fechnical

Faster than Pairing and Fibonacci Heaps?
Rank-Relaxed Weak Queues

Dr. Stefan Edelkamp
TZI, Universitat Bremen

TZI-Bericht Nr. 54
2009

edelkamp
Schreibmaschinentext

edelkamp
Schreibmaschinentext

edelkamp
Schreibmaschinentext

edelkamp
Schreibmaschinentext

edelkamp
Schreibmaschinentext

edelkamp
Notiz
MigrationConfirmed festgelegt von edelkamp

edelkamp
Schreibmaschinentext

edelkamp
Schreibmaschinentext
?

edelkamp
Schreibmaschinentext

edelkamp
Schreibmaschinentext

TZI-Berichte

Herausgeber:

Technologie-Zentrum Informatik und Informationstechnik
Universitat Bremen

Am Fallturm 1

28359 Bremen

Telefon: +49-421-218-7272

Fax: +49-421-218-7820

E-Mail: info@tzi.de

http://lwww.tzi.de

ISSN 1613-3773

Rank-Relaxed Weak Queues: Faster than
Pairing and Fibonacci Heaps?

Stefan Edelkamp
TZ1
Universitat Bremen
Am Fallturm 1
28357 Bremen
Germany
edelkamp@tzi.de

September 24, 2009

Abstract

A run-relaxed weak queue by Elmasry et al. (2005) is a priority
queue data structure with insert and decrease-key in O(1) as well
as delete and delete-min in O(logn) worst-case time. One further
advantage is the small space consumption of 3n + O(logn) pointers.

In this paper we propose rank-relaxed weak queues, reducing the
number of rank violations nodes for each level to a constant, while
providing amortized constant time for decrease-key. Compared to run-
relaxed weak queues, the new structure additionally gains one pointer
per node.

An empirical evaluation shows that the implementation can out-
perform Fibonacci and pairing heaps in practice even on rather simple
data types.

1 Introduction

Priority queues are among the most important non-trivial data structures
and essential for many fundamental algorithms, like Dijkstra’s approach to

edelkamp
Schreibmaschinentext

compute shortest paths [3], or minimum spanning tree generation according
to Kruskal’s algorithm [15]. For a comparison function operating on totally
ordered keys, besides providing the dictionary operations insert and delete,
priority queues feature extracting the minimum and decreasing the value of
a key.

The most prominent implementation of priority queues featured in many
text books are Fibonacci heaps [12], which can be roughly characterized as
lazy-join versions of binomial queues. They provide insert and decrease-key
in O(1) amortized, as well as delete and delete-min in O(logn) amortized.

Run-relaxed weak queues as proposed in Elmasry et al. [9] are worst-
case efficient priority queues, by means that all running times of Fibonacci
heaps are worst-case instead of amortized. They have been derived from run-
relaxed heaps [4], which have matching performance, but a rather involved
and less space-efficient implementation. The core difference between the two
is that the latter relies on binomial queues, while the former uses perfect
weak-heaps, where weak-heaps [5] have been designed for efficient sorting.
Compared to ordinary binary heaps, weak-heaps are less restrictive. A key
only needs to be smaller than all keys in its right subtree. As the root node
has no left subtree, it contains the minimal key. The efficiencies for sorting,
worst and best case inputs, and the construction of a (double-ended) priority
queue has been studied by [7].

In this paper we improve run-relaxed weak queues to rank-relaxed weak
queues for better practical time and space performance by refining the data
structure for storing and reducing potential heap-order violating nodes. The
core result is that by sacrificing worst-case for amortized complexity at most
4 potential heap-order violating nodes are needed at each heigth.

As the operation is not to be so important in applications this paper
does not discuss an efficient meld of two rank-relaxed weak queues. As the
structure for heap-order violation becomes simper for rank-relayed weak-
queues compared to run-relaxed weak-queues we expect that a worst case
running time of O(min{logm,logn}) for two structures of n and m elements
should be possible to achieve.

