
v
a
l
u
e

:

S
t
r
i
n
g

#
_
i
n
d
e
x
_
n
o

:

i
n
t

A
n

n
o

ta
ti

o
n

#
d
e
s
c
r
i
p
t
i
o
n

:

S
t
r
i
n
g

#
c
o
m
m
e
n
t
_

:

S
t
r
i
n
g

#
_
o
b
j
_
c
l
a
s
s

:

S
t
r
i
n
g

#
d
a
t
e
_

:

i
n
t

O
b

F
u

n
c
_
In

te
rP

ro
G

O

#
i
n
d
e
x

:

i
n
t

#
v
a
l
u
e

:

i
n
t

A
n

n
R

e
g

io
n

#
s
t
a
r
t

:

i
n
t

#
s
t
o
p

:

i
n
t

A
n

n
F

u
n

c
C

D
S

#
E
C
_
N
u
m
b
e
r

:

S
t
r
i
n
g

#
g
e
n
p
r
o
d
u
c
t

:

S
t
r
i
n
g

A
n

n
F

u
n

c
T

R
N

A

#
a
n
t
i
c
o
d
o
n

:

S
t
r
i
n
g

A
n

n
F

u
n

c
ti

o
n

#
n
a
m
e

:

S
t
r
i
n
g

A
n

n
_
o

b
s
e
rv

a
ti

o
n

s

#
_
a
r
r
a
y
_
v
a
l
u
e

:

i
n
t

#
_
i
n
d
e
x
_
n
o

:

i
n
t

A
n

n
F

u
n

c
_
g

o
_
n

u
m

b
e
rs

#
_
a
r
r
a
y
_
v
a
l
u
e

:

i
n
t

#
_
i
n
d
e
x
_
n
o

:

i
n
t

A
n

n
_
li
n

k
s

#
_
a
r
r
a
y
_
v
a
l
u
e

:

i
n
t

#
_
i
n
d
e
x
_
n
o

:

i
n
t

G
E
N
D
B
_
D
B
_
c
o
u
n
t
e
r
s
:

-

m
a
n
a
g
e
s

o
b
j
e
c
t

_
i
d
s

-

n
o
t

a
l
l

s
q
l

d
a
t
a
b
a
s
e
s

h
a
v
e

t
h
e

M
y
S
Q
L

a
u
t
o
i
n
c
r
e
a
m
e
n
t

f
e
a
t
u
r
e

-
>

i
t
’
s

n
e
s
s
a
c
a
r
y

t
o

d
o

i
t

b
y

h
a
n
d

G
E
N
D
B
_
D
B
_
u
n
i
q
u
e
_
i
d
s
:

-

s
t
o
r
e
s

a
n

u
n
i
q
u
e

i
d

h
a
s
h

f
o
r

e
v
e
r
y

R
e
g
i
o
n

o
b
j
e
c
t

(
w
h
y
?
?
?
)

S
u
b
c
l
a
s
s
i
n
g
:

-

s
u
b
c
l
a
s
s
e
s

a
r
e

l
i
n
k
e
d

t
o

t
h
e
i
r

s
u
p
e
r
c
l
a
s
s
e
s

t
h
r
o
u
g
h

_
p
a
r
e
n
t
_
i
d
,

-

s
u
b
c
l
a
s
s
e
s

d
o
n
’
t

h
a
v
e

a
n

_
i
d

o
f

t
h
e
i
r

o
w
n

A
r
r
a
y
s
:

-

a
r
r
a
y

e
l
e
m
e
n
t
s

a
r
e

a
s
s
o
c
i
a
t
e
d

t
o

’
a
r
r
a
y
’

b
y

_
p
a
r
e
n
t
_
i
d

-

a
r
r
a
y

e
l
e
m
e
n
t
s

h
a
v
e

t
h
e
i
r

o
w
n

_
i
d

f
i
e
l
d

(
i
n

c
o
n
t
r
a
r
y

t
o

s
u
b
c
l
a
s
s
e
s
)

a
)

b
)

d
)

c
)

-
_
i
d

*

-
o
b
s
e
r
v
a
t
i
o
n
_
i
d

1

-
_
i
d

*

-
o
b
s
e
r
v
a
t
i
o
n
_
i
d

1

-
r
e
g
i
o
n
_
i
d

1

-
_
i
d *

-
_
i
d

1

-
l
a
t
e
s
t
_
a
n
n
o
t
a
t
i
o
n
_
r
e
g
i
o
n
_
i
d 1

-
_
i
d

1

-
l
a
t
e
s
t
_
a
n
n
o
t
a
t
i
o
n
_
f
u
n
c
t
i
o
n
_
i
d

1

-
_
i
d

*

-
r
e
g
i
o
n
_
i
d

1

-
a
n
n
o
t
a
t
o
r
_
i
d

1

1
**

1

-
_
p
a
r
e
n
t
_
i
d

1
*

-
_
i
d

-
r
e
a
l
_
s
e
q
u
e
n
c
e
_
i
d

1

-
_
p
a
r
e
n
t
_
i
d

1

-
_
i
d

*

*
-
_
i
d

-
_
p
a
r
e
n
t
_
i
d

1

-
_
p
a
r
e
n
t
_
i
d

1

-
_
i
d

*

*
1

Figure 3.1: Subset of tables of the GenDB v.2.0 database model used by
MicHanThi. a) Tables storing the results of a similarity search b) Tables hold-
ing information about the genome (the sequence and all predicted ORFs, tRNAs,
rRNAs,. . .) c) Tables used for the annotation information d) Tables for different
types of annotators (human / computer))

3.2. Automatic Annotation 35

Ranked Best matching Tool Result: A generalisation of the Best match-
ing Tool Result approach is to use different tools. Different tools are either
tools that implement different algorithms like BLAST or HMMer, or tools that
are run against different databases e.g. BLAST vs. NCBI nr, or BLAST vs.
SWISS-PROT. The different tools are ranked according to their reliability based
on the quality of the algorithm used or the quality of the database. The “best”
matching results of the different tools are compared and ranked based on their
reliability. The winning result is then used for the annotation of the gene. Basi-
cally, the same problems as well as advantages which apply to the Best matching
Tool Result approach apply also to this approach.

3.2.2 Tools for the Prediction of Gene Functions

Every larger institute has its own annotation pipeline including a tool for the
prediction of gene functions. Most of these tools are proprietary and no informa-
tion is publicly available. Most of the tools presented were published after the
design of the diploma thesis was finished or the implementation of MicHanThi
was close to be finished.

AutoFACT [4] AutoFACT is the abbreviation for An Automatic Functional
Annotation and Classification Tool and the tool was developed in cooperation
by different universities in Canada. It uses multi FASTA files as input and runs
BLAST against several databases for each sequence contained in the file. Before
an analysis is started, the tool asks the annotator for some configuration options.
Among these options are: the databases supposed to be used, the database im-
portance, and the bit score used as a threshold for the reliability of an obser-
vation. Each sequence is assigned to one of the following annotation categories:
ribosomal RNA (rRNA), [functionally annotated] proteins, unassigned protein,
[domain name] containing protein, unknown EST (when using EST data), or un-
classified. The assignment to one the categories is based on a hierarchical system.
First AutoFACT checks if the sequence is a rRNA by running BLAST against a
rRNA database. The sequence is assigned to this category if it has a minimum
length of 50bp and a similarity of at least 74%. If the sequence does not match
any sequence in this database it is searched against the remaining databases. All
BLAST observations are filtered according to the uninformative rule as described
in [55]. This rule says that every BLAST observation, which does not describe a
valid function, should be filtered based on regular expressions and lists of known
words. Additionally, observations with a bit score less then the threshold (default
is 40) are filtered. The tool then selects the n best observations and searches for
common terms among the description lines. To transfer information from the
observations to the annotation, the tool searches these in the observations of the
different databases according to the importance of the database given by the user.

36 3. State of the Art

AutoFACT uses the Pfam or SMART databases if no common BLAST observa-
tions were found or if the observation found do not use the same terms to describe
the function of the sequence. If the sequence contains a domain it annotates the
sequence as [domain name] containing protein or multi-domain-containing pro-
tein in case the sequence contains more than one domain. If no similarities could
be found at all, the sequence is assigned to the unassigned protein category. For
protein coding sequences the last step in the annotation process is the classifica-
tion of the potential gene according to COG, as well as the assignment of EC and
GO numbers, and assignment of a locus tag. The assignment of this information
is based on common terms, found in the description lines of different types of ob-
servations. EST sequences are checked against the NCBI est others database and
annotated as unknown EST if a significant similarity was found. Otherwise the
sequence remains unclassified. The annotation process is depicted in figure 3.2 on
page 37. The results are presented as HTML files, Gif images, and tab delimited
text files. A log file is also generated, documenting all decision-making steps in
the annotation process.

The tool is available for download at:
http://megasun.bch.umontreal.ca/Software/AutoFACT.htm.

BASys[56] BASys is a fully automated genome annotation pipeline, accessible
via a web server. It is developed by the departments of Biological Sciences and
Computing Science at the University of Alberta Edmonton. BASys allows the
user to upload a genome sequence and an optional list of ORFs. If the list of genes
was omitted it runs Glimmer to predict the ORFs itself. It analyses the genome
and provides the user with different reports, which summarise the results of the
analysis. The whole annotation process is automated and no user intervention
is possible. BASys uses approximately thirty different tools to predict up to
sixty annotation fields. Among these fields are: the function, the gene / protein
name, COG function, GO function, possible paralogous and orthologous, operon
structure, trans membrane regions, signal peptide, secondary structure, and 3D
structure. Similarity searches are run against the UniProt, COG, PDB, and
CCDB database, as well as a custom database of model organisms such as the
Caenorhabditis elegans, Homo sapiens, Saccharomyces cerevisiae, and Drosophila
melanogaster. Among the tools used to analyse the genomic sequence are BLAST,
Pfam, PROSITE, Homodeller to generate a homology model if the similarity to
a sequence in the PDB database exceeds a certain threshold, and VADAR for
structural analysis. The annotation engine uses different threshold for each tool.
If the similarity score between a query sequence and a database sequence exceeds
the defined threshold the observation is used to fill in one or more annotation
fields. For example the threshold for functional annotations has an E-value of
1e−10 or less. For the prediction of trans membrane regions a “perfect” match is
needed to annotate the ORF as membrane protein. The interpretation of the term

3.2. Automatic Annotation 37

Figure 3.2: AutoFACT methodology. Sequences are classified into one of six
annotation categories (purple boxes). The user decides which bit score cutoff to
use (default 40) before a BLAST hit is considered significant. Figure taken from
[4]

“perfect” is not explained within the paper. Information provided by different
tools is transferred transitively. The use of the term transitively is not explained
as well.

The tool is available for download at:
http://wishart.biology.ualberta.ca/basys.

HERON HERON was developed by Gopal and Gaasterland. The tool uses
BLAST as its only source of information. BLAST observations are ranked not
only by the features of the BLAST tool, but also according by the “meaningful-
ness” of the observation’s description line. A description lines is meaningful if it
contains “meaningful” words. Meaningful words are words that can be found in
the GO database. For each word, contained in the GO database, the observa-
tions gets a point. Additional points are “scored” for good E-values. The “best”
BLAST observation is then take as the basis for the annotation.

This paragraph is based on a word document found at the website of Gopal

38 3. State of the Art

and an email communication with the author.

HMAP HMAP - High-quality Automated and Manual Annotation of micro-
bial Proteomes - is a tool for the prediction of gene functions and it is a program
for the annotation of genes. The program as well as the development of the
HMAP tool is funded by SWISS-PROT. The HMAP team consist mainly of bi-
ologist annotating genes by hand, to accommodate the high quality standards of
the SWISS-PROT database. Each annotator is specialised in a specific biochem-
ical function, only annotating those genes that are involved in that particular
function. Annotations created by the annotators are based on different analysis
tools as well as thorough literature search. Before an annotator is allowed to enter
new annotations into the SWISS-PROT database she has to go through a two year
training period where all annotation are cross-checked by two experienced anno-
tators. A computer scientist is developing the HMAP tool to support the human
annotators. This tool uses a database of protein families called HMAP -families
as its only source of functional evidence, to satisfy the high quality standards
of the SWISS-PROT database. The HMAP -families are defined by the human
annotators describing a group of proteins involved in the same function. Each
family has a template containing most of the annotation fields, as well as the
domain structure of a protein and necessary amino acids. The HMAP -tool uses
these templates to create the annotations. It checks the template for required
domains and if a domain or amino acid is missing, the annotation will be marked
and the human annotator has to verify the annotation, before it is allowed to en-
ter the database. An example would be an ORF describing a potential histidine
kinase but is missing a histidine amino acid.

The information presented in this paragraph are the results of a meeting with
the HMAP team at SWISS-PROT - Geneva.

Metanor The Metanor tool is part of the GenDB -2.2 distribution. It is based
on the Ranked Best matching Tool Result approach and uses the tools,
InterProScan against InterPro, BLASTP against SWISS-PROT, and BLASTP
against NCBI nr. Metanor predicts the function of a gene based on InterPro
matches first. If a gene does not have any matches in the InterPro database
or the reliability of these matches is to low, BLASTP against SWISS-PROT is
used. If no reliable annotation could be derived from this tool as well, BLASTP
against NCBI nr is used. The gene is annotated as hypothetical protein if no
reliable annotation could be created at all.

This paragraph is based on information provided by Alexander Goesmann10.
Metanor is mentioned in [52] but isn’t published in a paper of its own.

10Chief of Project

3.2. Automatic Annotation 39

NCBI NCBI uses the Best matching Tool Result approach to automatically
annotate draft genomes sequenced by the Joint Genome Institute (JGI), which
are imported to the database. BLAST against the COG database is the only tool
used and the information of the observation with the smallest E-value is taken
to annotate the ORFs.

Chapter 4

MicHanThi

4.1 The Algorithm

The process of annotating a genome can be split into several parts. The first
part of this process is the prediction of ORFs with subsequent similarity searches
against public and custom databases. The second part is the prediction of func-
tions for each ORF using the observations obtained. The GenDB system provides
the initial observations and MicHanThi is used to predict gene functions. An
overview of the integration of MicHanThi into the annotation process is shown
in figure 4.1. MicHanThi is designed to analyse only one ORF at a time. Hence,

Genome Annotation Pipeline

sequence
similarity

BLAST HMMer TMhmm SignalP

motif
search

Comparison
Classes

ORF

Grouping /
Selection

gene product: asparagine synthase

gene name: asnB

EC number: 6.3.5.4

GO number: GO:0004066
GO:0006529

comment: reliability:
specificity:

750
1.0

MicHanThi

Sequence genome

Tools

Observations

Rating

Annotation

GenDB

Figure 4.1: Embedding of MicHanThi in an annotation system

a grid engine must be used to annotate an entire genome. The GenannD soft-

42 4. MicHanThi

ware was written for this purpose (4.3.3). Any other grid engine can be used, but
a wrapper script to start MicHanThi may need to be written for that particular
grid engine.

The algorithm developed as part of this thesis can be divided into three parts:
(i) the preprocessing of observations, (ii) the annotation process, and (iii) the post
processing of annotations. The preprocessing of observations is done in three
steps. The description of each observation is cleaned up, the observation is rated
based on the selected attributes of the tool which created the observation, and
finally a subset of observations is selected for the annotation process. The anno-
tation process creates annotations based on the selected observations. Different
approaches are used for each type of tool. After the annotations are created, each
annotation is checked, and if possible, annotations describing the same function
are merged. The algorithm which was developed for this thesis is presented in
pseudo code.

for each observation

preprocess(observation)

rate(observation)

select(observation)

create annotations

assign additional features

for each created annotation

check(annotation)

delete(annotation)

merge annotations

4.1.1 Preprocessing Observations

MicHanThi uses BLAST against the NCBI nr database as a source of functional
information about the ORF. As mentioned in 2.3 NCBI nr entries may contain
more than one entry (sub entry) and the NCBI nr description is a concatenation
of the description of the sub entries. Several processing steps are taken to “clean
up” description of NCBI nr observations: the source database is identified, the
multiple description is separated, and the separated descriptions are processed
based on their source. The following paragraphs discuss these processing steps
in detail. The grammar of a NCBI nr entry is explained using the extended
Backus-Naur form (EBNF). It is broken into pieces and discussed as needed to
better understand it.

