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ABSTRACT

In image processing, there is a need for efficient methods that complement statistical
models by structural information about the spatial scene arrangement and composi-
tional hierarchy. In order to recognise the structure of locally detected features, we pro-
pose a two-dimensional Church-Rosser Picture Language that facilitates the evaluation
of local information compared to one-dimensional languages. Although Church-Rosser
languages are able to represent certain types of context-sensitivity, the word problem
is solvable in linear time. We describe how the concept of local replacements used in
rewriting systems and restarting automata, helps in pattern and picture recognition.
It is shown that the Church-Rosser Picture Language can be recognised by a determin-
istic shrinking two-dimensional restarting automaton. The practical application of the
Church-Rosser Picture Language in object recognition is illustrated.

Keywords: Church-Rosser Languages, Picture Recognition, Restarting Automata, Lo-
cality, Picture Languages

1. Introduction

In image processing the use of formal models with defined properties simplifies to
a certain extend the interpretation of algorithms and mechanisms which are often
characterised by heuristics and hidden approximations.

There are different approaches to use methods from formal languages to recognise
pattern or pictures. The first approaches date back to the 1960s and 1970s [46, 7]. The
used models range from context free to context sensitive grammars. While the first
ones are not expressive enough to represent relevant visual patterns, the latter cannot
be used in practice. Often the goal is to find extensions of context free languages that
achieve a balance between complexity and expressive power.

In this paper, we address three particular problems of context free grammars: First, a
grammar generates words of a language instead of accepting them. Secondly, context
free grammars are nondeterministic, and third, the word problem of context free
grammars is quadratic, extensions are even worse.

To overcome these drawbacks, the use of the not so widely known class of Church-
Rosser languages (CRL) is proposed. On the one hand, Church-Rosser languages
have a high expressive power, as many of the non context free languages that are
considered important in pattern recognition are in fact Church-Rosser languages, e.g.



cross references and repetitions [23]. On the other hand, the word problem is solvable
in linear time and there are deterministic automata models for this language class.

The application to image processing allows for the modeling of structural image infor-
mation additionally to statistical information. While statistical information is useful
during training to identify alphabets of selective patterns, the additional structural
information allows for the evaluation of geometrical arrangements and hierarchical
compositions [42, 52]. The benefit of Church-Rosser languages therefore consists in
the efficient evaluation of arrangements of already detected local features.

To take full advantage of spatial information, Church-Rosser languages are extended
to two-dimensional picture languages. Instead of extending the formal model, we take
the less complex Church-Rosser languages and extend the dimensionality. Because
reducing spatial information to one dimension destroys the neighbourhood of, and
therefore the connection between, features.

In order to deterministically accept Church-Rosser picture languages, we introduce
two-dimensional restarting automata and show that Church-Rosser picture languages
are a subclass of the class of languages accepted by two-dimensional restarting au-
tomata. Compared to other methods for the pooling of spatially distributed informa-
tion a rewriting system has the advantage of low-dimensionality. Voting mechanisms
based on the Hough transform for example introduce one dimension for every free
model parameter including position and pose[18].

This paper is structured as follows: The first sections review what is known about
structural image information for object recognition (Sec.2) and how automata
and grammars are used to model this information (Sec.3). In this context, two-
dimensional variants of Church-Rosser languages promise the recognition of context-
sensitive patterns at low computational complexity preserving image locality (Sec. 4).
After the introduction of one-dimensional rewriting systems and Church-Rosser lan-
guages (Sec. 5) and a short review of related approaches for picture languages (Sec. 6),
our approach is elaborated (Sec.7) in more detail: A two dimensional rewriting sys-
tem is introduced where local image sections can be replaced by weight-reduced and
length-reduced sub-pictures. Local conditions are given that assert the connectiv-
ity of the pictures for a general class of replacement rules. Church-Rosser Picture
Languages are introduced as a special case. It is then shown that all Church-Rosser
Picture Languages can be accepted by a corresponding two-dimensional restarting
automata. The remaining sections deal with the application of Church-Rosser Pic-
ture Languages in image processing. It is demonstrated that the method is able to
count connected components (Sec.8) and simulate sliding window filters (Sec.9). It
is outlined how Church-Rosser Picture Languages can be used for picture recognition
(Sec.10). A short summary concludes the paper.