Our experiments in a space-optimized implementation show that the effi-
ciency of our implementation can be superior to the performance of Fibonacci
and pairing heap priority queue implementations. Moreover, wrt. new de-
velopments of processor architectures to support leading zero bit counts, the
efficiency might further rise. The price we pay wrt. the original implemen-
tation of run-relaxed weak-heaps is that decrease-key is no longer worst-case

but amortized constant time Our approach further shows that the space con-
sumption of relaxed weak queues can be reduced.

2 Run-Relaxed Weak Queues

Run-relaxed weak queues are binary tree variants of run-relaxed heaps [4],
and reflect worst-case efficient priority queues (with constant-time efficiencies
for insert and decrease-key and logarithmic time for delete and delete-min).
Other structures achieving this performances are Brodal heaps [2] and fat
heaps [14]. The fact that distinguishes run-relaxed weak queues from the
others is that they are considerably easy to implement [19].

Weak-heaps [5] are obtained by relaxing the heap requirements. More
precisely, a weak-heap satisfies the following three conditions: The root value
of any subtree is smaller than or equal to all elements to its right (weak
heap dominance property), the root of the entire structure has no left child
(optimal root property), and leaf nodes are found on the last two levels only
(heap balance property). In perfect weak-heaps, the right subtree of the root
is a complete binary tree. Weak-heaps have a natural array embedding that
utilizes so-called reverse bits r;, i € {0,...,n—1}. The index of the left child
is located at 2i+r; and the right child is found at 2¢+1—1r;. For this purpose
r; is interpreted as an integer in {0, 1}, being initialized with value 0. By
flipping, the bit the status of being a left and a right child is exchanged, an
essential property to realize the join of two weak-heaps in constant time.

As an example take a = [1,4,5,2,7,5,3,8 15,11,10,13,14,9,12] and r =
0,1,1,1,1,1,1,0,1,1,1,1,1,1, 1] as an array representation of a weak-heap.
Its binary tree equivalent is shown in Fig. 1.

Weak-heaps are state-of-the-art for sequential sorting. For | = [logn],
the worst-case number of comparisons of weak-heap sort [5] is nl — 2! +n —
1 < nlogn + 0.09n [7]. An improvement sorts indexes in nlogn — 0.91n
comparisons [6].

An array-based solution is not an option for our studes. One main reason
is that it is difficult to efficiently meld two structures.

Weak queues [9] contribute to the observation that perfect weak-heaps
obey a one-to-one correspondence to heap-ordered binomial trees as featured
in run-relaxed heaps (as well as in binomial queues, Fibonacci heaps, and
others), and perfect weak-heaps (as featured in run-relaxed weak-queues).
We obsereve that binomial tree ranks correspond to weak-heap heights. Rea-

©® Q@ @ 9 6 6

13

Figure 1: Example of a perfect weak-heap. Reflected nodes are shown in
gray.

call that a binomial tree B, is a tree of height n with 2" nodes in total and
(?) nodes in depth i. The structure of B,, is found by unifying two structures
B,,_1, where one is added as an additional successor to the second. As an
unfortunate side effect, this increases the node branching factor considerably.
Operations on perfect weak-heaps are slightly more flexible than on binomial
trees. Moreover, binary trees provide a better space consumption, as only
two links are necessary to cover the parent and successor relationship. A
weak queue storing n elements is a collection of disjoint perfect weak-heaps
based on the binary representation of n = z}i’g n=U%.21. In its basic form, a
weak queue contains a perfect weak-heap H; of size 2¢ if and only if b; = 1.
In run-relazed weak-queues [9], the requirement of having exactly one per-
fect weak-heap of a given size is relaxed. An additional structure, called the
heap store, maintains perfect weak-heaps of same height. At most two heaps
per height suffice to efficiently realize injection and ejection of perfect weak-
heaps. To meet the worst-cased complexity bounds, the join of two perfect
weak-heaps of the same height is delayed, while maintaining the following
structural property on the sequence of numbers of perfect weak heaps of the
same height. The height sequence (1o, ...,7) € {0, 1, 2}**! is regular, if any
digit 2 is preceded by a digit 0, possibly having some digits 1 in between. A
subsequence of the form (01'2) is called a block. That is, every digit 2 must
be part of a block, but there can be digits, Os and 1s, that are not part of a
block. For example, the height sequence (1011202012) contains three blocks.
After the injection of a perfect weak heap, we join the first two of the same
size, if there are any. They are found by scanning the height sequence. To

grant O(1) access, a stack of pending joins, the join schedule implements the
height sequence of pending joins. Then we insert the new weak-heap, while
preserving the regularity of the height sequence. For ejection, the smallest
weak heap is eliminated from the sequence and, if it forms a pair, the top of
the join schedule is also removed.