S := ENTRYLIST
ENTRYLIST:= ENTRY | ENTRYLIST GI ENTRY

4.1. The Algorithm 43

ENTRY := DEF | PIR | PRF | SP

ECNUMBER := (‘EC ’)? D ‘.’ DL ‘.’ DL ‘.’ DL |
(‘EC ’)? D ‘.’ DL ‘.’ DL ‘.-’ |
(‘EC ’)? D ‘.’ DL ‘.-.-’ |
(‘EC ’)? D ‘.-.-.-’

DL := D | D DL
D := ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

FUNC := ‘functional description of the protein’
DBREF := ‘database identifier’
ORG := ‘name of the organism this protein can be found in’

Splitting of nr Entries: In the description of each NCBI nr entry, the de-
scriptions of different sub entries are separated by the GI number. Therefore, the
GI number is also used to split the descriptions. Each GI number is constructed
from the unique identifier of the NCBI nr database entry followed by an abbre-
viation of the source database and the identifier of the sub entry in the source
database. The term ‘gi’ is prefixed and the four fields are separated by the ‘|‘
character. GI numbers of the PIR and PRF databases are “broken” because the
source identifier is not terminated by the ‘|‘ character. Instead, it is placed in
front of the source identifier. This is handled by introducing two production rules
as alternatives for the GI rule (GIOK and GIBROKEN). Newer version of the
formatdb1 command format the GI numbers differently. These version omit the
‘gi|′ D + ‘|′ part of the identifier and write only SDB‘|′SID‘|′. In this case, the
production rules are modified accordingly. GI numbers can be described by the
following grammar. The non-terminal ’L’ represents all uppercase letters of the
Latin alphabet and for purposes of readability is not described by a production
rule:

need to replace all quantifiers by exact quantities.
GI := GIOK | GIBROKEN
GIOK:= ‘gi|’ D+ ‘|’ SDB ‘|’ SID ‘|’
GIBROKEN:=

‘gi|’ D+ (‘|pir||’ | ‘|prf||’) SREF
SID := L L ‘_’ D+ ‘.’ D |

L (L | D)+ |
L L L D+ ‘.’ D |
L (L | D)+ ‘.’ D |
D+

SDB := ‘dbj’ | ‘emb’ | ‘gb’ | ‘ref’ | ‘sp’

The first sub entry is selected as the primary entry and then its description
is further processed according to the source database. Other sub entries are

1formatdb is part of the NCBI tools package and is used to format databases used by BLAST

44 4. MicHanThi

discarded because all entries describe the same function. The description of
entries in the DDBJ, EMBL, GeneBank, PRF, and RefSeq databases, share a
common grammar. The function of the gene is followed by the organism name,
enclosed in brackets.

DEF := FUNC (‘[’ ORG ‘]’)?

The organism name is deleted from the description because it is not needed
for a functional description of the ORF, as are all non-word characters. Terms
composed of two hyphenated words are split because functional terms are ei-
ther spelled as one word, two words, or are hyphenated, as in the term glycosyl
transferase. Additionally, observations found in the nr database contain a large
amount of information which can not be used for the annotation of proteins.
Only “informative” terms, which describe the function of a gene, are used in the
annotation process. To increases the performance of the annotation process, “un-
informative” terms are deleted. Uninformative terms are checked against a list
of known words, as well as predefined regular expressions. Uninformative terms
can be adverbs, conjunctions, comparatives, prepositions, and ORF names. For
badly annotated genomes, it is common, that hypothetical proteins are assigned
the internal ORF names of an annotation project. The filtering of uninformative
terms is also done by [55].

If a SWISS-PROT or PIR database entry is found in the NCBI nr entry,
then it is taken as the primary key instead of the first sub entry. This is done
because the SWISS-PROT and PIR databases are of better quality, than the rest
of the databases integrated by NCBI nr. Entries found in these two databases
use auxiliary information to describe the function of a protein and are further
processed.

Preprocessing of PIR Entries: PIR descriptions contain an additional EC
number in parenthesis following the function of the protein. The EC number is
parsed, stored separately, and deleted from the description. An optional database
identifier could be present after the EC number. This identifier is not used and
therefore deleted. An organism name appended by the ‘-’ character is deleted.
The following grammar describes the syntax of a PIR description:

PIR := FUNC ECNUM DBREF? (‘-’ ORG)?
ECNUM:= ‘(’ ECNUMBER ‘)’

Preprocessing of SWISS-PROT Entries: The syntax of SWISS-PROT en-
tries is more complex. Four types of descriptions are distinguished: single func-
tion proteins, bi- and multi-functional proteins, cleaved proteins, and proteins
that form a different complex when cleaved. Single function proteins are proteins
known to have only one function. The functional description of the protein can

4.1. The Algorithm 45

be followed by a list of synonyms. A synonym can either use different wording or
use an EC number to describe the function of the protein. The explanations of
the second, third, and fourth type of entries, are taken from the SWISS-PROT
user manual2.

Cleaved proteins:
If a protein is known to be cleaved into multiple functional compo-
nents, the description starts with the name of the precursor protein,
followed by a section delimited by ’[Contains: ...]’. All the individual
components are listed in that section and are separated by semi-colons
(’;’). Synonyms are allowed at the level of the precursor and for each
individual component.

Bi- and multi-functional proteins:
If a protein is known to include multiple functional domains each of
which is described by a different name, the description starts with
the name of the overall protein, followed by a section delimited by
’[Includes:]’. All the domains are listed in that section and are
separated by semi-colons (’;’). Synonyms are allowed at the level of
the protein and for each individual domain.

In rare cases, the functional domains of an enzyme are cleaved, but
the catalytic activity can only be observed, when the individual chains
reorganise in a complex. Such proteins are described in the DE line
by a combination of both ’[Includes:...]’ and ’[Contains:...]

The list of synonyms in the description of single function proteins is stored for
later use. Synonyms present in the description are then deleted because they
would influence the annotation process. For cleaved proteins, the name of the
precursor protein is considered to be its functional description. Additional in-
formation present in the description is discarded. The same is done for bi- and
multi-functional proteins. The name of the overall protein is kept as its descrip-
tion and the rest of the information is deleted.

The following grammar summarises the syntax of a SWISS-PROT descrip-
tion. Bi-functional proteins are a specialisation of multi-functional proteins and
the description of bi-functional proteins has a different syntax then those of
multi-functional proteins. This is modelled by introducing the production rule
MULTI which distinguishes between bi- and multi-functional proteins. Accord-
ing to Tania Lima3, the description of bi-functional proteins should always start
with ‘Bifunctional protein’ followed by a gene name. This is specified as a dis-
tinct rule in the grammar but is not implemented by MicHanThi because not
all bi-functional proteins are described in the manner specified.

2http://au.expasy.org/sprot/userman.html#DE line
3Tania Lima is a member of the HMAP annotation project at SWISS-PROT

46 4. MicHanThi

SP := CLEAVED | MULTI | SINGLEFUNC | RARE

CLEAVED := PRECURSOR ‘ [Contains: ’ FUNCLIST ‘]’
PRECURSOR := ‘name of the precursor protein’ (‘(’ SYNONYM ‘)’)*
FUNCLIST := SINGLEFUNC (‘ ; ’ SINGLEFUNC)+
SINGLEFUNC:= SYNONYM (‘ (’ SYNONYM ‘)’)*
SYNONYM := FUNC | ECNUMBER

MULTI := MULTIFUNC | BIFUNC
MULTIFUNC := SINGLEFUNC ‘ [Includes: ’ FUNCLIST ‘]’

BIFUNC := SINGLE ‘ [Includes: ’ FUNCLIST ‘]’
SINGLE := BFUNC (‘ (’ SYNONYM ‘)’)*
BFUNC := ‘Bifunctional protein’ GENENAME
RARE := SINGLEFUNC

‘ [Includes: ’ FUNCLIST ‘]’
‘ [Contains: ’ FUNCLIST ‘]’

GENENAME := ‘the gene name of a protein’

4.1.2 Rating Observations

procedure rate(ob)

if ob is a BLAST observation

assign reliability based on FL(

ob,evalue(ob),covORF(ob),covDB(ob),ids(ob))

else if ob is an InterPro observation describing a Pfam family

assign reliability based on FL(ob, evalue(ob))

else if ob is an InterPro observation

assign reliability(ob) <- 0

else if ob is a SignalP observation

if hmmSignalP probability(ob) > .75

assign reliability(ob) <- 1000

else

assign reliability(ob) <- 0

end

else if ob is a TMHMM observation

if ob is a trans membrane helix prediction

assign reliability(ob) <- 1000

else

assign reliability(ob) <- 0

end

end

end

4.1. The Algorithm 47

It is not uncommon for BLAST to produce several hundred observations for each
ORF. To reduce the number of observations, each observation is assigned a re-
liability value and observations assigned a weak reliability value are deleted by
the selection process. The reliability value shows whether or not an annota-
tion,created from this observation can be trusted. Reliability values are assigned
based on selected attributes of the tool that created the observation. The at-
tributes used to rate an observation were selected based on a discussion with
the human annotators of the Microbial Genomics Group for each tool. For
BLAST observations, these attributes are: the E-value, the coverage of the query
sequence by the match found in the database, the coverage of the matching se-
quence by the query sequence, and the relative number of identical bases in the
sequence alignment. The E-value is used rather then the (Bit-) Score because the
best possible (Bit-) Score is the (Bit-) Score of an alignment of a query sequence
against itself. The longer the sequence the greater the score. Reasoning rules
using the (Bit-) Score would have to be modified for each sequence. A disad-
vantage of the E-value is, that it is dependent on the size of the database. A
sequence found in a smaller database will have a much better E-value because
the BLAST tool is less likely to find the query sequence. Since running BLAST
against database A and running BLAST against database B are considered two
different tools, size differences are no longer a problem. For each tool, the im-
portance of each attribute can be adjusted to ones needs. The coverage, as well
as the relative number of identical bases, are used to “weaken” the E-value. A
short coming of the E-value is that it does not accurately reflect the length of
the match between two sequences. A complete alignment could have a worse
E-value than a partial alignment because the partial alignment may have fewer
gaps and a higher number of identical bases. Four cases of alignments can be
distinguished: A) both sequences completely match, B) only subregions of the
two sequences match, C) a subregion of the query sequence matches the complete
sequence found in the database, and D) the complete query sequence, is matched
only by a subregion of the database sequence. These four cases are depicted in
figure 4.2 on page 48 In case A, a functional annotation could be derived from
the database sequence because concerning coverage it is a good match. The sub-
region matched in case B is most likely a domain conserved among the members
of a protein family. To derive a function from this type of alignment further
investigations have to be made. The domain structure of the protein family must
be analysed. If all domains mandatory for proteins of this family are found in the
query sequence, then it can be annotated as member. A query sequence missing
one or more domains can not be annotated as a protein of this family because it
could either be an unknown orthologous protein belonging to the same family, or
it may be a paralogous protein with a potentially different function. In this case,
the query sequence should be annotated as protein containing [domain names].
In the third and fourth cases, matches are found in sequences of different length.
The shorter of the two sequences could be a domain. If it is not a domain it could

48 4. MicHanThi

query sequence

database match

A

query sequence

database match

B

query sequence

database match

C

query sequence

database match

D

Figure 4.2: Four different cases of sequence alignments. The sequences depicted
are scale free.

indicate an incomplete ORF prediction due to e.g. a frameshift which means that
part of the shorter sequence is missing. The longer of the two sequences could
be a fusion of two or more genes if the shorter sequence is e.g. a domain. Again,
it could be an error in the gene prediction but in this case, two separate genes
were predicted as one. Caution should be taken,; if a function was to be derived
from this type of alignments. The relative number of identical bases is used to
reflect the quality of the alignment. An alignment with a good coverage in both
directions and a small number of identical bases, is not as good as an alignment
with a shorter coverage but a high number of identical bases.

The second tool used to predict a gene’s function is the InterProScan tool
run against the InterPro database. Of the information provided by InterProScan
only the E-value is used to assign a reliability value to an observation. Other
information reported by the tool is neglected because it does not describe quality
between the query and the matching sequence.

If no homologous could be found in the databases used, then observations
created by TMHMM and SignalP are considered. These tools search for “general”
features of a protein. From the TMHMM observations, only trans membrane helix
predictions are considered by MicHanThi. These observations are assigned a
reliability value of 1000 (reliable). Other observations reported by TMHMM
are assigned a reliability of 0 SignalP reports the probability of the ORF being
secreted. If this probability is greater than .75, then the ORF is considered to
be secreted and the observation is assigned a reliability value of 1000, else it is
assigned a reliability of 0. It is not necessary to use fuzzy logic to rate observations
predicted by TMHMM or SignalP, because these tools make simple “true / false”

4.1. The Algorithm 49

statements, either an observation is predicted or it is not.
The reasoning process for rating observations is based on Fuzzy Logic (FL).

FL was chosen to be able to deal with vagueness of the in-put data. The following
paragraph explains the concepts of FL and how it is used to represent the in-put
data.

Fuzzy Logic:

Logic, according to Webster’s dictionary, is the science of the nor-
mative formal principles of reasoning. In this sense, fuzzy logic is
concerned with the formal principles of approximate reasoning, with
precise reasoning viewed as a limiting case.

Lofti A. Zadeh [57]

The Problem: Real World Vagueness - Natural language abounds with
vague and imprecise concepts, such as “Jane is old” or “Jane is of average height”.
Such concepts are hard to translate to more precise language without loosing
semantic value. The statement “Jane is 56 years of age” does not explicitly
state that she is old. The statement “Jane’s height is 1.05 standard deviations
about the mean height for women of her age” is fraught with difficulties. Would
a woman of 1.1 standard deviations be tall, or would she still be of average
height? No one would oppose that discarding statements such as “Jane is old”
from natural language, would result in the loss of valuable information. Yet this
is what happens if natural language is translated into two-valued (or classic)
logic. While this may not be important for most programs, it is important for
“knowledge representation” in expert systems. Using classic logic for the rating
of observations would mean, that an E-value of 1e−16 is good, while an E-value
of 1e−15 would be uncertain4. Also an E-value of 1e−16 would be just as good as
an E-value of 1e−100.

Basic Concepts - The main concepts that discriminates fuzzy logic from
other types of logic is that it allows proportional membership. Classic logic allows
a proposition to be either true or false (x ∈ X or x /∈ X). In fuzzy logic, the
truth value of a proposition ranges over the fuzzy subsets in X and may be viewed
as an imprecise characterisation of the set. For example, if X is the set of all
E-values, then a truth value of “good” may be interpreted as the fuzzy subset
of E-values less than 1e15. Membership to a fuzzy set is indicated by a value
in the range [0.0, 1.0], with 0.0 representing no membership at all (or false) and
1.0 representing full membership (or true). A fuzzy set is characterised by the

4according the annotation guidelines defined by the Microbial Genomics Group for the
annotation of ‘Gramella forsetii’ KT0803

50 4. MicHanThi

membership function mA(X) which maps each element x ∈ X onto the real
interval [0.0, 1.0]. This process is called fuzzyfication.