2. Properties of Structural Information in Images

In the field of image processing, the use of language models is studied in the context
of structural pattern recognition as opposed to the competing direction known as sta-



tistical pattern recognition. Structural pattern recognition focuses on the modeling
of parts of objects and their mutual relationship. In statistical pattern recognition
on the other hand, objects are modeled as feature vectors that refer to the whole
object. These feature vectors are then classified by standard algorithms from dis-
criminant analysis. Recent progresses in kernel-based methods [8] lead to impressive
results in object recognition [16, 17, 55], and as a consequence statistical approaches
predominate in current computer vision conferences.

However, it is also believed "that purely statistical methods have a natural bound,
that can only be overcome by a close use of the structural nature of the data” [11].
There are thus many attempts [26, 58, 32| to complement statistical data by structural
information.

The motivation to use compositional models has partly historical reasons. Marr re-
ports [30] that the first technical approaches to object recognition had strong psy-
chological and neurophysiological roots. A common disappointment [34] about early
connectionist systems [45] directed research towards the step-wise construction of 3d-
models from two-dimensional image data. Failures in these approaches identified noise
and illumination variances as major problems in image processing [36, 29, 6].

Today, many general-purpose object recognition systems are based on features descrip-
tors that model local image regions based on the gradient orientation [29, 2, 22, 33].
The advantage of such features is that they are largely invariant to illumination
changes, geometric deformations and changes in viewpoint. A popular approach in
statistical pattern recognition for example is to classify histograms of local features.

The use of local features is justified in different ways. Ommer et al. [42] mention
robustness against missing parts together with compositionality as a general princi-
ple [14] in cognition and brain organization. Aycinena et al. [1] emphasise efficiency in
the sense that parts can be re-used in different contexts. The importance of locality
in part formation has been shown statistically [52].

The structure of objects is usually expressed in terms of geometrical relationships
between parts. Since the structure of an object is often closely related to its func-
tion [47], structural information can be important for object recognition and image
analysis.

The extend to which structural information is modeled is a trade-off between the accu-
racy of the model, numerical stability and computational effort. Crandall et al. [10, 9]
show that the introduction of statistical part dependencies to a bag-of-features-model
indeed increases the accuracy of the model. Interestingly, the connection of all parts
of a constellation to a central reference part in a star-shaped manner was found al-
most optimal, while further connections did not improve the accuracy significantly.
Fergus et al. [12] report that a star-shaped model outperforms a fully connected model
both with respect to accuracy as well as speed. They argue that the sparse model
is less prone to overfitting. Moreover, the sparse representation has only polynomial
complexity as opposed to exponential in the fully connected case. In practice, the
sparse model therefore allows to distinguish more than just six parts.



The importance of geometry also depends on the scale [51]. While geometry makes
up around 50 per cent of the information on the level of small parts, a bag-of-features
model may be appropriate for the modeling of whole objects.

3. Modeling of Structural Image Information by Grammars and Automata

Attempts to find a grammar or automata representation that corresponds to the
understanding of images and objects as a hierarchy of robustly detectable parts in
geometric relationships date back to the 1960s [46] and the influential works of Fu [7]
in the 1970s.

Fu [13, 7] proposed a tree grammar where the terminals represent single grey-level
pixels and the rule set describes expansions of non-terminals into trees of terminals
and non-terminals that correspond to parts of images and starting points for further
expansion of the image in the 2D-plane. While the problem of noise has already
been recognised in early work [7], subsequent work identified run-time complexity,
expressiveness and inference of the grammar model as difficulties.

Noise is usually handled by error-correcting grammars and stochastic expansions,
which allows for experiments on natural images [7, 19, 1, 28] of rigid [1] or deformable
objects [53]. Heuristic methods are used to obtain compact visual alphabets [32, 53,
57]. It is not uncommon to use manually predefined primitives [19, 28], as well. The
ordering and grouping of visual elements in the image plane has a high impact on the
run-time complexity. Liang et al.[27] propose a linearisation method as a possible
solution. Such methods lead however to a partial or full loss of locality. Siskind et
al. [49] study the uniqueness of models for the geometrical scene arrangement.

The relationship between parts is modeled in different ways. Tree grammars include
the spatial relationship in the rule structure [7]. They cannot display two-dimensional
distances correctly because of frequent one-dimensional concatenations and the result-
ing limited access to neighbouring elements. Han and Zhu [19] define constraints in
an attributed grammar. Lin et al. [28] use a stochastic graph grammar which models
logical expressions.