The heap store can be implemented as a singly-linked list where each
node, if it is (the first of) a 2, has a jump pointer to the next 2. This
implementation is proposed in [1].

Resolving weak-heap order violations is delayed. The primary purpose of
a node store is to keep track and reduce the number of potential violation
nodes at which the key may be smaller than the key of the (binomial tree)
parent. A node that is a potential violation node is said to be marked. A
marked node is tough if it is the left child of its parent and also the parent
is marked. A chain of consecutive tough nodes followed by a single non-
tough marked node is called a run. All tough nodes of a run are called its
members; the single non-tough marked node of that run is called its leader.
A marked node that is neither a member nor a leader of a run is called a
singleton. To summarize, we can divide the set of all nodes into four disjoint
type categories: unmarked nodes, run members, run leaders, and singletons.
A pair (type, height) with type being either unmarked, member, leader, or
singleton and height being a value in {0,1,...,|logn| — 1} denotes the state
of a node, where the height of a node r is the height of the subtree rooted at
r. Transformations induce a constant number of state transitions. A simple
example of such a transformation is a join, where the height of the new
root must be increased by one. Other operations (see Fig. 2) are cleaning,
parent, sibling and pair transformations. A cleaning transformation rotates a
marked left child to a marked right one, provided its neighbor and parent are
unmarked. A parent transformation reduces the number of marked nodes
or pushes the marking one level up. A sibling transformation reduces the
markings by eliminating two markings in one level, while generating a new
marking one level up. A pair transformation has a similar effect, but also
operates on disconnected trees. These four primitive transformations are
combined to a singleton or run transformation.

We briefly recall the two transformations from [9] as their application
is crucial for our approach. In a singleton transformation, we assume that
two marked nodes ¢ and s do not have the same parent and that they are
of the same height. Furthermore, we assume that ¢ and s are the right
children of their respective parents p and r, which both are unmarked. This

transformation involves three steps. First, the subheaps rooted at p and r
are split. Second, the produced subheaps rooted at p and r are joined and
the resulting subheap is put in the place of the subheap originally rooted
at p or r, depending on which becomes the root of the resulting subheap.
Third, the two remaining subheaps rooted at ¢ and s are joined and the
resulting subheap is put in the place of the subheap originally rooted at
p or r, depending on which is still unoccupied after the second step. If
after the third step ¢ or s becomes a root, the node is unmarked. By this
transformation at least one marked node is eliminated.

The purpose of a run transformation is to move the two top-most marked
nodes of a run upwards and at the same time remove at least one marking.
Assume now that ¢ is the leader of a run taken from the leader-object list and
that r is the first member of that run. There are two cases depending on the
position of ¢q. In Case 1 ¢ is a right child. Apply the parent transformation
to ¢. If the number of marked nodes decreased, stop. Now the parent of r
is unmarked. If the sibling of r is marked, apply the sibling transformation
to r and its sibling, and stop. Thereafter, apply the parent transformation
once or twice to r to reduce the number of marked nodes. In Case 2 ¢ is
a left child. If the sibling of ¢ is marked, apply the sibling transformation
to ¢ and its sibling, and stop. Otherwise, apply the cleaning transformation
to q, thereby making it a right child. Now the parent of r is unmarked.
If the sibling of r is marked, apply the sibling transformation to r and its
sibling, and stop. Otherwise, apply the cleaning transformation followed by
the parent transformation to r. Now ¢ and r are marked siblings with an
unmarked parent; apply the sibling transformation to them to reduce the
number of marked nodes.