Further concepts of fuzzy logic are: fuzzy predicates, fuzzy quantifiers, and
linguistic variables. A subset Y of X in classic logic can only be described by
crisp predicates. If X is the set of natural numbers, then Y may be the subset
of “even” natural numbers. In fuzzy logic, the set of natural numbers can be
described using fuzzy predicates like “small” and “much greater” as well as crisp
predicates. In addition to the two quantifiers “all” and “some” allowed in classic
logic, fuzzy logic adds quantifiers like “most,” “many,” and “few”. A linguistic
variable is a variable whose values are words instead of numerical values. For
example, an E-value is a linguistic variable and its values are “(very) good,”
“uncertain,” and “(very) bad”.

A is empty if its membership function mA(X) maps all elements of X onto
the value 0.0.

∀x ∈ X, mA(X) = 0.0 (4.1)

Two fuzzy sets A and B are equal if all elements of X, have the same degree of
membership in A and B.

∀x ∈ X, mA(X) = mB(X) (4.2)

The complement of A is defined by the inverse membership function mA(X)′

mA(x)′ = 1−mA(x). (4.3)

A is contained in B if all elements in X have a smaller or equal degree of mem-
bership in A then in B

∀x ∈ X, mA(x) ≤ mB(x) (4.4)

The union and intersection of two fuzzy sets are characterised by the minimum
and maximum functions.

∀x ∈ XMAX(mA(x), mB(x)) (4.5)

∀x ∈ XMIN(mA(x), mB(x)) (4.6)

The Difference between Fuzzy Logic and Probability - Both fuzzy
logic and probability operate over the same numeric range and at first glance
both have similar values: 0.0 representing false (or non-membership) and 1.0
representing true (or membership). The probabilistic approach yields the natural-
language statement, “There is an 80% chance that Jane is old,” while the fuzzy
terminology corresponds to “Jane’s degree of membership within the set of old
people is 0.80”. The first view supposes that Jane is either old or not and we
have an 80% chance of knowing. Fuzzy logic, on the other hand, supposes that
Jane is “more or less old”.

4.1. The Algorithm 51

Fuzzy Reasoning - Most expert systems, fuzzy or non-fuzzy are rule-
based. Fuzzy logic uses if . . . then . . . statements as rules which have the form:

Ri : if (X1 is Ai
1) and . . . (Xn is Ai

n)
then Y i

Ri is a ith rule in the rule set, Ai
j is a fuzzy set in Xi, Y i is the result of a rule

its conclusion. A rule as it is used by MicHanThi may look like:

R : if (evalue is good) and
(covORF is complete) and
(covDB is complete) and
(identities is many)
then (Observation is good)

The complete list of rules can be found in appendix A. Rules in fuzzy logic
are applied by calculating the confidence for each part of the proposition, which
is determined by the membership of Xj in Ai

j. The result of the rule is the
evaluation of the proposition. Fuzzy logic provides two simple operators for this
purpose, the union or the intersection of two sets. Fuzzy logic offers to define
custom operators to calculate the result of a rule as well. An example of a custom
operator is the weighted sum approach as mentioned in [57]. Then the conclusion
of a rule would then have the form:

Y i = ai
0 + ai

1X1 + . . . + ai
nXn

Modelling of BLAST attributes - The E-value (evalue), the ORF cov-
erage (covORF), the database coverage (covDB), and the number of identical
bases in an alignment, are the attributes of the BLAST tool used to rate an ob-
servation. Based on a discussion between the author and the annotators of the
Microbial Genomics Group the number of fuzzy sets for each attribute and
the membership function to map each element to its corresponding fuzzy sets
have been defined.

evalue Four fuzzy sets are distinguished for the E-value: unreliable, uncertain,
reliable, and very reliable. The range of good E-values has been further
discriminated because the range covers most of the E-values, starting at
about 1e−15 and less. According to the annotation guidelines set up by the
Microbial Genomics Group observations with an E-value of 1e−15 or
less are reliable and can be used to annotate a ORF. Observations with an
E-value in the range of 1e−3 to 1e−15 are uncertain and these observations
should be considered carefully, Observations with an E-value larger then
1e−3 are unreliable and no annotation should be derived from such obser-
vations. 1e−3 is the intersection of the unreliable and uncertain fuzzy sets
with a degree of membership of 0.5. The intersection of the uncertain and

52 4. MicHanThi

reliable fuzzy sets is at 1e−15. The discriminatory power of E-values is non-
linear. An E-value of 1e−100 is not fives times as good as an E-valueof 1e20

but an E-value of 1e−15 is more then five times as reliable as an E-value of
1e−3. Therefore the membership function of each fuzzy set is steep close to
the two thresholds mentioned before and increases more slowly the greater
the difference between the E-value and the threshold.

covORF/DB For the ORF as well as the database coverage three fuzzy sets
have been defined: none, partial, and complete. Alignments with 90% cov-
erage of the query and database sequences or above are considered to be
complete matches (mComplete(x) → 1.0). The threshold is set 90% to
accommodate wrongly predicted start positions of an ORF. If the align-
ment covers 30% of the sequences or less, then the observation should be
discarded (mNone(x) → 1.0). To indicate that two sequences match only
in a subregion, for example the query and the database sequence contain
the same domain, the fuzzy set partial was introduced. The membership
function of this set intersects with the membership functions of the sets
none and complete at about 49% (mNone/Partial(x) → 0.75) and 80%
(mPartial/Complete(x) → 0.85) respectively.

identities An alignment should have as many identical bases as possible. Other
then that no annotator of the Microbial Genomics Group could give
any reason why the membership functions should be modelled one way or
the other. Three fuzzy set were created: none, some, and many. According
to literature, a sequence alignment of two sequences should show at least
30% of identical bases. Therefore, their membership functions are defined
to favour as many identical bases as possible.

Figure 4.1.2 summarises the description of the fuzzy sets and their membership
functions.

Modelling of InterProScan attributes - The only attribute of the In-
terProScan tool used to rate an observation is the E-value. As for the BLAST
tool, three fuzzy sets are defined. The membership function of each of these
sets matches closely the membership functions of the according BLAST fuzzy
set. For a detailed explanation see the paragraph about the Modelling of BLAST
attributes. Figure 4.1.2 shows the fuzzy sets and membership functions used to
rate observations created by InterProScan.

4.1.3 Selecting Observations for the Annotation Process

All observations assigned a reliability of 0 are deleted. The selection of the
remaining observations is different for each tool used to create them. Observa-
tion predicted by SignalP or TMHMM are always kept. Only a subset of the

4.1. The Algorithm 53

A B

C D

Figure 4.3: Modelling of BLAST attributes

Figure 4.4: Modelling of InterProScan attributes.

BLAST observations are used to predict a function for the ORF. Those lack-
ing a “meaningful” description line are deleted. It does not matter how reliable
these observations are, they are not considered in the annotation process any
further. However; they are not lost and can be used to decide whether the ORF
should be annotated as hypothetical protein or conserved hypothetical protein if
no functional annotation could be derived. Of the remaining BLAST observa-
tions, only the 25 most reliable are used. This rule functions in all cases except
when more than 25 observations are reliable, then all observations assigned the
attribute reliable are kept for the annotation process. This exception must be
made to avoid random selection of observations and thus possible indeterministic
behaviour of the annotation process. The order of the 50 best observations is
random if the key used to sort these observations is the same for all observations.
For example if all observations have the same reliability, then sorting the list may
be ordered differently every time the sort function of the Java Array class is used
and therefore the 25 observations picked for the annotation process may differ.

InterPro observations are deleted if they do not describe a Pfam family. This
is motivated by the fact, that only Pfam family observations can be compared to
BLAST observations.

54 4. MicHanThi

4.1.4 Predicting the Gene Function - Annotation

BLAST:

function create annotations BLAST (obs) returns annotations
common denominator(obs)
select best supported / most reliable group(groups)
merge based on atoms(groups)
build annotations(groups)
merge annotations based on function(annotations)

return annotations
end

function common denominator (obs) returns groups of observations
for each ob
add to atom list(split(description(ob)))

end
sort alphanumerically (atom list)
for each atom
create group and populate(atom, obs)

end
n <- 1
do
for each group of size n
for each atom
create group of size n+1(group of size n, atom, obs)
if group of size n+1 is unsupported
delete(group of size n+1)

end
end

end
add(collection, groups of size n+1)
n <- n+1

while new groups of size n

return collection of groups
end

BLAST observations are diverse in both functions, as well as the description of
the same function, therefore a great deal of effort is exerted to derive a function
based on BLAST observations. The five observations shown in figure 4.5 A
describe the same function at different levels of generalisation. Observation four
uses the most general description. Observations one to three differ in wording
only. Observation five uses a synonym to describe the function5. To assign a

5according to the SWISS-PROT database, Regulatory protein SIR2 homolog 2 is a synonym

4.1. The Algorithm 55

function to the ORF, the most common denominator has to found.

Common Denominator - To find the largest common denominator among
the functional descriptions of a group of observations, each description is broken
into single words (atoms) depicted in figure 4.5 b. From that, a non-redundant
list of atoms is created (figure 4.5 c), which holds each word used in at least one
of the descriptions. The atoms are grouped in order to find the most specific

2 dependent deacetylase family information nad

protein regulator silent sir2 transcriptional

sir2 family protein

silent information regulator protein sir2

transcriptional

transcriptional

regulator

regulator

sir2 family protein

nad dependent deacetylase 2Ob.5

Ob.1

Ob.2

Ob.3

Ob.4

Ob.1

Ob.2

Ob.3

sir2

silent information

family protein

regulator protein sir2

proteinfamilysir2regulatortranscriptional

transcriptional regulatorOb.4

nad dependentOb.5 deacetylase 2

A)

B)

C)

Figure 4.5: A) A list of example observations, B) descriptions split into atoms,
C) non-redundant list of atoms.

functional description, common to “all” observations shown in figure 4.6. A
group is a tuple of atoms and observations, whose description contains the atom.
The order of a group is the number of atoms in it and the size of the group is
determined by the number of observations containing the atom. For each atom,
a group is created and all observations, containing the atom are added to the
group as support. After the initial set of groups is created (groups of order one),
it is used to create the groups of the next higher order. This is done by merging
all groups of the current order with all groups from order one. Observations that
do not contain all of the atoms of the newly created group are deleted because
the group describes a different function then the observation. If a group is not
supported by any observations, it is not describing a combination of words found
in any observations and therefore it is deleted. These steps are repeated until
no supported groups of order n + 1 can be created. Groups that are subsets of

for NAD-depended deacetylase 2

56 4. MicHanThi

another group are deleted because the goal of the common denominator is to find
the most specific functional description for a list of observations and not a group
that describes a single word common to “all” observations. Group A is a subset
of group B if both the atoms as well as the supports of group A are a subset of
the atoms and supports of group B.

select groups - Each group is checked for the number of supporting ob-
servations and their quality. If a group is to “unsupported” relative to the best
supported group and the difference in the reliability of the observations support-
ing this group and the most reliable observations is “too large”, the group is
deleted. The meaning of “unsupported” as well as the meaning of “too large”
depends on the observations considered in the annotation process and therefore
their interpretations are different for each ORF being annotated.

merge groups - To manage a case in which one observation combines the
descriptions of two or more observations, the remaining groups are merged based
on their atoms. Groups are merged if the atoms of group A are a subset of
the atoms of group B. This merging is depicted in figure 4.5. In this figure,
observation three contains the descriptions of both observations one and four.

build annotations - An annotation is created, for each remaining group.
The annotation is based on the observation, which is best matched by the atoms
of a group. An observation is matched “good” if all of the words of its description
are matched by atoms. The atoms are then sorted according to the description
of the observation. Once the atoms are sorted, a substring is taken from the
description, ranging from the first atom to last. This substring is used to func-
tionally describe the ORF. Each annotation is assigned a reliability value and
specificity value. The reliability of an annotation is the product of the average
observation reliability and the specificity of the annotation. The specificity of an
annotation is the ratio of the number of informative terms used in the annotation
and the number of informative terms in the description of an observation. If the
specificity is 1.0 all informative terms found in the observation are included in
the annotation. A value of less than 1.0 means that some terms are skipped.
Annotations with a specificity value of less than 0.5 should not be trusted and a
human annotator should investigate the ORF. The following example is used to
clarify the specificity value:

annotation: glycosyl hydrolase family
description: glycosyl hydrolase family 34
informative terms (annotation): 3
informative terms (description): 4
ratio: 3/4 → specificity of 0.75

4.1. The Algorithm 57

family

Ob.1

Ob.3

nad

Ob.5

protein

Ob.3

Ob.2

Ob.1

regulator

nad

family

Ob.4

Ob.3

Ob.2

protein

family

Ob.3

Ob.1

regulator

family

Ob.3

Ob.3

regulator

protein

Ob.2

protein

family

Ob.3

transcriptional

protein

family

Ob.1

sir2

protein

family

regulator

Ob.3

[...]

[...]

[...]

[...]

Figure 4.6: Functional grouping of observations

58 4. MicHanThi

InterPro: Each ORF can have several InterPro observations. In rare cases
only, are more than one of these observations Pfam families. If an ORF has two
or more Pfam family observations, then these observations describe the same fam-
ily, but different domains of that family are found in the ORF. The grouping of
functionally equivalent observations is not necessary because the observations de-
scribe the same family and are based on the same entry in the InterPro database.
MicHanThi takes the observation and uses its description for the assignment
of the ORF’s function. The reliability of an annotation based on an InterPro
observation is the reliability of that observation. The specificity is always 1.0
because the whole description is used to describe the function of the ORF.

Merging Annotations derived from BLAST and InterProScan: An-
notations based on BLAST observations and annotation based on observations
created by InterProScan describe the function of a protein and the function of a
protein family respectively. Both types of observations use the same informative
terms to describe the function. Therefore annotations based on theses tools are
comparable and annotation describing the same function could be merged. An-
notations could also be merged if one of the annotations describes a more general
function than the other. A simple case of a generalisation of a function a (DNA-
3-methyladenine glycosylase I) would be function b (DNA-3-methyladenine gly-
cosylase). In this case, function b uses a subset of words of function a to the
describe the more general function. In other cases, different informative terms
are used to describe the more specialised function. These cases are not handled
by MicHanThi because it can not verify the semantic similarity of words and
sentences used to describe the function of a protein.

The same approach is used to check if two annotations describe the same
function, as it is used to predict a function derived from BLAST observation.
First, all uninformative terms are deleted from the descriptions. Afterwards,
the remaining terms are split and the two sets of informative terms are checked
whether or not one of these sets is a subset of the other. If a subset relation
could be established, then the two annotations are merged. The description of
the specialised annotation is further used to describe the function of the protein.
Additionally, if the merged function contains information that is not present in
the other annotation, then the missing information is taken from the merged
annotation.

4.1.5 Assigning additional Annotation Features

Further annotation features like the EC number, the gene name, and a list of GO
numbers, are annotated if supporting observations are found. If an annotation is
based on BLAST observations, then the supporting observations are checked for
matches against the SWISS-PROT database. If a SWISS-PROT observations is
found, then the EC number and gene name are taken from that observation, and

4.2. Design and Implementation 59

the GO numbers are also retrieved from SWISS-PROT. Since most SWISS-PROT
entries associated with GO numbers are entries describing eukaryotic sequence,
MicHanThi rarely annotates GO numbers based on BLAST observations for
prokaryotic sequences.

EC and GO numbers are assigned if the annotation is based on an InterPro
observation. Some of the InterPro entries contain gene names as well. Gene
names are written in a free text field describing an InterPro entry. This is done,
because different members of the same protein family can be associated with
different gene names. In order to be able to assign a gene name to the query
sequence, MicHanThi must know which protein within a family is matched.
Since InterProScan does not provide this information, MicHanThi does not
assign gene names based on InterPro observations.