Although context sensitivity is claimed crucial for pattern recognition by some au-
thors [54, 23], most approaches are limited to context free languages in order to
achieve a practical run-time behavior. To overcome the limitations these are often
expanded to deal with specific problems. Considering the experiments by Crandall
et al. [10] on the part connectivity, this might be a valid approximation of the true
structural image properties, at least for a certain broad class of object recognition
problems. Less complex descriptions may be valid as well. Tanaka argues that in
practical applications both images as well as sets of prototypes are finite, so a regular
grammar should be sufficient [54]. A more expressive grammar however allows for
more compact and more intuitive models.



4. Two-Dimensional Church-Rosser Languages for Picture Recognition

We propose to use a two-dimensional extension of Church-Rosser languages to model
structural image data. While Church-Rosser languages combine a high expressiveness
of the model with low computational complexity, the two-dimensional extension solves
some of the traditional problems in the application to visual data. A restarting
automata is proposed to accept the language in an Analysis by Reduction manner.

Kiefer and Schlieder [23] outline three problems from a pattern recognition application
and propose mildly context sensitive languages as a solution. The languages include
deterministic context free languages such as the language of correctly nested brackets
(Dyck language), as well as mildly context sensitive languages such as cross references
(a™b™c"d™) and repetitions (a™b™c™). The latter are known not to be context free.
Nevertheless the word problem for all these languages can be solved in linear time, as
all these languages are Church-Rosser. Aside from the well known Chomsky-Hierachy,
Church-Rosser languages therefore seem to be a good trade-off between expressiveness
and complexity.

It is not easy to extend languages of words to "picture"-languages. Formal language
models are very limited in generating or accepting pictures-languages. So why use two-
dimensional Church-Rosser languages, when there is already an advantage in using
(the traditional one-dimensional) Church-Rosser languages in pattern recognition or
picture classification?

While the complexity advantage of Church-Rosser is obvious from theory, the exten-
sion to a two-dimensional picture language is justified by the two-dimensional nature
of visual data.

Let us for example assume a face detection task, where a set of visual primitives like
the eyes, nose and mouth has already been detected. The detections can be stored
in a two-dimensional feature image that gives the number of a detected primitive
for every pixel coordinate (cf.Fig.4). A rewriting system would reduce words (i.e.
combinations of visual primitives) locally until the membership of a pattern to the
modeled class is determined or rejected. For a rewriting step to be conducted, two
conditions arise from the image recognition application: First, a sufficient number
of primitives needs to be present, and secondly, the primitives must occur in a valid
spatial arrangement.

Although the modeling of two-dimensional structures in sequences on a one-
dimensional tape is possible and leads to simpler automata definitions, it is com-
paratively inefficient and possible optimisations that arise from known properties of
the visual input data are ignored.

Nondeterministically it is easy to find local structures, by just guessing which structure
will be present and by guessing where it will be. In order to find a local structure
deterministically this is not that easy. The pattern can be anywhere in the sequence
and a full scan of the tape is needed to check if all needed parts are present and in the
correct location. To make it even worse, this must be done for all possible patterns.



In picture recognition there are often false positives, that is a part of the picture is
falsely classified as, for example, an eye. This may lead to many possible eyes and it
is not practical to check for all eyes if there is a nose and a second eye nearby. In a
two-dimensional structure there is no such problem, because in the current window
the surroundings of the patterns can be seen.

5. Church-Rosser Languages

A language according to Narendran and Otto [31] is called Church-Rosser if it consists
of all ancestors of a special symbol with respect to a finite, length reducing, and
confluent string rewriting system.

Definition Let ¥ be a finite alphabet. A string-rewriting system R on X is a subset
of ¥* x ¥*. It induces several binary relations on ¥*:

o The single-step reduction relation —pg:= { (vlv,urv) | u,v € ¥*,({ - r) € R}
is the most basic of these.

e The reduction relation —% induced by R is the reflexive and transitive closure
Of —R-

If w =% v, then u is an ancestor of v, and v is a descendant of w. If there is no
v € I* such that u — g v holds, then the string u is called irreducible (mod R). By
IRR(R) we denote the set of all irreducible strings. If R is finite, then IRR(R) is
obviously a regular language. The string-rewriting system R is called

— length-reducing if |£| > |r| holds for each rule ({ — 1) € R,

— confluent if, for all u,v,w € £*, u =% v and v —% w imply that v and w have
a common descendant.