The singleton transformation reduces the number of marking in a given
level by 1, not generating a marking in the level above; or by 2, generating a
marking in the level above. A similar statement is valid for run transforma-
tions, so that for both functions, the number of markings is reduced by at
least 1 in constant amount of work. A A-reduction is invoked once for each
decrease-key and twice for each delete and delete-min operation. It calls ei-
ther a singleton or a run transformation and bounds the number of marked
nodes to at most |logn]| — 1.

In an implementation one would need a list of run leaders, a list of sin-
gleton leaders, for each singleton team a list of its members, and an array of
pointers to the beginning of each singleton team list.

An implementation of run-relaxed weak queues is due to Rasmussen [19].

7

The code uses primitives of the standard template library STL . In the imple-
mentation the node store consists of different list items containing the type
of the node marking, which can either be a fellow, a chairman, a leader, or
a member of a run, where fellows and chairmen refine the concept of sin-
gletons. A fellow is a marked node, with an unmarked parent, if it is a left
child. If more than one fellow has a certain height, one of them is elected
as a chairman. The list of chairmen is required for a pair transformation.
Nodes that are left children of a marked parent are members, while the par-
ent of such runs is entitled the leader. The list of leaders is needed for a run
transformation.

An implementation of the A-reduction routine that realizes the above
case study with these two lists is shown in Fig. 3. As the pseudo code
transparently refers to the transformation routines and not to the actual
marking and unmarking procedures underneath (that are called on-the-fly),
given the four primitives displaying in Fig.2, the complex case study should
be easy to walk through. For additional information on the implementation
we kindly refer the reader to the original description in [19]

3 Rank-Relaxed Weak Queues

Rank-relaxed weak queues improve the run-relaxed weak queues by eager
A-reductions; yielding a more efficient node store. Instead of executing at
most one reduction at a time, we eliminate all leaders and chairmen in one
operation, thus performing transformations until both lists are empty. In
such an iterated reduction, all runs are destroyed and no more than two
singleton remain.

The modified implementation of procedure is shown in Fig. 4. The
changes wrt. the implementation of Rasmussen in Fig. 3 are modereate.
The most important change is the embedding of the original A\ reduction in
an additional loop (while (leaders U chairmen # ()). Moreover, we have
exchanged the order of singleton and run transformations, so that run trans-
formations are preferred. Last, but not leasta line that terminates a run
transformation in case a singleton one becomes applicable.

Proposition 1 The loop increases the worst-case time for reduce to O(logn).

Proof. Eliminating all leaders and all singleton pairs may yield a ripple
effect. As an example, consider that for each height we have already stored

8

Procedure A-Reduce

if (leaders # 0) ;; Leader exists on some level
leader — leaders.first ; leaderparent < parent(leader) ;; Select leader and parent
if (leader = leaderparent.right) ;; Leader is right child
parenttrans(leaderparent) ;; Transform into left child

if (—marked(leaderparent) A marked(leader)) ;; Parent also marked

if (marked(leaderparent.left) siblingtrans(leaderparent); return
parenttrans(leaderparent)
if (marked(leaderparent,right)) parenttrans(leader)

else ;; Leader is left child
stbling < leaderparent.right ;; Temporary variable
if (marked(sibling)) siblingtrans(leaderparent); return
cleaningtrans(leaderparent) ;; Toggle marking of leader’s children
if (marked(sibling.right)) siblingtrans(sibling); return
cleaningtrans(sibling) ;; Toggle marking of sibling’s children
parenttrans(sibling)
if (marked(leaderparent.left)) siblingtrans(leaderparent)

else if (chairmen # () ;; Fellow pair on some level
first < chairmen.first; firstparent < parent(first)
if (firstparent.left = first and marked(firstparent.right) or ;; 2 children

firstparent.left # first and marked(firstparent.left))
siblingtrans(firstparent); return
second < chairmen.second; secondparent < parent(second)
if (secondparent.left = second and marked(secondparent.right) or ;; 2 children
secondparent.left # second and marked(secondparent.left)) ;; marked
siblingtrans(secondparent); return
if (firstparent.left = first) cleaningtrans(firstparent) ;; Toggle children marking
if (secondparent.left = second) cleaningtrans(secondparent)
if (

9y e e e

marked(firstparent) or root(firstparent)) ;; Parent also marked
parenttrans(firstparent); return
if (marked(secondparent) or root(secondparent)) ;; Parent also marked

parenttrans(secondparent); return
pairtrans(firstparent, secondparent)

Figure 3: Reducing number of marked nodes in a run-relaxed weak-queue.