4.1.6 Genome Re-Annotation

Over the years, more information about functional genes is being added to public
databases. This information can be used to verify annotations or predict new
functions for ORFs, that have been previously annotated as (conserved) hypo-
thetical protein. Hence, it makes sense to re-annotate already annotated genomes
on a regular basis. MicHanThi applies the same process for the re-annotation
of a genome as it does for the annotation of an unannotated genome. Once a
genome is published, its annotation is added to the public databases. This poses
a problem for the re-annotation because a “perfect” match will always be found
for each query sequence. For functional annotations, this means that the predic-
tion of the function is biased by the previous annotation of that ORF. If an ORF
can not be functionally characterised, it will always be annotated as conserved
hypothetical protein, because a matching sequence is found in the database. To
avoid this problem, MicHanThi can be configured to ignore a list of organisms.
This list can also be used to filter badly annotated genomes.

4.2 Design and Implementation

As mentioned before, MicHanThi is not intended to be a stand-alone tool. It
needs an annotation system to provide the data, it needs external databases to
query additional annotation information, and it needs a grid engine to analyse an
entire genome. The interactions between these systems are depicted in figure 4.7.

The design of MicHanThi was greatly influenced by the design of the Gen-
ann annotation tool developed by the author and other members of the GEN!E
project. An important design aspect of the MicHanThi software is adaptability.
Therefore, it is necessary to abstract from the sources of information such as the
annotation system as well as the analysis tools because the state of the art in the

60 4. MicHanThi

G
enD

B

SP

E
xternal D

B
s

IPR

U
I

C
onfiguration

(R
ating)

M
B

FuzzyIT

G
enannD

G
enannD

M
icH

anT
hi

U
ser

Prediction
O

R
F

Sim
ilarity

Searches
D

B

O
bservations

A
nnotations

G
enom

e

Figure 4.7: The integration of MicHanThi with the GenDB System and external
data sources and the possibilities of the user to interact with the system.

field of bioinformatics changes rapidly.

MicHanThi is divided into four modules: (i) the IO module, (ii) the DATA
module, (iii) the TOOLS module, and (iv) the ANNOTATOR module. These
modules will be thoroughly explained in the sections below. After MicHanThi is
started, the main program initialises the data sources and it retrieves information
about an ORF and information about the observations describing an ORF from
the data source. Once the initialisation process is finished, the ANNOTATOR
module is called to rate the observations and to create the annotations. Last, the
main program writes all annotations to the data source.

4.2.1 Module IO

The IO module offers classes to connect to the different data sources used by
MicHanThi. Furthermore, it extends the cqf.io.Prefs class to add program spe-
cific options to the global configuration object provided by the main application
class cqf.Application. As mentioned several times before, MicHanThi depends
on an annotation system to provide and to store data. The experience gained
by the Microbial Genomics Group during the annotation of several genomes
shows that the demands regarding an annotation system change. To meet these
changing requirements, the group moved from using Pedant to using GenDB ver-

4.2. Design and Implementation 61

<<component>>

MicHanThi

data

<<component>>

io

<<component>>

<<component>>

tools

<<component>>

annotator

<<component>>

rating

<<component>>

cq-framework

<<component>>

mbfuzzit

<<component>>

JSAP

<<component>>

xerces

<<component>>

jdbc-mysql

Figure 4.8: The package structure of MicHanThi

sion 1.x and later to version 2.x of the GenDB system. Section 3.1.2 shows that
these annotation systems offer different methods to query information about an
ORF and its observations. Another factor which influenced the design of the IO
module was the fact that the data model of an annotation system may change
between versions. For these reasons, MicHanThi needs to be independent of
any annotation system and its current data model.

To meet this requirement, the interface DataSource was introduced. This in-
terface offers a set of methods, which can be used to query an annotation system
for information about an ORF and information about the observations describing
an ORF. The data returned by the query methods is then used to initialise the
DATA module. For more information about the DATA module see section 4.2.2.
The interface also offers methods to write annotations to the database used by
an annotation system. At present, three classes implement the DataSource inter-
face: GenDBv1 SQL, GenDBv2 SQL, and GenDBv2 2 SQL. All three implemen-
tations of this interface are used to query information from different version of

62 4. MicHanThi

the GenDB annotation system (versions 1.x, 2.0.x, and 2.2.x). These classes ex-
tend the cqf.io.SQL class to be able to directly query the database engine used by
GenDB . According to the developers of GenDB , this should not be done because
the database schema may change between minor releases of the GenDB system,
whereas the abstraction layer O2DBI is stable across minor releases. Therefore,
the abstraction layer should be used to query the database. This is impractical
because bindings exists only for the Perl programming language. The matter of
missing bindings for the Java programming language was discussed at a meet-
ing between members of the GEN!E project and the GenDB developers in 2003
and again, in 2005, at a meeting between members of the Microbial Genomics
Group and the GenDB developers. At the first meeting, it was decided to set
up a SOAP client / server architecture6 to exchange GenDB objects over a com-
puter network. A prototype of the client was implemented within the GEN!E
project. The server was to be developed by the GenDB developers. According to
the developers, a prototype exists but the development was stopped, because in-
ternal tests yielded performance problems. The topic of Java bindings was again
discussed at the second meeting, but the GenDB developers showed no interest
in supporting the Java programming language. Therefore, MicHanThi queries
the database directly despite the objections made by the GenDB developers.
Other annotation systems than GenDB can be supported by implementing the
DataSource interface for that particular system. Options provided by the global
configuration object can be used to specify which of the supported annotation
system provides the information about the ORF to be analysed. The configura-
tion object can also be used to specify authentication information to access the
annotation system if necessary.

The GenAnn Connect class was developed during the GEN!E project. It is
used to query local versions of the SWISS-PROT and InterPro databases for
additional information about an ORF. The class extends cqf.io.SQL because the
local versions of these databases are stored in a MySQL server. The classes
implemented in this module and their dependencies are depicted in figure 4.9

4.2.2 Module DATA

The DATA module represents the information necessary to annotate an ORF.
It represents the ORF, information about the ORF (observations), information
about the observations found in the SWISS-PROT or InterPro databases, and
it represents the annotations of an ORF. The data provided by this module is
used by the ANNOTATOR (4.2.4) and TOOLS (4.2.3) modules to create the
annotations for an ORF.

One of the design goals of MicHanThi was to be independent of the analysis

6SOAP - Simple Object Access Protocol - is a protocol to exchange XML based messages
over a computer network

4.2. Design and Implementation 63

net.megx.michanthi.io

GenDBv1_SQL

GenDBv2_SQL

GenDBv2_2_SQL

DataSource

Genann_Connect

PrefsApp

cqf

io

Connection

prefs

PrefsSQL File

Parser

implements

0 1

Figure 4.9: Classes of the IO module

tools used to characterise an ORF. To achieve this goal, the DATA module has to
provide some kind of abstraction of the results of different tools. This abstraction
is done by creating the two root classes Observation and DBEntry, which con-
tain the most general set of attributes common to all analysis tools. Additional
attributes provided by certain tools such as attributes describing the reliability
of an observation are stored in subclasses of the Observation class. A functional
description of an ORF can solely be derived using the information provided by
the two classes Observation and DBEntry. A statement about the reliability of
such an annotation can not be made though. To evaluate the reliability of an
annotation, the information contained within the subclasses must be considered.

Initialisation of classes implemented in the DATA module is done by calling
a method of the net.megx.michanthi.io.DataSource class. This method queries
the data source for information about the class and returns a java.utils.HashMap
containing the information retrieved. The java.utils.HashMap in turn is passed
to the constructor of the class to be created. This rather complicated procedure
is done to minimise the dependencies between the IO and DATA modules. It
allows to change the set of attributes stored within each class, without changing
the signatures of the methods involved in the initialisation process. Furthermore,
the maintenance of the source code is easier. The following pseudo code shows
how observations are retrieved from a data source.

class ORF

64 4. MicHanThi

...
function getObservations by <tool name>
if not retrieved obs of <tool name>
DataSource -> getObservations by <tool name>
for each HashMap returned
create new observation <- HashMap
add observation to the list of observations

end
end

return observations of tool <tool name>
end
...

end

An overview of the DATA module is depicted in figure 4.10 on page 66. The
paragraphs below describe the key classes of the DATA module.

ORF : ORF is the “main” class of the DATA module. It can be used to query all
information about an ORF including observations and annotations. After
an instance of the ORF class is created, it does not contain any information
besides the ORFs start and stop positions within the genomic sequence, the
name of the ORF, the unique identifier of the ORF within the data source,
the name of the annotation project, and its reading frame. To keep a
low memory footprint, observations and database entries are retrieved from
the data source the first time they are used. All observations about an
ORF are stored in the same list. The ORF class offers methods to query
one observation based on its unique identifier in the data source, a set of
observation created by the same tool, and all observations. To get faster
access to observations of a specific tool, caches for each tool are created
which keep a pointer to all observations of the same tool. The memory
used to build the caches can be neglected compared to the speed gained to
access observations of tool X.

Observation : The Observation class is the root class for all observations. It
contains information that should be common to most of the analysis tools.
These information is:

• the start and stop positions of the ORFs subregion described by the
observation (from, to),

• a short text describing the findings (description raw),

• a processed version of the description (description - see section 4.1.1
for more details on the processing of descriptions),

4.2. Design and Implementation 65

• the source of the observation if it was created by comparing an ORF
to entries in a database (source),

• the unique identifier of the entry within the database queried (sourceRef),

• the database entry itself (DBEntry),

• a list of semantically equivalent descriptions (synonyms - this list ex-
ist only if the observation is based on an entry of the SWISS-PROT
database),

• a reliability value assigned by the ANNOTATOR module (see sec-
tion 4.1.2 for more details on the rating of observations), and

• the name of analysis tool which created the observation.

This class must be specialised if additional information of an analysis tool
is needed to derive a function of an ORF. Subclasses implemented as part
of this thesis are: ObBlast, ObInterPro, ObSignalP, and ObTMHMM. The
three classes mentioned last hold only information specific to the partic-
ular tool. Class ObBlast additionally implements methods to process the
description of BLAST observations as described in section 4.1.1.

DBEntry: Database entries are represented by the DBEntry class and its sub-
classes SwissProtEntry and InterProEntry. Every database entry contains
a text describing the entry as well as the unique identifier of the entry within
the database. Both subclasses contain an EC number as well as a list of
GO numbers. These are not implemented in the root class because not
all databases necessarily provide this data. Entries of the SWISS-PROT
database additionally contain the gene name of a protein. InterPro entries
do not provide a gene name but they contain the type of the entry. The
type attribute is checked by the tools.ToolInterPro class to determine if
the observation should be deleted. Information provided by the DBEntry
class and its subclasses is used by the annotation tools to assigned other
annotation attributes than the gene function (see section 4.1.5).

Annotation: A functional description of an ORF is represented by the Annota-
tion class. It contains all information of a functional description that should
be assigned to the ORF. Default values are assigned to each attribute, in
the case that observations of a specific tool do not provide this information.
The Annotation class provides methods to create “hypothetical” annota-
tions. These methods can be used to describe ORFs for which no functional
prediction is possible.

66 4. MicHanThi

net.megx.michanthi.data

SwissProtEntry

InterProEntry

Observation

ObBlast

ObInterPro

ObTMHMM

ObSignalP

ORF Annotation

DBEntry
0 1..*

0

1..*

0 *

0

*

Figure 4.10: Classes of the DATA module

4.2.3 Module TOOLS

As mentioned before, a large number of different tools can be used to analyse
genomic sequences. The work of the GEN!E project showed, that the integration
of information from different analysis tools is at best difficult if not impossible
because the information provided by these tools may describe different things.
The conclusion which can be drawn from this perception is that the observations
of each tool need to be handled differently. Therefore, annotations derived from
different types of observations are created by different implementation of the root
class Tool.

The ANNOTATOR module expects subclasses of the Tool class to implement
two methods. The method rateObservations: Observations → rated Observations
must be implemented to rate observations and the method createAnnotations:
Observations → Annotations must be implemented to create annotations. The
createAnnotations method receives a list of all observations. From this list, the
implementing class needs to choose a subset of observations as the basis of a
functional description of an ORF.

The implementations of the tools InterPro, SignalP and TMHMM return a
single annotation. An annotation based on InterPro is either an “hypothetical”
annotation or an annotation which classifies an ORF as a member of a certain
protein family. The SignalP and TMHMM tools always return “hypothetical”

4.2. Design and Implementation 67

annotations. If the observations for either tool provide enough evidence that an
ORF is secreted or it contains a transmembrane region, then the annotation of
the ORF is marked accordingly. It is more complex to derive a function from a set
of observations based on the BLAST tool. These observations need to be grouped
to find the most common annotation. This grouping process is complex in it self
and therefore it is encapsulated in the class Clusterer. Groups of observations
created by the Clusterer are described by the Cluster class. This class stores
the informative terms that define a cluster and the observations that support a
cluster. It provides methods to query the state of the group as well as methods
to check if the group is supported by some type of observations. The different
strategies applied to create a functional description of an ORF are explained in
section 4.1.4

net.megx.michanthi.tools

blast

Cluster

Clsuterer

ToolLoader

Tool ToolBlast

ToolInterProToolSignalP

ToolTMHMM 0 1

0

*

Figure 4.11: Classes of the TOOLS module

4.2.4 Module ANNOTATOR

The ANNOTATOR module is a rather simple module. It contains only two
classes, Annotator and Rater. For each type of observation, the Rater class
calls the method rateObservations: Observations → rated Observations. After
each observation is rated, a subset of observations is selected by the Rater for
the annotation process. The rating and selection of observations is explained
in sections 4.1.2 and 4.1.3. From the set of selected observations, a functional
description of an ORF is created. The annotation process is controlled by the
Annotator class. It calls the method createAnnotations: Observations → Anno-
tations of each analysis tool, which returns a set of annotations based on that

68 4. MicHanThi

particular tool. The annotations created by the different tools are then merged
as described in section 4.1.4 and returned to the main program.

net.megx.michanthi.annotator

Annotator Rater

Figure 4.12: Classes of the ANNOTATOR module

4.2.5 The CQ Framework

MicHanThi is based on the cq-framework 7. Among other things, this framework
provides basic features like the logging of output to (file-)streams and a global
configuration object. It also provides more complex modules such as the plug-in
and the IO modules.

Logging: The logging of output is implemented in a simple class (Logfile) which
provides methods for different levels of output. The user can select from
one of the following output levels: ‘no messages at all’, ‘error messages’,
‘warning messages’, ‘default message’, ‘verbose messages’, and ‘debug mes-
sages’. The output levels are sorted by verbosity, that is, each level prints
the messages of the previous level(s) as well. For example, the level ‘warn-
ing messages’ prints also messages that are marked as ‘error messages’ and
the level ‘debug messages’ prints all messages.

Configuration: The configuration module is based on the Java-based Simple
Argument Parser (JSAP) library8. This library allows to merge a set of de-
fault options with those provided in a configuration file and those provided
on the command line. Configuration options specified on the command
line overwrite those read from a configuration file (user or system level),
which in turn overwrite hard coded default values. Configuration files can
either be written in “native” JSAP format or XML. JSAP provides a parser
that handles files written in its “native” format. To be able to use config-
uration files written in a different format, it is required to implement the
JSAP.DefaultSource interface. To meet this requirement, the cq-framework

7The cq-framework is a collection of classes written by the author prior to this thesis
8http://www.martiansoftware.com/jsap/

4.2. Design and Implementation 69

implements the Prefs class which implements the JSAP.DefaultSource in-
terface. The Prefs class includes a parser based on the Xerces2 library9 to
support configuration files written in XML. A different file format can be
used if the cq.io.Parser interface is implemented. An instance of the parser
must then be passed to the Prefs class using the set parser: cqf.io.Parser
→ void method.