If a string-rewriting system R is length-reducing, then each reduction sequence start-
ing with a string of length n has itself at most length n. If, in addition, R is confluent,
then each string w € £* has a unique irreducible descendant w € IRR(R), which can
be computed from w in linear time (see e.g.[4]). This observation was one of the
main reasons to introduce the Church-Rosser languages in [31, 35]. In contrast to the
original definition we use a different notation that accounts for the following develop-
ments: In [41] it has been shown that shrinking and length reducing Church-Rosser
languages are equally powerful. In [56] a normal form for shrinking Church-Rosser
languages was obtained that restricts ¢; and ¢ to single symbols, namely ¢ and $. In
addition it can be shown that the border markers do not need to be consumed at all
during a reduction. Therefore it is equivalent to define Church-Rosser languages in
the following way.

Definition A language L C ¥* is a Church-Rosser language if there exists an alpha-
bet I' 2 X, a finite, weight reducing, confluent string-rewriting system R on I, two



symbols ¢, $ € (T~ X) NIRR(R), and a symbol Y € (I' ~ X) NIRR(R) such that, for
allw € ¥*, ¢w$ —7% ¢Y'$ if and only if w € L.

A Church-Rosser language system CRLS is then the 6-tuple C = (I',X, R,¢,$,Y).
L(C) denotes the language accepted by the CRLS C.

Throughout this paper L(C) denotes the languages accepted by the system or au-
tomaton C'.

Definition A restarting automaton, RRWW-automaton for short, is a one-tape ma-
chine that is described by an 8-tuple M = (Q,%,T,¢,$, qo, k, 0), where Q is the finite
set of states, X is the finite input alphabet, I is the finite tape alphabet containing
3, the symbols ¢,$ € T' are markers for the left and right border of the work space,
respectively, qo € Q is the initial state, k > 1 is the size of the read/write window,
and

§:Q x PC® - P(Q x {MVR,MVL} U PC=*~Y)) U {Restart, Accept})

18 the transition relation.

The automaton M is a deterministic restarting automaton (det-RRWW) if § is a
(partial) function.

Here, P(S) denotes the powerset of the set S. The term PC™) denotes the set of
possible contents of the read/write window of M, where

PCO = (¢ - T HUT UL §)U (¢ - T=2.9) (i >1),

and

n k—1
r=n:=J1r° and PC=*"Y .= | JPCW U {e}.
=1

=0

The transition relation describes four different types of transition steps:

(1.) A move-right step is of the form (¢, MVR) € §(q,u), where ¢,¢ € @ and
u € fPC'(k), u # $. If M is in state ¢ and sees the string w in its read/write
window, then this move-right step causes M to shift the read/write window one
position to the right and to enter state ¢’. However, if the contents u of the
read/write window is only the symbol $, then no shift to the right is possible.

(3.) A rewrite step is of the form (¢’,v) € §(q, u), where ¢,¢' € Q, u € POy +8$,
and v € PCS* =Y guch that |v| < |u|. It causes M to replace the contents w
of the read/write window by the string v, and to enter state ¢’. Further, the
read/write window is placed immediately to the right of v. However, some addi-
tional restrictions apply in that the border markers ¢ and $ must not disappear
from the tape nor that new occurrences of these markers are created. Further,



the read/write window must not move across the right border marker $, i.e.
if the string u ends in $, then so does the string v, and after performing the
rewrite operation, the read/write window is placed on the $-symbol.

(4.) A restart step is of the form Restart € §(g,u), where ¢ € @ and u € PC® 1t
causes M to move its read/write window to the left end of the tape, so that
the first symbol it sees is the left border marker ¢. Also, M re-enters the initial
state qg.

(5.) An accept step is of the form Accept € §(g,u), where ¢ € Q and u € PC®) 1t
causes M to halt and accept.

There are various restricted types of restarting automata. They are obtained by
combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the first
part of the class name):

RR- denotes no restriction,
R- means that each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the
class name):

-WW denotes no restriction,
-W means that no auxiliary symbols are available (that is, I' = ¥),

€ means that no auxiliary symbols are available and that each rewrite step
is simply a deletion (that is, if the rewrite operation u — v occurs in
the transition relation of M, then v is obtained from u by deleting some
symbols).

Restarting automata are defined as length reducing automata, as they have to reduce
the length of the tape in every rewrite step. A slightly different model is the shrinking
restarting automaton, first introduced in [43], and then studied in [21]. These restart-
ing automata are less restricted than length reducing restarting automata. Each
rewrite step of a shrinking restarting automaton is required to be weight reducing
according to a weight function ¢.