Procedure Eager A\-Reduce
while (leaders U chairmen # () ;; New loop
if (chairmen # () ;; New ordering: first singletons, then run members
first «— chairmen.first; firstparent «— parent(first)
if (firstparent.left = first and marked(firstparent.right) or
firstparent.left # first and marked(firstparent.left))
siblingtrans(firstparent); continue
second < chairmen.second; secondparent < parent(second)
if (secondparent.left = second and marked(secondparent.right) or
secondparent.left # second and marked(secondparent.left))
siblingtrans(secondparent); continue
if (firstparent.left = first) cleaningtrans(firstparent)
if (secondparent.left = second) cleaningtrans(secondparent)
if (marked(firstparent) or root(firstparent))
parenttrans(firstparent); continue
if (marked(secondparent) or root(secondparent))
parenttrans(secondparent); continue
pairtrans(firstparent, secondparent)
else if (leaders # 0)
leader — leaders.first ; leaderparent < parent(leader)
if (leader = leaderparent.right)
parenttrans(leaderparent)
if (—marked(leaderparent) A marked(leader))
if (marked(leaderparent.left) siblingtrans(leaderparent); continue
parenttrans(leaderparent)
if (marked(leaderparent,right)) parenttrans(leader)
else
sibling <« leaderparent.right
if (marked(sibling)) siblingtrans(leaderparent); continue
cleaningtrans(leaderparent)
if (chairmen) continue ;; New case
if (marked(sibling.right)) siblingtrans(sibling); continue
cleaningtrans(sibling)
parenttrans(sibling)
if (marked(leaderparent.left)) siblingtrans(leaderparent)

Figure 4: Reducing number of marked nodes in the rank-relaxed weak-queue.

10

one singleton. Adding another singleton at height 0 we have to perform a
transformation, such that its elimination introduces the generation of another
one at height 1, and so on, until we reach the root node. As there are at most
O(log n) marked nodes in the store, and each applicable reduction eliminates
one marked node, the worst-case of at most O(logn) steps is immediate.
q.e.d.

Proposition 2 The amortized costs for eager A-reductions is constant.

Proof. The critical observation is that with each reduction that generates
a new marking at a certain depth, it eliminates more than one with smaller
height value. If we assign a account for the constant amount of work needed
for applying one reduction with each insertion of an element to the node store,
these saved efforts can be exploited to cover the work needed for iterating
the A-reduction. q.e.d.

Proposition 3 At any given time, there are at most four marked nodes of
the same height.

Proof. By the preference of singleton to run reductions at the time of each
run reduction we have at most one marked singleton at each height. The
critical case is that a cleaning transformation of the leader at height h to
convert it to a left child, will disconnect it from its marked left child and
can change it to a singleton, given that the left child of its destination is
not marked, so that two singletons could appear in height h + 1. With the
extra line in the code we participate from the fact that now a singleton
transformation applies. As a result, at height A + 1 we grant space for
a potential second fellow that is needed to finalize the transformation. All
other cases ensure that at most one new marking is generated in height h+1,
or h + 2. Continuing with singleton transformations we satisfy the invariant
that after executing reduce, we have no run, and at most one singleton for
each height. Moreover, in between two such iterated reductions for each
height, at most 2 nodes are stored as a singleton. Similarly, at most 2 nodes
appear as a member of a run at any given height. q.e.d.

The major gain of our approach of eager A\-reductions is that we can limit
the number of markings at a given height. An efficient implementation avoids
lists of marked nodes at each height.

11

Instead, we maintain marked nodes in a vector of quadruples; one for
each level. The first 2 links are for runs, where a leader can be either of the
2 links. The second 2 links are for singletons.

As the leader and singleton lists are doubly-linked, we need 4 additinal
links per level. At each node we maintain its height and its type Knowing the
type, there are at most 2 positions at which a link to a node can be found,
so that marking and unmarking remain in O(1).