Plug-ins: The plug-in module can be used to dynamically load extensions of
third parties, which extend the functionality of the main program. Al-
though, MicHanThi does not facilitate the loading of plug-ins at present,
it may prove useful in future version of the software. For example, the
tools, utilised by MicHanThi to derive a functional annotation, could be
implemented as plug-ins. The plug-in would specify which kind of obser-
vations should be retrieve from the data source, then it would rate the
observations, and last, it would create annotations annotations based on
these observations.

IO: The IO module offers basic data access classes such as a File class and a
SQL class. The File class encapsulates the java.io.File class and it provides
methods to read the content of a file and to create a copy of a file. For
example, the Prefs class is derived from File and it uses its copy method
to copy configuration files to the users home directory.

The SQL class abstracts of the SQL and the Java Database Connection
(JDBC) driver. It loads and unloads the JDBC driver used to connect to a
particular database engine such as MySQL or PostgreSQL, it creates and
closes connections to a database, and it offers methods to query and to
modify a database. The most beneficial feature provided by the SQL class
is the abstraction of the SQL. For example if new data should be added to
a table, then the user would have to write a SQL statement much like ”IN-
SERT [INTO] tablename [(col name,...)] VALUES (expr|DEFAULT,...)”.
Adding data to a table using the SQL class is done by calling a method that
receives the table name and a list of field and value tuples to be added to the
table (insert: java.io.String × java.io.HashMap → int). Based on the pa-
rameters provide, the methods then creates the appropriate SQL statement
for the user.

The File and SQL classes are derived from the connection class. This
class provides a common interface to connect to different types of sources
from which data can be obtained and defines a set of method that have to
implemented by subclasses.

The configuration module as well as the Logfile class are also part of the IO
module.

9Xerces2 is a DOM level 3 compliant XML parser developed by the apache foundation.

70 4. MicHanThi

In addition to the modules described above, the cq-framework provides a collec-
tion of miscellaneous helper classes. Of these classes, MicHanThi uses only the
cqf.misc.Version class, which represents a version string. This class can be used
to compare two versions to check if some requirements are met. Figure 4.13 gives
an overview of the classes provided by the cq-framework.

cqf

io

MalformedDocumentException

prefs

Prefs

File SQL

XMLParser

Logfile

Connection

Parser

plugin

PluginManager PluginLoader

event gui

PluginErrorPlugin

gui

RotatedTextIconAwtTools ImagePanel

misc

OperatingSystem

Version Utilities

Application

+@theApp : Application [1]{frozen}

-qconfig : JSAPResult [1]

0

1

throws

1

1

0 1

implements

0

1

1

1

1 *

0

1

0 *

Figure 4.13: Classes of the cq-framework

4.3 Additional Tools implemented within the

Diploma Thesis

After the main work implementing MicHanThi was completed, some additional
features were requested by the human annotators. These features, although
closely related to the annotation of a genome, are not related to the prediction
of gene functions. The author decided to implement these features as additional
tools using the same framework as the annotation tool.

4.3.1 MOBH - Mark ORFs based on best BLAST hit

This script sets the status region attribute of class Region. Originally, GenDB
used this attribute to show the reliability of the ORF prediction. An ORF can
either be putative, final, or at a stage in between. MOBH marks each ORF based

4.3. Additional Tools implemented within the Diploma Thesis 71

on the reliability of the best BLAST observation found, which can be seen as the
probability of the Region existing as a real gene. MOBH uses as many different
status values as GenDB does, but different terms are used at the request of the
annotator.

4.3.2 UPGENEC - UPdate GENe name and EC number

Another special feature requested was the ability to update of gene names, EC
numbers and GO numbers for already annotated ORFs. The gene function can
not have been changed because it may have been validated by a human anno-
tator. Therefore old annotations are updated with missing information and new
annotations are only created if a ORF does not have any annotation associated
to it. For each ORF, a list of BLAST against SWISS-PROT and InterPro obser-
vations is retrieved from the database. This list is then checked for observations
matching the function of the ORF. To check if an observation matches the pre-
dicted function of an ORF, MicHanThi uses the same approach as it does to
merge two annotations during the annotation process. If an observation matches,
it is checked for new information. The information is then transferred to the an-
notation and is skipped for the rest of the matching observations. For example, if
a new gene name is found, the gene names of subsequent matching observations
will be ignored. If all annotation fields are updated or there are no more obser-
vations in the list the process is ended. The user has two options for changing
the behaviour of UPGENEC. The user can decide if substring matches of the
function of two annotations are allowed and if information already present in the
annotation should be overridden with information found in the observation. For
more detailed information about substring matches see 4.1.4.

4.3.3 GenannD

GenannD is part of the Genann annotation suit developed by the GEN!E project.
It was written by the author of this thesis and is used as a grid engine to distribute
jobs among cluster nodes. MicHanThi creates annotations for one ORF only.
To annotate all ORFs of a genome, MicHanThi must be started for each ORF
separately. This is done by the GenannD tool. A job “containing” all ORFs
that have to be annotated is created. Each node of the cluster is assigned one
ORF at a time, until all ORFs are annotated. The cluster node then starts
the prediction tool which annotates the ORF, writes the results to the GenDB
database, and gives feedback about the reliability of the annotation. The cluster
node reports this status back to the master node, which keeps a statistic about all
annotated ORFs. When a job is created several options can be set. Among these
options are: access information about the GenDB database, the GenDB project
to be used, and the ORFs of the project to be annotated. The user can define
any MySQL statement, valid to query the GenDB database, in order to restrict

72 4. MicHanThi

the number of ORFs. For example, only ORFs that have not been annotated
yet, can be scheduled for annotation, or all ORFs that have been annotated as
hypothetical protein can be re-annotated. As part of this thesis, the GenannD tool
was extended to work with different versions of GenDB and use MicHanThi as
the annotation tool instead of genann.

4.3.4 SPIMP

SPIMP was written by Thomas Soller as part of the GEN!E project. It creates
a local SWISS-PROT MySQL database from a SWISS-PROT XML dump. Lo-
cal versions of the SWISS-PROT and InterPro databases are necessary because
MicHanThi uses these databases to get access to the additional annotation
features. For further details see the final report of the GEN!E project.

Chapter 5

Results

5.1 The Test Run

5.1.1 The Test Setup

The hardware platform used to run the annotation software is a cluster consisting
of: one dedicated database server running the MySQL software, one dedicated
file server (NFS), one head node / web server controlling the grid engine (SGE)
and serving the GenDB web front-end, and eleven nodes computing the observa-
tions. Each compute node is a dual Intel Xeon based IBM x335 server clocked at
2.80GHz (each CPU) and equipped with a total of 4GiB RAM. The local hard
disk drives (HDDs) are used to increase the speed of similarity searches by storing
a local copy of the bioinformatics databases used.

The analysis of the organism ‘Gramella forsetii’ KT0803 started by running
MORFind to predict ORFs. Once the ORFs were predicted, the genome was
imported into the GenDB annotation system and the observations for each ORF
were computed. The ORF prediction and the similarity searches for the 3593
ORFs took approximately 24 hours to compute. The resulting data set has a
size of approximately 330MiB. Thereof, 1,367,992 observations totalling approx-
imately 320MiB. These observations have to be evaluated by the annotator in
order to predict a biological function of the ORFs.

5.1.2 The KT0803 Annotation Jamboree

MicHanThi was evaluated within the context of the annotation jamboree of
the marine bacterium ‘Gramella forsetii’ KT0803. The aim of this annotation
jamboree was to explore the organism’s genome and to get a first insight into
the features of the organism and its role in the environment. Eleven PhD and
diploma / master students of the MPI Bremen and the International University
Bremen (IUB) were trained by members of the Microbial Genomics Group
to perform this task. The students and members of the Microbial Genomics

74 5. Results

Group then annotated the organism in about nine weeks. Experienced annota-
tors had to invest about three additional weeks to cross-check the annotations of
all ORFs. Annotations were supplemented with missing information and if nec-
essary, new annotations were created. Finally, Margarete Bauer (senior member
of the Microbial Genomics Group) spent several months studying the organ-
ism’s metabolism and its role in the environment. Primarily, she focused on the
identification and understanding of key features of the organism such as a po-
tential phytochrome (light sensor) and carbohydrate degradation. All together,
it took sixteen annotators about three months to achieve a basic understand-
ing of the organism and another three months were invested to find annotations
highlights. The thorough annotation of the organism ‘Gramella forsetii’ KT0803
serves as the basis of the evaluation of the MicHanThi software implemented
as part of this thesis.

5.1.3 The Performance of MicHanThi

MicHanThi was executed after the ORF prediction and the similarity searches
were finished. Running eleven instances of MicHanThi on the above hardware
setup (section 5.1.1), MicHanThi was able to annotate the 3593 ORFs of the
organism ‘Gramella forsetii’ KT0803 in about 15 to 20 minutes. It created a total
of 5404 annotations, which is an average of 1.50 annotations per ORF. 1289 of
these annotations describe ORFs for which no functional prediction was possible
([conserved] hypothetical proteins [, membrane or secreted]).

5.1.4 The Evaluation

A simple tool (create statistics) was written to compare the annotations created
by the human annotators (human annotated) and those created by MicHanThi
(automatically annotated). It compares two lists of annotations contained in
separate text files. Each ORF found in the first file (annotated by a human
annotator) is compared to all annotations for the same ORF found in the second
file (annotations created by the program). The text files must have the following
syntax and annotations must be sorted by ORF ID:

ORF ID \ t ORF Name \ t Gene Product \ n

create statistics reports statistics from the annotation project such as: the
number of human annotated ORFs, the number automatically annotated ORFs,
the average number of annotation created per ORF, and the number of ORFs
not annotated by the computer (total number and percentage). A comparison
between the preliminary annotations created by the human annotators and those
create by the computer are shown in table 5.1.

Next, the tool reports information about the number of matches found be-
tween the annotations created by the human annotator and the computer: the

5.1. The Test Run 75

human annotations: 3574
automatic annotations: 5404 [1.51]
no auto annotations: 19 [0.5%]

Table 5.1: Statistics from the comparison of the preliminary annotations created
by the human annotator and those created by MicHanThi.

number of annotations using exactly the same words (in the same / different
order), the number of annotations in which the gene product described by the
human annotator is “more general” than the description created by MicHanThi
(subset matches - ha), and the number of annotations in which the computer is
“more general” than the human (subset matches - aa). For each class of matches,
the tool reports additionally the number of ORF that have exactly two anno-
tations, one created by a human annotator (marked as latest annotation in the
GenDB annotation software) and one created by MicHanThi. Brackets are used
to indicate the relative number of matches between the annotation of all ORFs.
An overview of the preliminary number of matches is given in table 5.2. The
numbers of the first, third, and fifth row make up the total number of matches
between the human and automatically annotated ORFs. Adding these numbers
yields a total number of 1918 matches which is about 54% of all annotations.

exact matches/same words: 1350 38% / 16
exact matches (one): 970 27%

subset matches - ha: 328 9%
subset matches (one) - ha: 100 3%

subset matches - aa: 240 7%
subset matches (one) - aa: 76 2%

Table 5.2: Number of matches between the preliminary annotations created by
the human annotators (ha) and those created by MicHanThi (aa).

The last set of statistics reported by the tool are details about the class ORF
which can not be described functionally. This class of ORFs was investigated in
detail because clear rules exist for the cases in which an ORF should be annotated
as hypothetical protein or conserved hypothetical protein:

hypothetical protein : An ORF is described to be a hypothetical protein if no
matches could be found in any of the sequence databases or if such matches
exist but they are unreliable (E − value ≥ 1e−3).

conserved hypothetical protein : The attribute conserved is assigned to an
ORF if at least one reliable match could be found in one of the sequence

76 5. Results

databases. A match is reliable if E − value < 1e−3 and ORF coverage
≥ 25% and DB coverage ≥ 25%.

transmembrane prediction : ORFs that have at least two reliable transmem-
brane helix predictions are assigned the attribute membrane.

signal peptide prediction : If no more than one transmembrane helix was pre-
dicted for an ORF and a reliable signal peptide prediction exists, then the
ORF is annotated as secreted. A signal peptide prediction is considered
to be reliable if its probability as reported by the HMM is ≥ 0.75 and its
cleavage site probability is > 0.5.

transmembrane and signal peptide predictions: If exactly one reliable
transmembrane helix prediction exists for an ORF and the predicted signal
peptide prediction is uncertain because its HMM cleavage site probability
is ≤ 0.5, then the ORF is annotated as membrane or secreted.

The first column of table 5.3 lists the classes to which an ORF without func-
tional description can be assigned. Absolute and relative numbers of ORFs as-
signed to each class are shown in columns two and three (human annotator /
software). ORFs that have been assigned to the same class by both the human
annotator and the software (annotation matches) are represented by the first
number in the last column. The last two numbers in the last column represent
the precision and recall measures.

The table is divided into three parts: the total number of ORFs without a
functional description (hypotheticals and conserved hypotheticals), statistics of
ORFs without any reliable similarities found in sequence databases (hypotheti-
cals), and statistics of ORFs with at least one reliable match but no function
could be derived from these matches (conserved hypotheticals). ORFs annotated
as conserved hypothetical protein may contain one or more domains.

Annotations created by the human annotator are considered to be very reli-
able. If it is assumed that the objective of MicHanThi is to find all ORFs that
can not be functionally described, then the tool should find all ORFs that are rep-
resented by the numbers in the second column. Therefore, the first number in the
last column describes the number of ORFs correctly identified by MicHanThi
(true positives). From this the number of false positives and false negatives can
be calculated. False positives are those annotations created by MicHanThi that
could not be verified by a human annotator: annotations created by MicHanThi
minus number of matches. ORFs assigned to one of these classes not found by
MicHanThi are the false negatives : the number of matches subtracted by the
number of ORFs assigned to a class by the human annotator. The precision and
recall values are then calculated as:

precision = true positives
true positives+false positives

(5.1)

↔ precision = truepositives

MicHanThi annotations
(5.2)

5.1. The Test Run 77

recall = true positives
true positives+false negatives

(5.3)

↔ recall = truepositives
human annotations

(5.4)

If the assumption that annotations created by a human annotator are very
reliable is true , then MicHanThi performed poorly. Over-all, only about 50% of
the ORFs that should have been assigned to one of these classes could be identified
by MicHanThi. Most of these matches occur in the class hypothetical protein. If
additional information is present such as transmembrane helix or signal peptide
predictions, then the number of matches decreases drastically. The number of
matches decreases further if similarities could be found in sequence databases.
If a conclusion has to be drawn based on these numbers it could only be that
matches between the annotations of human and automatically annotated ORFs
occur, at best, randomly.

78 5. Results

Human MicHanThi matches
[% of all ORFs] [precision, recall]

ORFs without function 1566 [44] 1284 [36] 725 [0.56, 0.46]

hypothetical proteins
hypothetical protein 578 [16] 514 [14] 425 [0.83, 0.74]
transmembrane prediction 95 [03] 120 [03] 50 [0.42, 0.53]
signal peptide prediction 107 [03] 206 [06] 63 [0.31, 0.59]
transmembrane and
signal peptide predictions

0 [00] 10 [00] 0 [0, —]

conserved hypothetical proteins
conserved protein 443 [12] 188 [05] 131 [0.70, 0.30]
transmembrane prediction 64 [02] 68 [02] 22 [0.32, 0.34]
signal peptide prediction 84 [02] 104 [03] 26 [0.25, 0.31]
transmembrane and
signal peptide predictions

8 [00] 4 [00] 0 [0, 0]

conserved hypothetical proteins containing some domain
conserved protein 164 [05] 44 [01] 6 [0.14, 0.04]
transmembrane prediction 8 [00] 17 [01] 2 [0.12, 0.25]
signal peptide prediction 14 [00] 8 [00] 0 [0, 0]
transmembrane and
signal peptide predictions

1 [00] 1 [00] 0 [0, 0]

Table 5.3: Detailed comparison of the preliminary annotations created by the
human annotators and those created by the computer.