The following characterizations have been established in [5, 37, 38, 41].

Theorem 1 [39, 40, 21| A language is Church-Rosser if and only if it is accepted by a
shrinking (det-) RRWW, if and only if it is accepted by a length-reducing (det-)RRWW.

6. Picture Languages

The previous sections considered string rewriting systems and automata to accept
words. These approaches are now transferred to picture languages.



Definition [15] A two-dimensional string (or a picture) over ¥ is a two-dimensional
rectangular array of elements of 3. The set of all pictures over ¥ is denoted by X**.
A two-dimensional language (or a picture language) is a subset of X**.

Given a picture p € X**, let l1(p) denote the number of rows and la(p) denote the
number of columns of p. The pair (I1(p),l2(p)) is called the size of the picture. The
empty picture is the only picture of size (0,0) and it will be denoted by X. Pictures of
size (0,n) or (n,0) where n > 0 are not defined. The set of all pictures of size (n,m)
with n,m > 0 will be indicated by X",

Furthermore, if 1 < i <Iy(p) and 1 < j <la(p), p(i,7), or equivalently p; ; denotes
the symbol in p with coordinates (i, j).

Definition Let p be a picture of size (m,n). A block, or a sub-picture, of p is
a picture p' that is a sub-array of p. That is, if (m',n’) is the size of p’, then
m/ <m and n' < n and there exist integers h, k (h < m —m’, k <n —n') such that
p'(6,7) =pli+h,j+k) for all0 <i<m' and 0 < j < n'. (h k) are the starting
coordinates of the sub-picture.

Remark This definition contrasts the definition of a sub-picture in [15], where
p'(i,7) =pli+h,j+ k) forall 0 <i<m' and 0 < j < n’ holds.

To accept or generate picture languages there are different automata and grammar
systems. The most common are:

e Four Way Automata,
e Cellular Automata,
e Line and Column grammars, andt

e Tree grammars.

Four way automata are finite automata that operate on pictures and therefore can
move in four directions. They were first introduced by Blum and Hewitt [3]. They
obviously lack the ability to detect local structures on different scales. Cellular au-
tomata change the contents of the cells in parallel and communicate with adjacent
cells. In the general case they are inefficient at higher scales. There are different re-
stricted models. The on-line tessellation automaton [20] moves information only from
the upper left corner diagonally over the picture. The neighbourhood is therefore only
accessible in the lower right direction.

Both tree grammars [13] and grammars with vertical and horizontal rules [48] generate
pictures while considering the context only in one dimension, i.e. is the neighbourhood
of a given symbol follows a line. These grammars do not preserve or detect local two
dimensional structures.



7. Church-Rosser Picture Languages

The concept of two-dimensional rewriting systems is that a sub-picture of a picture
is replaced by another sub-picture. A problem is that there are different methods
to make a picture smaller, whereas a one-dimensional tape is shortened in a straight
forward way. Rewrite rules can introduce holes if the rewritten part is smaller than the
original sub-picture. But holes negatively affect the image recognition because they
constrain access to the local image environment. The best way to preserve locality
would be to topologically "glue" the remaining part of the picture to the replaced
part. But this is not applicable because the automaton to process such a language is
much to complicated.

Therefore the rows and columns of the picture are shortened. The remaining parts of
the picture just fall to the rewritten part. A problem in doing this is that the resulting
picture might not be a rectangle any more (even when starting with a rectangle
and if all rewriting rules rewrite rectangles into other rectangles). This happens if
the replaced block has a different size than the full picture or the inserted block.
Therefore, during a rewriting process, a picture is successively replaced by subsets of
pictures, so called possible pictures.

In order to reduce a picture by successive rewrite steps, the possible picture must
consist of only one connected part of symbols of the input or tape alphabet. To
detect local structures at different scales, no possible picture should contain holes.

Definition A possible picture p over ¥ is an array of symbols of elements of ¥ Ue,
where € € 3 holds. Each row and column must contain at least one symbol x € 3. Let
l1(p) denote the number of rows and lo(p) denote the number of columns of p. The
pair (11(p),l2(p)) is called the size of the possible picture. Fach symbol p(k,l) = € is
adjacent to another e or to the border of the possible picture. Two coordinates (x1,y1)
and (x2,y2) are called adjacent when either |x1 — 22| =1 and y1 =y or |y1 —y2| =1
and 1 = x9 hold. They are called diagonally adjacent when |1 — 22| = 1 and
|y1 — y2| =1 hold.