Maintaining pointers for the leaders and chairmen in doubly-linked list
can be avoided by using a bit-vector set implementation. To find any member
in the set we compute any (or the most significant) bit that is set to 1.

We additionally observe that a refined implementation can save 1 link per
node. First of all, the height of a node (already present in the implementation
of Rasmussen [19]) can be packed into a single byte. A closer look shows that
its representation requires loglogn bits. This is much less than a link, since
with six bits we can cope with heaps of 264 = 1.844 - 10" nodes, which is
sufficient for all practical purposes. Maintaining the type of a node requires
two additional bits. This allows to pack the heights and the types into a
single byle. More precisely, using a bit-array implementation (as available in
C/C++), both informations still require only one byte per node in addition
to successor and parent links. Hence, we save one link per node. Essentially,
with our refinement, we require 2n + O(logn) words and n bytes'.

4 Experiments

We conducted experiments on 32-bit and 64-bit Linux PCs. We optimized the
GCC binary (with flag -02). As competitors to rank-relaxed weak queues,
we chose Fibonacci heaps, and k-ary heaps from the LEDA library [16] (we
used the publically available free 32-bit version for this purpose). We also
adapted an efficient pairing heap implementation of Irit Katriel (based on
work of [20]) that was used in [17].

Our space optimized implementation of rank-relaxed weak queues as-
sumes that pointers to the elements for decreasing a key and deleting an
element to modify are known. For a more flexible access, one would need a
pointer /iterator to the elements to track their actual moves.

LAs a time-space trade-off, the actual implementation does use left, right and parent
pointers yielding a space requiremnt of 3n 4+ O(logn) words and n bytes.

12

25,000,000 Integers 50,000, 000 Integers
Ins DecKey DelMin | Ins DecKey DelMin
Rank-Rel. | 0.048 0.223 4.38 | 0.049 0.223 5.09
Pairing 0.010 0.020 6.71 | 0.009 0.020 8.01
Fibonacci | 0.062 0.116 6.98 - - -
k-ary 0.136 0.091 5.32 | 0.138 0.088 6.45

Table 1: Performances per operation for 32-bit priority queues.

4.1 32-Bit CPU

Our first set of experiments is conducted on a CPU of 3.2 GHz (AMD
Athlon), with 2GB RAM. As this is a 32-bit machine, one can construct
a 64K-sized table with 65,536 entries denoting the most significant bit of all
16-bit numbers.?

In Table 1 we measured the time for inserting n integers, randomly as-
signed to values from n to 2n — 1. Next, we decreased their value by 10 and
continue deleting all n minima. CPU user times are provided in p-seconds
per operation. The bottom entries of the tables refer to results of LEDA, the
top ones are alternative implementations. The lack of results in one row is
due to the fact that Fibonacci heaps ran out of space.

In Table 2 we measured the time for inserting n strings, randomly assigned
to ASCII values from 100n to 101n — 1 (which avoids underflows). Next, we
decrease the key by a random value in [0,n — 1] and successively delete n
minima. We see that Fibonacci and other heap implementations are inferior
and pairing heaps are less effective on a larger set of elements.

4.2 64-Bit CPU

Our second set of experiments is conducted on one core of the Intel i7-920
CPU 2 with 2,66 GHz; and 12GB RAM. We used the same setting as before,

2There are some alternative options to quickly compute the most significant bit in an
unsigned int x, mostly based on considering x & -x. Options to identify the position of the
bit in the result include converting it to a float, a modulo computation, or a multiplication.
We experimented with the latter and got slightly better results than with the 64K table.

3 As the i7 architecture supports the population count (POPCNT) command in SSE4.2,
but not LZCNT#, we used a iterative approach to determine the most significant bit in
the 64-bit vector, operating in log 64 = 6 steps.

13

5,000,000 Strings 20,000, 000 Strings
Ins DecKey DelMin | Ins DecKey DelMin
Rank-Rel. | 0.334 1.910 7.50 | 0.390 1.986 9.92

Pairing | 0.262 1.002 8.99 |0.302 1.043 12.51
Fibonacci | 0.388 1.042 12.12 | 0.439 1.097 16.24
k-ary 0.730 1.404 11.07 | 0.809 1.494 14.35

Table 2: Performance of 32-bit priority queues on strings.

but limited our attention to the pairing heap and rank-relaxed weak queue
implementations.