5.1. The Test Run 79

5.1.5 The Cross-Checking

The second part of the annotation jamboree was the evaluation of all annotations
by experienced annotators. Subsequent to the cross-checking of annotations,
the annotations created by the human annotators (now final) were once more
compared to the same set of annotations created by MicHanThi. The results
of these comparisons are shown in tables 5.4, 5.5 and 5.6.

human annotations: 3593
automatic annotations: 5404 [1.51]
no auto annotations: 19 [0.5%]

Table 5.4: Statistics from the comparison of the final annotations created by the
human annotator and those created by MicHanThi.

The only difference between table 5.4 and table 5.1 is that all ORFs found
in ‘Gramella forsetii’ KT0803 have now been curated by human annotators. Ta-
ble 5.5 shows an over-all increase in the matches of the annotations of all ORFs
from about 8% to a total of about 62%. However, the most important results of
this new comparison are shown in table 5.6.

exact matches/same words: 1633 45% / 19
exact matches (one): 1235 34%

subset matches - ha: 309 09%
subset matches (one) - ha: 89 02%

subset matches - aa: 274 08%
subset matches (one) - aa: 97 03%

Table 5.5: Number of matches between the final annotations created by the
human annotators (ha) and those created by MicHanThi (aa).

The number of matches in all “ORF classes” increased. This is the case
especially for ORFs without any similarities found in sequence databases (hypo-
thetical proteins). MicHanThi is capable of finding almost all ORFs that have
been classified by the human annotator as members of one of these subclasses
of annotations. On the other hand, more then three quarters of the annotations
assigned to one of these classes by the software could be verified by annotations
created by a human annotator. The increase in the number of matches within
the other classes is in some cases as much as it is in the group of hypothetical
proteins . However, the over-all percentage of matches is lower - in general < 50%
- but ORFs predicted by MicHanThi to be conserved are normally verified by
a human annotator. Most significantly, this is true for the group of conserved hy-
pothetical proteins that contain domains found in an ORF. The software assigns

80 5. Results

only very few ORFs to these subclasses, whereas the human annotators assigns
many more ORFs to these subclasses. Hence the small number of matches in
these subclasses compared to the other classes. The small number of predicted
ORFs can be explained by the strategy used by MicHanThi to describe domains
found in an ORF. The software only uses a domain to describe the ORF if this
domain is a domain of unknown function (DUF). These type of domains can be
found in the InterPro database and describes conserved regions of a protein for
which a function is not known. The low number of matches between annotations
created by a human annotator and those created by MicHanThi in the group of
conserved hypothetical proteins can be explained by the over prediction of ORFs
with functional assignment by the software. It was decided that MicHanThi
should tend to the over prediction of function for genes for two reasons. First, any
faint similarity to one or more sequences in bioinformatics databases should be
reported. Secondly, the automatic evaluation of functional predictions of genes
is, at best, difficult.

Another number that stands out in the second table is the total number of
ORFs to which no function could be assigned by MicHanThi. Even though
the create statistics tool used exactly the same set of annotation created by
MicHanThi as it did before, five more ORFs were found by the tool the sec-
ond time it was applied. This can be explained by the fact that the tool only
evaluates annotations created by MicHanThi for those ORFs which have also
been annotated by a human annotator. The five ORFs which occur in the second
set of statistics previously lacked an annotation created by a human annotator.
Therefore, they were ignored by the create statistics tool, in the first comparison.

5.1. The Test Run 81

Human MicHanThi matches
[% of all ORFs] [precision, recall]

ORFs without function 1613 [45] 1289 [36] 1024 [0.79, 0.63]

hypothetical proteins
hypothetical protein 463 [13] 516 [14] 454 [0.88, 0.98]
transmembrane prediction 99 [03] 120 [03] 94 [0.78, 0.95]
signal peptide prediction 171 [05] 207 [06] 158 [0.76, 0.92]
transmembrane and
signal peptide predictions

10 [00] 10 [00] 6 [0.60, 0.60]

conserved hypothetical proteins
conserved protein 341 [09] 188 [05] 142 [0.76, 0.42]
transmembrane prediction 107 [03] 68 [02] 45 [0.66, 0.42]
signal peptide prediction 167 [05] 105 [03] 78 [0.74, 0.47]
trans membrane and
signal peptide predictions

12 [00] 4 [00] 3 [0.75, 0.25]

conserved hypothetical proteins containing some domain
conserved protein 160 [04] 44 [01] 29 [0.66, 0.18]
transmembrane prediction 47 [01] 18 [00] 13 [0.72, 0.28]
signal peptide prediction 35 [01] 8 [00] 3 [0.38, 0.09]
transmembrane and
signal peptide predictions

1 [00] 1 [00] 0 [0, 0]

Table 5.6: Detailed comparison of the final annotations created by the human
annotators and those created by the computer.

82 5. Results

5.1.6 The Problem of Semantics

A fully automatic evaluation of annotations of functionally described ORFs is
difficult. Automatic tools or scripts can only be used to find annotations that
use the same or a subset of words to describe the function of an ORF. An addi-
tional point hampering the automatic evaluation is that different human annota-
tors tend to use different words for the same functional description of a protein.
Therefore the list of observations as well as the annotations created by a human
annotator are rather diverse. Table 5.8 is an excerpt of annotations from the
first 100 ORFs comparing the annotations of human annotated ORFs and those
that have been automatically annotated, illustrating the problem. The different
descriptions used for the annotation of each ORF describe the same function.
About 10% of all annotations fall into this category. This number should be
considered when finally evaluating the performance of MicHanThi.

ORF Human Annotator MicHanThi

1: orf9 - permease, major facilitator superfamily - Permeases of the major facilitator super-
family
- [. . .]

2: orf10 - glycosyl hydrolase, family 32 - Glycoside hydrolase, family 32
- [. . .]

3: orf21 - permease, major facilitator superfamily - Permeases of the major facilitator super-
family

4: orf25 - heavy metal-(Cd/Co/Hg/Pb/Zn)-trans-
locating P-type ATPase

- cadmium-translocating P-type ATPase
- Cation transport ATPase
- cation-transporting ATPase, P-type, pu-
tative zinc-transporting ATPase
- heavy metal transporting ATPase

5: orf30 - heavy metal cation efflux protein contain-
ing OEP domain, CzcA family

- Cation efflux system protein czcA
- heavy metal efflux pump, CzcA family
- [. . .]

6: orf33 - glycosyl hydrolase, family 53 - likely ara-
binogalactan 1,4-beta-galactosidase

- Arabinogalactan endo-1,4-beta-
galactosidase
- [. . .]

7: orf40 - short-chain dehydrogenase/reductase
family protein

- oxidoreductase, short-chain dehydroge-
nase/reductase family
- [. . .]

8: orf62 - protein involved in phosphonate
metabolism

- PhnA protein

9: orf69 - arylformamidase - N-formylkynurenine (aryl-) formamidase
10: orf70 - Holliday junction nuclease RuvC - Crossover junction endodeoxyribonuclease

RuvC
- Holliday junction resolvasome, endonucle-
ase subunit

Table 5.8: Semantically comparable annotations within the first 100 ORFs, which
are not reported by the statistics tool.

In Examples 1 and 3, the difference is that the term permease is used in
singular form by the human annotator while it is found in plural form in the list
of observations. Hence, MicHanThi used the plural form to annotate the ORF.
The annotation in example 2 use slightly different spellings of the term describing
the function (glycosyl vs. glycoside). Examples 6 to 9 differ in the specialisation

5.1. The Test Run 83

of the function assigned to the ORF. Normally, the statistics tool would classify
these cases as a subset match between human and automatically annotated ORFs.
In these cases the tool failed to do so because in both annotations, words are used
that are not used in the other annotation. In all four cases, the human annotator
is more careful when assigning the function. In example 6, the annotator uses
a more general description of the same function than the computer does and
adds the more specific description as a supplement. The annotation created by
the computer for ORF orf40 is oxidoreductase with the addition that this type
of reductase belongs to the short-chain dehydrogenase/reductase family. The
human annotator was uncertain whether or not the ORF is an oxidoreductase
and described it as a protein belonging to this family. Example 8 is a rather
interesting case because the protein name ‘PhnA’ is ambiguous, describing two
“slightly” different functions within the phosphonate metabolism. The human
annotator decided to describe the ORF as a protein involved in that metabolism.
Examples 4, 5, and 10 are more difficult. Nevertheless all annotations created for
the same ORF describe the same function.

5.1.7 The Missing 19 Annotations

19 ORFs were not annotated by MicHanThi. This number changes each time
the program is used to annotate all ORFs of a genome annotation project. Why
MicHanThi is not able to annotate all ORFs can either be found in the MySQL
server software, in the JDBC-driver used to create a connection to the MySQL
server, or in the design of the GenDB database. Each time MicHanThi writes
an annotation to the GenDB database it locks all tables of the project database
for both read and write access. Under some circumstances this locking fails
and two instances of MicHanThi try to write to the database at the same
time. By definition of the MySQL server software this should not be a problem.
However, the design of the GenDB database relies on a single unique identifier
(primary key) for each table. If two instances of MicHanThi try to write the
annotations they created to the database at exactly the same time, then one of
the instances reports an exception of the primary key already being used. A look
into MicHanThis log files reveals, however, that annotations have been created.
If only one instance of MicHanThi is running and therefore the database is not
access concurrently, then annotations of all ORFs are written to the database.
If multiple instances of the annotation tool are used, approximately 0.5% to 1%
of the ORF will not be annotated because the problem described above. The
small number of ORFs not annotated as well as the fact, that this problem is
considered to be outside of the implementation of MicHanThi makes it a low
priority.

84 5. Results

5.2 Limitations of the Prototype

A feature that was not implemented as part of this thesis is the interpretation
of observations describing a domain match within the InterPro database. Each
protein is composed of a combination of domains which make up its function. If
one of the domains is substituted by another domain, then the over-all function of
the ORF may or may not change. To adequately handle this kind of information
every protein found in a sequence database would have to be broken down into
the domains that build the protein. Additionally, the domains that make up the
ORF would have to be identified. The analysis of the domain composition of a
protein would only be possible if a comprehensive database of protein domain
relationships existed. Since this is not currently the case, InterPro domains are
ignored.

5.2.1 The Rating of Observations

In section 4.1.2, different attributes of the BLAST family of tools which are used
to evaluate observations are listed: the E-value, the ORF coverage, the DB cov-
erage, and the relative number of identities. The rule basis used by the prototype
to rate BLAST observations does not use the relative number of identities. This
number depends on the number of already sequenced organisms that are closely
related to the studied organism (in the sense of taxonomy). The more organisms
are sequenced, the more likely it is to find sequences in databases with a large
number of matching bases. The membership functions defined for this set would
have to be adapted for each analysed organism. Another reason why this number
is not used is that the rule basis became unmanageable. At present, 36 rules
are used to rate a BLAST observation. If the relative number of identities is
included in the rating, then 108 rules would have to be maintained. However,
the increase in the expressiveness of the rule basis does not increase proportional
to its complexity.

Fuzzy logic is well suited to represent knowledge about a discreet universe
whose elements can be mapped onto a small range between its upper and lower
bounds. This is certainly the case for the two coverages as well as the relative
number of identities but not for the E-value. First of all, the concept represented
by an E-value is not discreet and secondly, only a very small subset of E-values
is of interest. It makes almost no difference if an observations has an E-value of
1e−100 or 1e−120. Both E-values are considered to be equally good. An observation
with an E-value of 1e−2 should not be considered for the prediction of a gene
function while an observation with an E-value of 1e−20 should be considered. An
E-value of 1e−100 is not five times as reliable as an E-value of 1e−20 but this E-value
is more than five times more reliable than an E-value of 1e−4. Representing all
these constraints within a set of membership functions is tedious and error-prone.

5.2. Limitations of the Prototype 85

5.2.2 Prediction of Gene Functions

The functional description of ORFs seems to be more or less usable but a thorough
evaluation of this class of annotations is missing. In most cases, MicHanThi
predicts a function that is comparable to the annotation created by a human
annotator even though different words may be used. In some cases, the software
utterly fails and it assigns “functions” such as ‘orf234’, ‘A’, or an incomplete
description. The assignment of the function ‘orf234’ can be traced back to badly
annotated genomes in which hypothetical proteins or conserved hypothetical pro-
teins are often assigned internal ORF names. The description of observations
containing only an ORF name should be filtered during the observation pre-
processing (filtering of “uninformative terms”). The filtering of ORF names is
implemented as a list of regular expressions (black list) that are matched against
the description of an observation. If some terms used in the descriptions match
one of the regular expressions, then the term is deleted from the processed de-
scription. Apparently, this list can never be complete. A better approach to
filter “uninformative terms” may be the application of a white list based on a
controlled vocabulary such as the Gene Ontology. Terms not found in that list
would then be deleted.

The assignment of single terms such as ‘A’ as well as the assignment of in-
complete descriptions are both caused by the same reason. The grouping of
observations is based on single terms found in an observation’s description. The
order of the appearance of a term within the description is also unimportant.
This approach was chosen for two reasons: subset relations among the observa-
tions can be established which can be used to create a more general functional
annotation and observations are placed in the same group even though the order
of terms is different. An example of the latter would be the description ‘A B C
D’ which is equivalent to ‘C D, A B’. This case is not unlikely among a lists of
observations. The drawback of this approach is that if a single term or a “mean-
ingless” combination of terms is over represented within the list of observations,
then it may be used as the functional description of a gene.

86 5. Results

5.3 Conclusions

An ever increasing number of available genomic sequence information makes the
interpretation of genomes and especially metagenomes more and more difficult.
Maintaining a comprehensive view on the data, databases, and tools used for the
analysis of genomic sequences is a nearly impossible task. The automation of
initially simple tasks such as the prediction of ORFs and similarity searches is
the main focus of the annotation systems presented in chapter 3. As the field
of genomics matures the questions considered increase in complexity. A newly
investigated topic is the automatic prediction of gene functions. At present,
several groups are working on this topic but no adequate solution is publicly
available.

The work described in this thesis offers a reliable foundation for further stud-
ies of organisms and it is applied to all annotation project initialised by the
Microbial Genomics Group. Compared to the annotations created by the
human annotator, about 60% of the annotations predicted by MicHanThi were
syntactically identical and in addition, about 10 percent were semantically equiv-
alent as described in section 5.1.6. The class of ORFs without any similarities
found in sequence databases could be reliably identified by MicHanThi. More
than 90% of the ORFs without a functional assignment annotated by a human
annotator were also found by MicHanThi. About 20% of all ORFs without
functional assignment have been inaccurately annotated by MicHanThi in re-
gards to the annotation for the same ORF by a human annotator. Compared
to a group of human annotators this is a rather impressive achievement. The
number of wrongly predicted ORFs among human annotators is much larger
than that of MicHanThi (tables 5.2 and 5.5). Most annotations of ORFs with-
out a functional assignment created by MicHanThi which could not be verified
by annotations created by a human annotator are for ORFs whose observations
questionable (E-value of about 1e−10 to about 1e−3 and coverages of about 25%).
Annotations based on such observations greatly depends on the expertise of the
human annotator. Even experienced annotators are indecisive as how to annotate
these ORFs. The advantage of MicHanThi is that it always applies the same
rules to decide if the attribute conserved should be assigned to the annotation
of the ORF. A limitation of the MicHanThi prototype is its over prediction of
ORFs with functional assignments. Nevertheless, incorrectly predicted functional
annotations pose no significant problem because ORFs with functional assign-
ments are further studied by human annotators. However, a thorough evaluation
of the class of ORFs with a functional assignment is missing.