All coordinates p(k,l) = e are called empty, the non-empty part of a possible picture
1s called the content. The content must be connected, i.e. each pair of elements of the
content is linked via a chain of (diagonally) adjacent non-empty elements.

These conditions ensure that there is always only one connected part containing sym-
bols of ¥ in a possible picture.

Remark: A sub-picture p’ of possible picture p is not necessarily a possible picture.
In a sub-picture, some rows or columns of p’ can be empty, i.e. they contain only the
symbol . Also, the content does not need to be connected. The other condition for a
possible picture is valid for all sub-pictures of possible pictures. A block of a possible
picture is called a possible block.

A rewrite step replaces a sub-picture of a possible picture with another sub-picture.
Formally it is divided into two steps: First the application of a replacement rule and

10



global: (h,k)
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Figure 1: Illustration of rewriting the block p’ inside p by the bigger block q.

second the consolidation of the picture.

Definition An application of a replacement rule takes a block p' with starting co-
ordinates (h,k) of a possible picture p of size (m,n) and replaces it with a possible
block q (cf. fig. 1 for an illustration). p' has local coordinates ranging from (1,1) to
(l1(p'),12(p"). q can be larger than p’ and its local coordinates can range from (i, j)
to (li(g) +1i—1,la(q) +j — 1) with l1(p') —li(q) <i <1 and l2(p’) —l2(q) <j < L.
In each replacement 11 (p') < li(q) +i—1 and lz(p’) <l2(q) +j — 1 holds.

The possible picture p can be concatenated from nine blocks: p’ in the middle, block
1,2,3 at the top from rows 1 to h — 1 and columns 1 to k — 1, k to k+ l2(p') — 1,
and kla(p') to m, for block 1, 2, and 3, respectively. Blocks 4,5 =p', and 6 are in the
middle from rows h to h +11(p") and blocks 7, 8 and 9 are at the bottom.

q 1s inserted into p in the following way: If j is smaller than 1, then —j + 1 new
columns are inserted in between column k — 1 and k, that is right of block 1. Then
block 2 follows, starting at column k —j+ 1. Ifla(q) + 7 — 1) — la(p’) is greater zero,
then this amount of new columns is inserted before block 3 follows.

If i is smaller than 1, then —i + 1 new rows are inserted in between row h — 1 and h.
The content of this rows is only the content of the corresponding rows of q.

The next rows from h—i+1 to h—i+ 1+ 1;1(p') contain block 4, the rows of q with
local rows from 1 to l1)p") and block 6.

If l,(p') < li(q) +i— 1 holds, then new rows are inserted with the content of the rows
Ii(p)+1 toli(q) +1—1 of q. The bottom contains blocks 7, 8, and 9 with possible
gaps according to the ones between the blocks 1, 2, and 3.

11



A replacement rule is called non-increasing if i = j = 1 and the size of p’ equals the
size of q.

A replacement rule can reduce the size, even if its right hand side is larger than its
left hand side. By enforcing I;(p') < l1(q) +i— 1 and la(p’) < la(q) +j — 1, it is
guaranteed that a certain row or column is deleted. Remark that this requirement
does not restrict a replacement step.

For non-increasing replacement steps the definition can be expressed in a much shorter
way: The block p’ of p is replaced by g.

In the one-dimensional case, this rewrite of a sub-string in a word leads in a straight
forward way to a binary relation on words. After a replacement, the result is not
always a possible picture. In the so called consolidation step this composition is turned
into a possible picture again. There are three different violations of a possible picture
that might occur after a replacement step: First, there may be holes inside of the
remaining picture, i.e. parts containing only the symbol €. Secondly, complete rows
or columns may be empty. Thirdly, the content may be disconnected. To overcome
the second violation, empty rows and columns are deleted. It does not matter in which
order this is done. Holes are filled up by adjacent symbols. Here it is important, in
which ordering the rows and columns are falling to the rewritten part. There are
different ways to do this, all with certain advantages and disadvantages. The two
most promising ways for picture recognition are either that all sides fall in parallel to
the empty parts, or that it is done in a defined ordering, here clockwise starting from
right, bottom, left, top. The first method best preserves locality. It does however
lead to "x"-shaped possible pictures and needs more computations. The second way
is easy to perform and aligns the content to the upper left corner in a more compact
arrangement. The disadvantage of the second one is that it might violate the locality
more. Another method is to introduce special symbols which contain not only & for
an empty part, but also the direction from where it should be filled. All three ways
might not fill all holes. If, after a consolidation step, holes remain in the composition,
then it is rejected. Fortunately, it can be guaranteed with a local requirement for the
replacement step that each hole can be filled.