In Table 3 we scaled the experiment from 25 to 225 million integers, after
which RAM became exhausted (for both pairing heaps and rank-relaxed weak
queues). As before, pairing heaps are faster in performing insert and delete-
key, but slower on delete-min. As the latter dominates the running times,
for large number of elements, the performance of pairing heaps is inferior.

Insert Decrease-Key Delete-Min
Elements | Pairing Rank-Rel. | Pairing Rank-Rel. | Pairing Rank-Rel.

25,000,000 | 0.009 0.031 0.012 0.516 2.351 2.301
50,000,000 | 0.008 0.031 0.012 0.531 2.854 2.652
75,000,000 | 0.008 0.031 0.012 0.546 3.204 2.865
100,000,000 | 0.009 0.031 0.012 0.544 3.453 3.014
125,000,000 | 0.008 0.030 0.012 0.532 3.681 3.119
150,000,000 | 0.009 0.030 0.012 0.548 3.854 3.222
175,000,000 | 0.009 0.030 0.012 0.548 4.009 3.302
200,000,000 | 0.008 0.030 0.012 0.549 4.148 3.398
225,000,000 | 0.008 0.030 0.012 0.553 4.249 3.446

Table 3: Performance of 64-bit priority queues.
Table 4 displays the total number of element comparisons for the experi-

ment (including n inserts, n decrease-keys and n delete-mins). As expected,
we see that rank-relaxed weak queues are clearly superior to pairing heaps.

14

Elements Pairing Rank-Rel.
25,000,000 | 1,117,868,044 969,285,934
50,000,000 | 2,341,540,962 2,014,524,909
75,000,000 | 3,604,956,553 3,091,500,382
100,000,000 | 4,894,251,738 4,178,886,163
125,000,000 | 6,202,768,881 5,279,851,817
150,000,000 | 7,526,500,750 6,408,502,237
175,000,000 | 8,863,051,572 7,524,243,367
200,000,000 | 10,210,578,621 8,656,277,841
225,000,000 | 11,567,978,225 9,796,509,293

Table 4: Number of comparisons for priority queues.

5 Conclusion, Discussion and Future Work

To push the practical effectiveness of priority queues we have improved the
run-relaxed to rank-relaxed weak queues. They outperform Fibonacci heaps
on moderate, and pairing heaps on a larger set of elements or on complex
comparisons. The refinement we suggest relies on the property of constantly
bounded buckets at each height level.

Our vision is a conceptually simple structure with good theoretical and
practical performance for substituting Fibonacci and pairing heaps in text
books and libraries. At this point we emphasize that although limited to
programmers not only data structure performance, the empirical compar-
ison is among these structures is rather fair, as all three implementations
maintain memory for node allocation on their own. On the other hand, by
using (resizable) arrays for this purpose, the implementations do affect their
theoretical worst-case performance guarantees.

Despite the good practical performance, rank-relaxed weak queues are
not a clear-cut winner compared to, e.g., pairing heaps. Consider a graph
application where the priority queues are used. The running time of the
resulting program is proportional to m + nlogn, where m is the number of
edges and n is the number of nodes. When m is large, the first term dominates
the overall costs. And the constant factor for this term is determined by
decrease-key. The decrease-key operation is simply too slow for weak queues
and its relatives to beat pairing heaps in this setting. The price we pay
similar to rank-relaxed heaps [4] and in contrast to run-relaxed queues, is

15

that decrease-key now operates in amortized (instead of worst-case) constant
time.

The apparent question is, if we can get back to worst-case constant time,
while providing the effectiveness of constantly bounded lists. Moreover, ap-
plying A-reduction eagerly may result in restructuring transformations that
would not be necessary if delayed reductions were applied (e.g., singletons
might be eliminated due to an unmarking before the corresponding singleton
transformation applies). The increased speed, however, indicates that accel-
erated restructuring is more important than savings obtained by maintaining
a slightly larger node store.