5.4. Perspectives 87

5.4 Perspectives

Comparative genomics: The most promising approach to increasing the re-
liability of functional assignments is the comparative genomics approach. The
importance of this approach could be shown in [24, 54]). MicHanThi could
benefit from this kind of information by considering the surrounding ORFs when
it evaluates the annotations created for a certain ORF. This could reduce the
average number of annotations created by MicHanThi, and, more importantly,
increase the reliability of predicted annotations.

Metabolic Pathways: Metabolic pathways could be used to identify “missing”
genes as shown by [27]. If most of the genes of a pathway have been found in
an organism, then it is very likely that the remaining genes are present in the
genome as well. MicHanThi could then use the list of “missing” genes and
therefore missing functionally of a pathway to particularly look for hints of the
missing function within all similarities found for an organism in bioinformatics
databases.

ORF orf7: The annotation of orf7 created by the human annotator deserves
special attention. Most of the descriptions found in the list of observations de-
scribe the potential function of this protein as two-component system sensor his-
tidine kinase/response regulator, hybrid (’one component system’). MicHanThi
could not find any obvious rejections of this description and therefore used it as
the functional prediction for the ORF. However, the human annotator decided to
use a slightly different functional description and annotated the ORF as sensor
histidine kinase/response regulator hybrid, sugar binding. This decision is based
on the fact that the N-terminus of the protein is always matched by a sensor histi-
dine kinase/response regulator, hybrid protein whereas the C-terminus is matched
by proteins coding for some type of sugar binding. It would be the ultimate aim
of MicHanThi to find these kinds of information. Even if MicHanThi is not
able to combine the two functional descriptions, then it should at least be able
to indicate to the human annotator that there could be additional information.

sensor histidine kinase/response regulator hybrid

C−terminus:

N−terminus:

sugar binding

Figure 5.1: Annotation of ORF orf7. The C-terminus of the protein is always
matched by proteins involved in sugar binding. The N-terminus is always matched
by proteins coding for sensor histidine kinase/response regulator, hybrid

Appendix A

Rulesets

Rule E-value −→ Reliability Observation
1 ”unreliable” −→ ”bad”
2 ”uncertain” −→ ”average”
3 ”reliable” −→ ”good”
4 ”very reliable” −→ ”very good”

Table A.2: Ruleset used to rate InterPro observations

90 A. Rulesets

Rule E-value ∧ Coverage ORF ∧ Coverage DB −→ Reliability
Observation

1 ”unreliable” ”none” ”none” −→ ”bad”
2 ”unreliable” ”none” ”partial” −→ ”bad”
3 ”unreliable” ”none” ”complete” −→ ”bad”
4 ”unreliable” ”partial” ”none” −→ ”bad”
5 ”unreliable” ”partial” ”partial” −→ ”bad”
6 ”unreliable” ”partial” ”complete” −→ ”bad”
7 ”unreliable” ”complete” ”none” −→ ”bad”
8 ”unreliable” ”complete” ”partial” −→ ”bad”
9 ”unreliable” ”complete” ”complete” −→ ”bad”
10 ”uncertain” ”none” ”none” −→ ”bad”
11 ”uncertain” ”none” ”partial” −→ ”bad”
12 ”uncertain” ”none” ”complete” −→ ”bad”
13 ”uncertain” ”partial” ”none” −→ ”bad”
14 ”uncertain” ”partial” ”partial” −→ ”average”
15 ”uncertain” ”partial” ”complete” −→ ”average”
16 ”uncertain” ”complete” ”none” −→ ”bad”
17 ”uncertain” ”complete” ”partial” −→ ”average”
18 ”uncertain” ”complete” ”complete” −→ ”average”
19 ”reliable” ”none” ”none” −→ ”average”
20 ”reliable” ”none” ”partial” −→ ”average”
21 ”reliable” ”none” ”complete” −→ ”average”
22 ”reliable” ”partial” ”none” −→ ”average”
23 ”reliable” ”partial” ”partial” −→ ”average”
24 ”reliable” ”partial” ”complete” −→ ”good”
25 ”reliable” ”complete” ”none” −→ ”average”
26 ”reliable” ”complete” ”partial” −→ ”average”
27 ”reliable” ”complete” ”complete” −→ ”good”
28 ”very reliable” ”none” ”none” −→ ”average”
29 ”very reliable” ”none” ”partial” −→ ”average”
30 ”very reliable” ”none” ”complete” −→ ”average”
31 ”very reliable” ”partial” ”none” −→ ”average”
32 ”very reliable” ”partial” ”partial” −→ ”good”
33 ”very reliable” ”partial” ”complete” → ”very good”
34 ”very reliable” ”complete” ”none” −→ ”average”
35 ”very reliable” ”complete” ”partial” −→ ”good”
36 ”very reliable” ”complete” ”complete” → ”very good”

Table A.4: Ruleset used to rate BLAST observations

Appendix B

Presentations of this Thesis

The diploma thesis was presented at different conferences, meetings, and work-
shops:

MPI - Breakfast Talks On two occasions, this thesis was presented in the in-
ternal group seminar of the Molecular Ecology Group at the MPI Bre-
men. The first talk focused on the representation of knowledge and the
rating of observation using fuzzy logic. The second talk explained the an-
notation process and gave an overview of preliminary results.

International University Bremen (IUB) A 15 minutes talk was given at the
Bioinformatics Summer School, organised by the IUB in July, 2004. The
talk presented the overall ideas of MicHanThi.

Meeting at SWISS-PROT Geneva 2005 A one hour presentation was given
at a meeting with members of the HMAP team in September, 2005.

German Conference on Bioinformatics 2005 (GCB) A poster describing
the work of the diploma thesis was presented at the GCB in October, 2005.

92 B. Presentations of this Thesis

MicHanThi
A Software for the Prediction of Gene Functions

C. Quast1, M. Richter1, T. Lombardot1, H. Teeling1, U. Bohnebeck2,
 O. Herzog3, F.O. Glöckner1,4

1. Microbial Genomics Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen
2. TTZ -Technologie-Transfer-Zentrum / Bremerhavener Institut für Biologische Informationssysteme, D-27572 Bremerhaven
3. TZI - Center for Computing Technologies, University of Bremen, D-28359 Bremen
4. International University Bremen, D-28759 Bremen

Introduction Introduction
The technological power of high-throughput sequencing has revolutionized our capabilities to examine the genetic
complexity of organisms at the whole genome level. Since the first microbial genome was completed in 1995 the number
of sequenced genomes and metagenomes has increased exponentially. To cope with this huge amount of sequence data
automated systems for functional assignment are urgently needed. The software presented predicts gene functions based on
similarity searches using the NCBI nr and InterPro databases and provides the human annotator with a starting point for
thorough investigations.

Evaluation Evaluation
The program was evaluated within the annotation jamboree of the
marine bacterium Cytophaga sp. KT0803. The size of the genome
of this organism is about 3.8Mbp (million base pairs) and contains
about 3600 potential genes. About 60% of these genes could be
annotated automatically. The function predicted by the software
was confirmed by the human annotator. An additional 5% differed
only in wording. The software performed best if clear rules exist.
This is the case for hypothetical and conserved hypothetical genes,
with or without transmembrane regions and signal peptide
predictions. In these cases the program gave consistent results and
outperformed the human annotator. By comparing the manual and
automatic annotations of hypothetical genes it was found that
about 19% of these genes were wrongly annotated by the human
annotator. In the following manual cross-checking phase these
mistakes were corrected based on the proposed annotations of
MicHanThi. Finally the auto annotator found about 95% of the
hypothetical genes annotated by the human.

Functional Assignment

Unknown

Known

Human- / Computer- Annotation

Differences

Matches

41%

59%

52%

48%

M
ic

ro
bi

al
 G

en
om

ic
s

Se
m

i
A

ut
om

at
ic

 A
nn

ot
at

io
n

function and selecting the most
supported group(s). Depending on
the complexity of the observations
list, one or more annotations can be
found by the software, each labeled
with a corresponding reliability
value. Once the gene product is set
MicHanThi tries to add further
information such as the gene name,
and EC and GO numbers based on
SwissProt or InterPro observations.

The software is implemented as an
add-on for the GenDB annotation
system (http://gendb.genetik.uni-
bielefeld.de). It is using the
corresponding relational database
system which provides all
necessary observations. The results
for the similarity searches are
automatically generated by the tool
pipeline of GenDB. Nevertheless,
the design and implementation of
MicHanThi is independent of the
underlying database and allows an
easy integration into any annotation
pipeline.

Sequence

Comparison
Classes

Genome Annotation Pipeline Genome Annotation Pipeline

Tools

Observations

Rating

'Clustering' /
Selection

Annotation

Genome
ORF

BLAST HMMer SignalPTMHMM

sequence
similarity

motif
search

● gene product: asparagine synthase
● gene name: asnB
● EC number: 6.3.5.4
● GO number: GO:0004066

GO:0006529
● comment:

auto-annotation reliability: 750

MicHanThi
1e-3 1e-151

bad uncertain good
0

0.5

0.0

1.0
evalue

Implementation Implementation
The first step to predict the function
of a gene is to sort out which of the
many results of the similarity or
profile based searches (obser-
vations) should be used. To select
the most reliable observations,
rules based on fuzzy logic are
applied by the software. These
rules are modeled based on human
reasoning.

The reliability of an observation is
based on the features of the tool /
algorithm used to calculate it. For
BLAST these are the evalue, the
coverage of the gene by the DB
match, and the coverage of the DB
match by the gene.
Based on the selected observations
the gene product is defined by
grouping these observations by

Figure B.1: Poster presented at the German Conference on Bioinformatics 2005
(http://www.gcb2005.de)

Appendix C

Manual

C.1 Hardware Requirements

MicHanThi runs on any hardware platform for which an Java Runtime Envi-
ronment (JRE) exists.

C.2 Software Requirements

Dependencies

============

MicHanThi requires a recent version (>=1.5.0) of the Java Runtime

Environment (JRE) and it depends on the following external libraries:

JDBC-mysql: A recent version (>= 3.1.7) of the mysql databases connector

if you use a MySQL project database.

http://www.mysql.com/products/connector/j/

JSAP: A recent version (>= 2.0a) of the Java Simple Argument Parser (JSAP)

used to parse options provided on the command line.

http://www.martiansoftware.com/jsap/

Xerces2: A recent version (2.6.0) of the Xerces XML parser used to read

the configuration files used by MicHanThi.

http://xerces.apache.org/xerces2-j/

mbfuzzyit: The version of the mfuzzit fuzzy logic library supplied with

this distribution.

Sufficient versions of these libraries are supplied in the lib directory.

These libraries are used by default to build and run MicHanThi.

C.3 Installation from Source Code

Installation

============

In order to build MicHanThi from source code you must have a recent

94 C. Manual

(>= 1.5.0) of the Java Development Kit (JDK) installed.

http://java.sun.com/

Also, you need an installation of the ant build tool if you want to build

to software from source code.

http://ant.apache.org/

1. uncompress the distribution

% zcat michanthi-x.y.z.tar.gz | tar xvf -

or

% tar zxvf michanthi-x.y.z.tar.gz

or

% gunzip -c michanthi-x.y.z.tar.gz | tar zvf -

This should create a subdirectory michanthi-x.y.z.

% cd michanthi-x.y.z

2. compile MicHanThi

Read the NOTES-section found in the end of this file.

% ant

3. installation

The software is self contained and can run from the source code

directory.

C.4 Usage

Usage

=====

michanthi:

Annotation of an ORF, e.g. :

./michanthi --project cyto_kt0803 --orf orf7

Re-Annotation of an orf ignoring matches to sequences of the same organism

found in the databases, e.g.:

./michanthi --project blasto_pirellula_marina --orf orf7 --soo

"Rhodopirellula baltica SH 1"

Deleting Annotation created by MicHanThi, e.g.:

./michanthi --project cyto_kt0803 --orf dummy --del-autoannotations

mobh:

Mark ORFs based on best blast hit, e.g. :

./mobh --ds-host mgdbs --ds-user chriss --ds-passwd ’********’ --project

cyto_kt0803

C.5. Configuration 95

sp-importer:

Import of a SWISS-PROT xml dump into a local MySQL server

./sp-importer --genann-host mgdbs --genann-user chriss --genann-passwd

’********’ --sp-dump swiss_prot_dump.xml

upgenec:

Update additional annotation information of an already annotated ORF.

./upgenec --ds-host mgdbs --ds-user chriss --ds-passwd ’********’

-genann-host mgdbs --genann-user chriss --genann-passwd ’********’

--project cyto_kt0803 --orf orf7

Submit ’update annotation jobs’ to the SGE grid engine

./upgenec.submit --ds-host mgdbs --ds-user chriss --ds-passwd ’********’

-genann-host mgdbs --genann-user chriss --genann-passwd ’********’

--project cyto_kt0803 --orf orf7

C.5 Configuration

Configuration

=============

By default, MicHanThi create an application directory in the users home

directory (.michanthi). This directory contains a configuration file use

to setup the software as well as the default directory where log files

are created. All option specified in the configuration file may be

overwritten on the command line.

Configuration Options:

loglevel how much information is printed onscreen and to the

logfile

NONE: No messages at all.

ERROR: Error messages only.

WARNING: Error and warning messages.

INFO: Default output level.

DEBUG: Prints anything

data_source source of information about the genome annotation project

type: Type of the database to connect to.

gendb-mysql is the only supported type atm.

version: 2.0 | 2.2 according to the version of the GenDB

database.

host: name or IP of the server

port: port used to connect to the server

user: username to use when connecting to the server

passwd: password (in plain text) to use when connecting

to the server

server source of additional information such as the SWISS-PROT

and InterPro entries

name: unique name identifying this entry.

version: not used atm.

host: name or IP of the server

port: port used to connect to the server

user: username to use when connecting to the server

passwd: password (in plain text) to use when connecting

to the server

tmppath pathname of the directory where to create temporary files.

If the pathname starts with ’/’ then the path interpreted

as absolut otherwise it is considered to be relative to

.michanthi

96 C. Manual

The upgenec.submit tool creats its own configuration in the users home

directory (.upgenecrc).

DS_HOST, DS_USER, DS_PASS, DS_TYPE, DS_VERS == MicHanThi data_source

GA_HOST, GA_USER, GA_PASS == MicHanThi server

Appendix D

CD-ROM

Table D.1 provides an overview of the contents and structure of the CD-ROM.
All documents other than the source codes are provided as PDF documents.

Directory Contents
data This directory contains a dump of the ‘Gramella forsetii’

KT0803 database in the MySQL format as well as the list of all
annotations created by MicHanThi and the final list of an-
notations created by the human annotators. These lists were
used to create the statistics presented in chapter 5.

doc Documentation about this thesis: the UML class diagram
showing dependencies and interactions of the different mod-
ules, an UML class diagram explaining the GenDB database
schema, and an UML class diagram describing the fuzzy logic
library.

papers Documents that discuss this thesis.
→ subject Short abstract of this thesis.
→ thesis This thesis.
posters Posters about this word presented at conferences
→ gcb2005 Presentation of this thesis at the GCB 2005.
sources Programs / scripts / tools developed as part of this thesis.
→ michanthi Source code of the prototype developed as part of this the-

sis. Detailed information about this directory can be found in
appendix C

talks Presentations of the diploma thesis at different conferences and
meetings. See appendix B for a detailed list of conferences and
meetings attended.

Table D.1: Contents and structure of the CD-ROM

Bibliography

[1] C. J. J. Francoijs, J. P. G. Klomp, and R. M. A. Knegtel, “Sequence anno-
tation of nuclear receptor ligand-binding domains by automated homology
modeling,” Protein Engineering, vol. 13, no. 6, pp. 391–394, 2000.