There is another problem with filling holes in a picture after a rewrite step. Some
parts might be disconnected by moving blocks. Any parts of the content that are
not connected to the part where the rewrite step occurred (the main part), must be
moved until they are connected. This is done as follows: Any now unconnected part
was connected before the consolidation or became disconnected by the replacement
rule. Therefore it is moved either in the same direction as the prior adjacent symbol
until it is connected to the main part, or moved to the rewritten part.

If the content is disconnected because the right-hand side r of a replacement rule
I — r has disconnected content and it does not become connected by moving blocks
outside of r, then the composition is rejected. As a rule, parts of the right-hand side
of a replacement rule are never moved in the following consolidation step.

To reconnect a composition, each symbol is moved in at most one direction. This
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prevents intransparent shifting inside a possible picture.

Definition A consolidation step transforms a composition after a replacement step
back to a possible picture. First, each row and each column is deleted that contains
only occurrences of the symbol €. Second, any holes inside the content are filled. An
occurrence of € at the local position (hy, ki) inside the right hand side q of a replacement
rule p' — q at position (hg, ky) does belong to three different cases:

First none of the following conditions is true:

1. q(hi,3) =€ for all k; < j < l2(q)
2. q(i, ki) =€ for all hy <i <li(q)
3. q(hy,j) =€ for all 0 < j < Ky
4. qli k) =€ forall0<i<My

Then this coordinate remains empty. If this results in a hole in the content, then the
possible picture is rejected.

Secondly, exactly one condition is true. Then the whole block of occurrences of €
s filled from this direction. If for example condition 1 is true, then the leftmost
occurrence of € that fulfils condition 1 in this row is taken and the block with starting
coordinates (hg +11(q), kg + l2(q)) and size (I1(p) — (hg +11(q)),1) is moved h places
to the left, if (h,k;) are the coordinates of the leftmost occurrence of €. This move is
possible because condition 1 states that the h places to the left of the moved block are
empty. The other cases are handled accordingly.

Third, if, after all empty parts that only satisfy one condition are filled, there is an
occurrence of € that fulfils more than one condition, then the first satisfied condition is
taken. When there is no block left that fulfils one of the conditions and the composition
still contains holes, then it is rejected.

Finally any part of the content is moved that is not connected to the main part. It may
be that any of the blocks 1,3,7,9 from the replacement step are unconnected. Block
1,3,7,9 are moved to down and right, down and left, up and right, and up and left
until they are connected to other parts of the content, respectively. Then any part not
connected to the main part is moved in the same direction as a previously adjacent
symbol s that does now belong to the main part. This s done symbol by symbol and
the top- and leftmost unconnected part is taken first.

The symbol s was moved either because one of the four conditions was fulfilled or
because it was previously unconnected from the main part itself. If in the first case a
part was connected by more than one symbol and these symbols were moved in different
directions, then the one with the smallest numbered condition is taken. The movement
stops if it is again connected to s, unless another symbol prevents the movement or a
new hole would be created. The creation of a new hole can be prevented by moving on
in the same direction, or, failing this, by stopping earlier. If this fails to connect the
symbol with the main part, the possible picture is rejected.
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Remark It does make a difference if first all blocks are moved and then the connec-
tivity is checked, or if the connectivity is checked and restored after each step. The
latter case might lead to new holes inside the content.

Definition A rewrite step consists of the application of a replacement rule | — r at
position (h, k) of a possible picture p, followed by a consolidation.

Remark This detailed definition is needed to handle special cases. However, if the
rewrite step is restricted to be for example non-increasing, then the replacement
becomes much simpler. If only whole rows or columns contain occurrences of ¢ in
the right hand side of a replacement rule, then the consolidation is much easier. In
fact even with these strong restrictions, many problems in picture recognition can be
solved and it is guaranteed that the locality of the picture is not strongly violated.

However, there is a weaker restriction that also guarantees a non-rejecting rewrite
step.

Definition A possible picture p is called hassle-free if its content is connected and
for each empty symbol p(h, k) = € one of the following conditions holds:

o r(i,h)=c¢ forall0 <i<k
e r(i,h) =¢ for all k <i<ly(r)
o r(k,j)=c forall0<j<h
o r(k,j)=¢ forallh <j <lar)

A replacement rule Il — r is called hassle-free if its right hand side r is hassle-free and
for each coordinates (x,y) with l(x,y) = € it follows that r(x,y) = € holds, too. A
rewrite step is called hassle-free if its replacement rule is.