Due to the less complex structure, extensions to two-tier [11] (resp. mul-
tipartite [10]) priority queues with logn + O(loglogn) (resp. logn + O(1))
element comparisons for a delete might be easier to realize. However, we
expect practical impact only for very complex keys, given that only logn
element comparisons are currently needed to retrieve the minimum element.
Other interesting structures to compare with in future are quickheaps [18]
and wiolation heaps [8]. Moreover, a new variant of pairing heaps, assumed
to be simpler, also builds on collections of binary trees [13].

Relaxed heaps structures have been shown to be efficient in the EREW
PRAM model for shortest path, minimum spanning trees, minimum cost flow
and other graph-related algorithms [4]. This suggests to study if they can
effectively operate on graphics processing units in general proposed program-
ming languages environments like NVIDIA’s CUDA.

Acknowledgement Thanks to Peter Sanders for insightful comments on
advanced bit hacks and new trends in processor architectures and together
with his PhD. students Ospinov/Singler for the access to the advanced pair-
ing heap implementation of Irit Katriel that has been used in [17]; Jyrki
Katajainen for naming the data structure rank-relaxed weak queues, and to
initiate a continuation of this research; Jens Rasmussen for providing access
to the code; Martin Dietzfelbinger for proof reading. Last but not least, the
author wants to thank Jan Vahrenhold, Susanne Albers and Petra Mutzel
for the support that this research is worth continuing.

16

References

1]

2]

[10]

[11]

[12]

G. S. Brodal. Fast meldable priority queues. In WADS, pages 282-290,
1995.

G. S. Brodal. Worst-case efficient priority queues. In Symposium on
Discrete Algorithms, pages 52-58, 1996.

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269-271, 1959.

J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed
heaps: an alternative to Fibonacci heaps with applications to parallel
computation. Commun. ACM, 31(11), 1988.

R. D. Dutton. Weak-heap sort. BIT, 33:372-381, 1993.

S. Edelkamp and P. Stiegeler. Implementing HEAPSORT with nlogn —
0.9n and QUICKSORT with nlogn + 0.2n comparisons. ACM Journal
of Experimental Algorithmics, 10(5), 2002.

S. Edelkamp and I. Wegener. On the performance of WEAK-
HEAPSORT. In STACS, pages 254-266, 2000.

A. Elmasry. Violation heaps: A better substitute for Fibonacci heaps.
Research report, CoRR, 2008.

A. Elmasry, C. Jensen, and J. Katajainen. Relaxed weak queues: An
alternative to run-relaxed heaps. Technical Report CPH STL 2005-2,
Department of Computing, University of Copenhagen, 2005.

A. Elmasry, C. Jensen, and J. Katajainen. Multipartite priority queues.
ACM Trans. Algorithms, 5(1):1-19, 2008.

A. Elmasry, C. Jensen, and J. Katajainen. Two-tier relaxed heaps. Acta
Informatica, 45(3):193-210, 2008.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithm. Journal of the ACM, 34(3):596—
615, 1987.

17

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Haeupler, S. Sen, and R. E. Tarjan. Heaps simplified. Technical
Report 0903.0116, arXiv.org, 2009. To appear with a different title in
ESA-2009.

H. Kaplan, N. Shafrir, and R.E. Tarjan. Meldable heaps and Boolean
union-find. In Symposium on Theory of Computing, pages 573-582,
2002.

J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
Society, 7(1):48-50, 1956.

K. Mehlhorn and S. Néher. The LEDA Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

V. Osipov, P. Sanders, and J. Singler. The Filter-Kruskal minimum
spanning tree algorithm. In ALENEX, pages 52-61, 2009.

R. Paredes. Graphs for Metric Space Searching. PhD thesis, University
of Chile, 2008.

J. Rasmussen. Implementing run-relaxed weak queues. Technical Report
CPH STL 2008-1, Department of Computing, University of Copenhagen,
2005.

J. T. Stasko and Jeffrey S. Vitter. Pairing heaps: Experiments and
analysis. Communications of the ACM, 30(3):234-249, 1987.

18

	rep54.pdf
	run-relaxed