[2] M. Williams, H. Shirai, J. Shi, H. Nagendra, J. Mueller, K. Mizuguchi,
R. Miguel, S. Lovell, C. Innis, C. Deane, L. Chen, N. Campillo, D. Burke,
T. Blundell, and P. de Bakker, “Sequence-structure homology recognition by
iterative alignment refinement and comparative modeling,” Proteins: Struc-
ture, Function, and Genetics, vol. 45, no. S5, pp. 92–97, 2001.

[3] D. G. Higgins and S. P. M., “CLUSTAL: a package for performing multi-
ple sequence alignment on a microcomputer.,” Gene, vol. 73, pp. 237–244,
December 1988.

[4] L. B. Koski, M. W. Gray, B. F. Lang, and G. Burger, “AutoFACT: An Auto-
matic Functional Annotation and Classification Tool,” BMC Bioinformatics,
vol. 6, pp. 1–11, 2005.

[5] R. Fleischmann, M. Adams, O. White, R. Clayton, E. Kirkness,
A. Kerlavage, C. Bult, J. Tomb, B. Dougherty, and J. Merrick, “Whole-
genome random sequencing and assembly of Haemophilus influenzae Rd.,”
Science, vol. 269, pp. 496–512, 1995.

[6] J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R. Losick,
Molecular Biology of the Gene. Benjamin Cummings, fifth ed., 2003.

[7] J. Messing, R. Crea, and P. H. Seeburg, “A system for shotgun DNA se-
quencing.,” Nucl. Acids Res., vol. 9, pp. 309–321, Janurary 1981.

[8] D. W. Mount, Bioinformatics Sequence and Genome Analysis. CSHL Press,
second ed., 2004.

[9] M. L. Green and P. D. Karp, “Genome annotation errors in pathway
databases due to semantic ambiguity in partial EC numbers,” Nucl. Acids
Res., vol. 33, no. 13, pp. 4035–4039, 2005.

100 BIBLIOGRAPHY

[10] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.
Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock, “Gene Ontology: tool for the
unification of biology,” Nat Genet, vol. 25, pp. 25–29, May 2000.

[11] K. Hanekamp, “Entwicklung eines Systems zur phylogenetischen Anal-
yse von Sequenzvergleichen im Rahmen von Genomannotationsprojekten,”
diploma thesis, University Bremen, 2005.

[12] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal
of Molecular Biology, vol. 48, pp. 443–453, March 1970.

[13] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences.,” Journal of Molecular Biology, vol. 147, pp. 195–197, 1981.

[14] S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman, “Ba-
sic Local Alignment Search Tool,” Journal of Molecular Biology, vol. 215,
pp. 403–410, Oct. 1990.

[15] I. Korf, M. Yandell, and B. Joseph, BLAST. O’REILLY, first ed., 2003.

[16] K. Weicker, Evolution”are Alogrithmen. Teubner, first ed., 2002.

[17] S. Karlin and S. Altschul, “Methods for Assessing the Statistical Significance
of Molecular Sequence Features by Using General Scoring Schemes,” PNAS,
vol. 87, no. 6, pp. 2264–2268, 1990.

[18] S. R. Eddy, “Profile hidden Markov models.,” Bioinformatics, vol. 14, no. 9,
pp. 755–763anfa, 1998.

[19] Y. Fujiwara, M. Asogawa, and A. Konagaya, “Stochastic Motif Extraction
Using Hidden Markov Model.,” in ISMB (R. B. Altman, D. L. Brutlag, P. D.
Karp, R. H. Lathrop, and D. B. Searls, eds.), pp. 121–129, AAAI, 1994.

[20] L. R. Rabiner, “A tutorial on hidden markov models and selected applica-
tions in speech recognition,” IEEE, vol. 77, pp. 257–286, 1989.

[21] S. R. Eddy, “What is a hidden Markov model?,” Nature Biotechnology,
vol. 22, pp. 1315–1316, October 2004.

[22] C. Chothia and A. M. Lesk, “The relation between the divergence of sequence
and structure in proteins,” EMBO J, vol. 5, pp. 823–826, 1986.

[23] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, and P. E. Bourne, “The Protein Data Bank,” Nucl. Acids
Res., vol. 28, no. 1, pp. 235–242, 2000.

BIBLIOGRAPHY 101

[24] M. Richter, “Bioinformatischer Genomvergleich der sulfatreduzierden Bakte-
rien Desulfotalea phsychrophila und Desulfovibrio vulgaris ,” diploma thesis,
University Bremen, 2004.

[25] H. Teeling, A. Meyerdierks, M. Bauer, R. Amann, and F. O. GlÃ¶ckner,
“Application of tetranucleotide frequencies for the assignment of genomic
fragments,” Environmental Microbiology, vol. 6, no. 9, pp. 938–947, 2004.

[26] M. Huynen, B. Snel, W. Lathe, and P. Bork, “Exploitation of gene context,”
Curr Opin Struct Biol., vol. 10, pp. 366–370, June 2000.

[27] A. Ostermann and R. Overbeek, “Missing genes in metabolic pathways:
a comparative genomics approach,” Current Opinion in Chemical Biology,
vol. 7, pp. 238–251, April 2003.

[28] K. Okubo, H. Sugawara, T. Gojobori, and Y. Tateno, “DDBJ in preparation
for overview of research activities behind data submissions,” Nucl. Acids
Res., vol. 34, pp. D6–9, 2006.

[29] G. H. Hamm and G. N. Cameron, “The EMBL data library,” Nucl. Acids
Res., vol. 14, pp. 5–9, January 1986.

[30] C. Burks, J. W. Fickett, W. B. Goad, M. Kanehisa, F. I. Lewitter, R. W. P.,
C. D. Swindell, T. C. S., and B. H. S., “The GenBank nucleic acid sequence
database.,” Comp Appl Biosci, vol. 1, pp. 225–233, December 1985.

[31] W. C. Barker, L. T. Hunt, D. G. George, L. S. Yeh, H. R. Chen, M. C.
Blomquist, E. I. Seibel-Ross, A. Elzanowski, B. J. K., and F. D. A. et al.,
“Protein sequence database of the protein identification resource (PIR).,”
Protein Seq Data Anal., vol. 1, no. 1, pp. 43–49, 1987.

[32] K. D. Pruitt, K. S. Katz, H. Sicotte, and D. R. Maglott, “Introducing RefSeq
and LocusLink: curated human genome resources at the NCBI,” Trends in
Genetics, vol. 16, pp. 44–47, January 2000.

[33] A. Bairoch and B. Boeckmann, “The SWISS-PROT protein sequence data
bank,” Nucl. Acids Res., vol. 19, pp. 2247–2249, 1991.

[34] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence data
bank and its new supplement TREMBL,” Nucl. Acids Res., vol. 24, no. 1,
pp. 21–25, 1996.

[35] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,
C. O’Donovan, N. Redaschi, and L.-S. L. Yeh, “UniProt: the Universal
Protein knowledgebase,” Nucl. Acids Res., vol. 32, no. 90001, pp. D115–119,
2004.

102 BIBLIOGRAPHY

[36] S. Henikoff and J. G. Henikoff, “Automated assembly of protein blocks for
database searching.,” Nucl. Acids Res., vol. 19, no. 23, pp. 6565–6572, 1991.

[37] E. L. Sonnhammer, S. R. Eddy, and R. Durbin, “Pfam: a comprehensive
database of protein domain families based on seed alignments.,” Proteins:
Structure, Function, and Genetics, vol. 28, pp. 405–420, December 1998.

[38] T. K. Attwood and M. E. Beck, “PRINTS - A protein motif fingerprint
database.,” Protein Engineering, vol. 7, no. 7, pp. 841–848, 1994.

[39] A. Bairoch, “PROSITE: a dictionary of sites and patterns in proteins,” Nucl.
Acids Res., vol. 19, pp. 2241–2245, 1991.

[40] F. Corpet, J. Gouzy, and D. Kahn, “The ProDom database of protein domain
families,” Nucl. Acids Res., vol. 26, no. 1, pp. 323–326, 1998.

[41] J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting, “SMART, a simple mod-
ular architecture research tool: Identification of signaling domains,” Proc.
Natl. Acad. Sci. U.S.A., vol. 95, no. 11, pp. 5857–5864, 1998.

[42] D. H. Haft, B. J. Loftus, D. L. Richardson, F. Yang, J. A. Eisen, I. T.
Paulsen, and O. White, “TIGRFAMs: a protein family resource for the
functional identification of proteins,” Nucl. Acids Res., vol. 29, no. 1, pp. 41–
43, 2001.

[43] R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas,
P. Bucher, L. Cerutti, F. Corpet, M. D. R. Croning, R. Durbin, L. Falquet,
W. Fleischmann, J. Gouzy, H. Hermjakob, N. Hulo, I. Jonassen, D. Kahn,
A. Kanapin, Y. Karavidopoulou, R. Lopez, B. Marx, N. J. Mulder, T. M.
Oinn, M. Pagni, F. Servant, C. J. A. Sigrist, and E. M. Zdobnov, “The In-
terPro database, an integrated documentation resource for protein families,
domains and functional sites,” Nucl. Acids Res., vol. 29, no. 1, pp. 37–40,
2001.

[44] E. M. Zdobnov and R. Apweiler, “InterProScan - an integration platform
for the signature-recognition methods in InterPro,” Bioinformatics, vol. 17,
no. 9, pp. 847–848, 2001.

[45] M. Scharf, R. Schneider, G. Casari, P. Bork, A. Valencia, C. Ouzounis,
and C. Sander, “GeneQuiz: a workbench for sequence analysis.,” Proceeding
Internation Conference Intelligent System Molecular Biology, vol. 2, pp. 348–
353, 1994.

[46] T. Gaasterland and C. W. Sensen, “MAGPIE: automated genome interpre-
tation,” Trends in Genetics, vol. 12, pp. 78–80, 1996.

BIBLIOGRAPHY 103

[47] T. Gaasterland and C. W. Sensen, “Fully automated genome analysis that
reflects user needs and preferences. A detailed introduction to the MAGPIE
system architecture.,” Biochimie, vol. 78, pp. 302–310, 1996.

[48] D. Frishman, K. Albermann, J. Hani, K. Heumann, A. Metanomski, A. Zoll-
ner, and H. Mewes, “Functional and structural genomics using PEDANT.,”
Bioinformatics, vol. 17, no. 1, pp. 44–57, 2001.

[49] H. W. Mewes, K. Albermann, K. Heumann, S. Liebl, and F. Pfeiffer, “MIPS:
a database for protein sequences, homology data and yeast genome informa-
tion.,” Nucl. Acids Res., vol. 25, no. 1, pp. 28–30, 1996.

[50] R. Overbeek, N. Larsen, T. Walunas, M. D’Souza, G. Pusch, J. Eu-
gene Selkov, K. Liolios, V. Joukov, D. Kaznadzey, I. Anderson, A. Bhat-
tacharyya, H. Burd, W. Gardner, P. Hanke, V. Kapatral, N. Mikhailova,
O. Vasieva, A. Osterman, V. Vonstein, M. Fonstein, N. Ivanova, and N. Kyr-
pides, “The ERGO genome analysis and discovery system,” Nucl. Acids Res.,
vol. 31, no. 1, pp. 164–171, 2003.

[51] F. Meyer, A. Goesmann, A. McHardy, D. Bartels, T. Bekel, J. Clausen,
J. Kalinowski, B. Linke, O. Rupp, R. Giegerich, and A. PÃŒhler, “GenDB-
an open source genome annotation system for prokaryote genomes,” Nucl.
Acids Res., vol. 31, no. 8, pp. 2187–2195, 2003.

[52] A. Goesmann, B. Linke, D. Bartels, M. Dondrup, L. Krause, H. Neuweger,
S. Oehm, T. Paczian, A. Wilke, and F. Meyer, “BRIGEP-the BRIDGE-
based genome-transcriptome-proteome browser,” Nucl. Acids Res., vol. 33,
pp. 710–716, 2005.

[53] R. Overbeek, T. Disz, and R. Stevens, “The SEED: a peer-to-peer environ-
ment for genome annotation,” Communications of the ACM, vol. 47, no. 11,
pp. 46–51, 2004.

[54] R. Overbeek, T. Begley, R. M. Butler, J. V. Choudhuri, H.-Y. Chuang,
M. Cohoon, V. de CrÃ c©cy-Lagard, N. Diaz, T. Disz, R. Edwards, M. Fon-
stein, E. D. Frank, S. Gerdes, E. M. Glass, A. Goesmann, A. Hanson,
D. Iwata-Reuyl, R. Jensen, N. Jamshidi, L. Krause, M. Kubal, N. Larsen,
B. Linke, A. C. McHardy, F. Meyer, H. Neuweger, G. Olsen, R. Olson, A. Os-
terman, V. Portnoy, G. D. Pusch, D. A. Rodionov, C. RÃŒckert, J. Steiner,
R. Stevens, I. Thiele, O. Vassieva, Y. Ye, O. Zagnitko, and V. Vonstein, “The
Subsystems Approach to Genome Annotation and its Use in the Project to
Annotate 1000 Genomes,” Nucl. Acids Res., vol. 33, pp. 5691–5702, 2005.

[55] M. A. Andrade, N. P. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich,
A. Franchini, J. Tamames, A. Valencia, C. Ouzounis, and C. Sander, “Auto-

104 BIBLIOGRAPHY

mated genome sequence analysis and annotation,” Bioinformatics, vol. 15,
no. 5, pp. 391–412, 1999.

[56] G. H. van Domselaar, P. Stothard, S. Shrivastava, J. A. Cruz, A. Guo,
X. Dong, P. Lu, D. Szafron, R. Greiner, and D. S. Wishart, “BASys: a
web server for automated bacterial genome annotation.,” Nucl. Acids Res.,
vol. 33, pp. 455–459, 2005.

[57] L. A. Zadeh, “Fuzzy Logic,” IEEE, vol. 88, pp. 83–93, 1988.

Acknowledgements

First of all, I would like to thank my whole family for supporting me and providing
me with shelter. I know, times have not always been easy, but apparently I found
my way . . . Many thanks to Mrs. Silva. I know I would not be writing this thesis
if it wasn’t for here.

Thanks to Otthein Herzog and Frank Oliver Glöckner for giving me the chance
to write this thesis. In particular, I would like to thank Frank Oliver for giving
me the opportunity to use the resources of his group and for buying me all this
nice hardware that I could use to do all these nifty things.

I would like to thank Frank Oliver and Uta Bohnebeck for fruitful discussions
about all quaint ideas I had regarding MicHanThi. I would to thank Renzo
Kottmann for all those discussions that seemed to never end. Furthermore, I
would like to thank Michael Richter, Hanno Teeling, and Thierry Lombardot
for answering all my stupid questions about biology and helping me to tweak the
membership function for the different fuzzy sets as well as helping me to fine-tune
MicHanThi. To make up for all their troubles I decided to name the program
based on their first names.

I would like to thank all the participants of the ‘Gramella forsetii’ KT0803
Annotation Jamboree who provided me with a huge amount of data that I could
use to evaluate and enhance MicHanThi. Especially, I have to thank Margarete
Bauer because she had the luck of annotating the first 250 ORFs of the organism
which happened to be my test set. I think I questioned her about half the
annotation she made and why she did what she did.

I would like to thank all the members of the Microbial Genomics Group
and Molecular Ecology Group not particularly mentioned here for just being
around.

I would like to thank Kristian Hahnekamp, Thomas Soller and the other
members of the Genann group of the GEN!E Project who provided me with a
solid basis for this thesis. Special thanks to Kristian for having the initial thought
of grouping observations.

Finally, many many many thanks to Rachel Montague for all
the work she spent in proof-reading this thesis.

Selbstständigkeitserklärung

gemäß §11 Abs. 7 DPO 1993

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmitteln benutzt habe.

Bremen, October 4, 2007

Christian Quast