Then it can be shown that a hassle-free rewrite rule starting from a hassle-free possible
picture is never rejected.

Definition PP ist the set of all possible pictures. PB ist the set of all possible blocks.
Foru e PP, v,w € PB, the expression v C u means that v is a sub-picture of u, and
U w)t that ezactly one occurrence of v in w is replaced by w by applying a rewrite
step. So only if v C u holds, up, /w1 can be constructed.

A bordered picture ¢ = p(¢1,¢9,31,$2) is a possible picture of size (I1(p) +2,12(p) +2)
where each row, except the top and bottom ones which contain only border markers,
starts with a ¢, and ends with a $1, and each column, except the left and right-most
ones, which also contain only border markers, starts with a ¢o and ends with a $2. p
is a sub-picture of p(¢1,¢9,31,9%2) starting at coordinates (2,2). The only empty parts
of the bordered picture are the four corners having coordinates (1,1), (1,12(p) + 2),
(li(p) +2,1) and (l1(p) + 2,12(p) +2).

A bordered possible picture p(¢q, ¢o,$1,32) is a possible picture of size (11 (p)+2,l2(p)+
2) where each row, except the top and bottom ones, which contain only border markers,
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starts with a ¢, and ends with a $1, and each column, except the left and right-most
ones, which also contain only border markers, starts with a ¢o and ends with a $2. p
is a sub-picture of p(¢1,¢q,$1,82) starting at coordinates (2,2).

Y9 (¢q, 69,81, 82) is the set of all bordered pictures p(¢q,¢o, $1,$2) where (i,7) is the
size of p.

There are different ways to define a picture rewriting system. The probably most
general is the following:

Definition Let X be a finite alphabet. A picture rewriting system R on X is a subset
of PB x PB. Fach element of R is a replacement rule. It induces several binary
relations on PP:

o The single-step reduction relation —p:= { (u,v) |u,v € PP,({ —r) € R,{C
uvandv = U[l/r]l} is the most basic of these.

e The reduction relation —7% induced by R is the reflexive and transitive closure
Of —R.

Ifu —% v, then u is an ancestor of v, and v is a descendant of u. If there is nov € PP
such that w — g v holds, then the possible picture u is called irreducible (mod R). By
IRR(R) we denote the set of all irreducible possible pictures. The picture-rewriting
system R is called

— non-increasing if |11 (€)| > |li(r)] and |l2(€)| > |l2(r)| hold for each rule (¢ —
r) € R,

— size-reducing if it is non-increasing and |l1(€)] > |l1(r)] or |l2(€)] > |l2(r)] holds
for each rule (¢ — r) € R,

- strictly-size-reducing if [I1(€)| > |l1(r)] and |i2(€)] > |l2(r)| hold for each rule
({ —r)€R,

— reducing if £ contains more non-empty symbols than r for each rule (¢ — r) € R,

— strictly-reducing if ¢ contains more non-empty symbols than r for each rule
(¢ = 1) € R and R is non-increasing,

— shrinking if there exists a weight-function ¢ over ¥ such that p(£) > (r) holds
for each rule (¢ — r) € R,

— strictly-shrinking if there exists a weight-function ¢ over ¥ such that ¢(¢) >
@(r) holds for each rule (¢ — r) € R and R is non-increasing,

— confluent if, for all u,v,w € PP, u =% v and v =% w imply that v and w have
a common descendant.

Length-reducing Church-Rosser languages are as expressive as shrinking Church-
Rosser languages. This is not known for Church-Rosser picture languages. Moreover,
there are different ways to define length-reducing. Beside the above given definitions,
it is possible to restrict a rewrite step to only reduce the number of symbols. On the
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other hand, weight reducing rewrite steps might only perform rewrite steps that do
not increase the width and height. Accordingly, a CRPL can be defined by using any
of the above mentioned rewrite restrictions. Here we use the most general of them.

Definition A language L C X7 4s a Church-Rosser picture language (CRPL) if
there exists an alphabet I' 2 3, a finite, strictly-reducing, confluent picture-rewriting
system R on T, four symbols ¢q,¢q,%1,82 € (T ~ X)* NIRR(R), and a symbol Y €
(I' < X) NIRR(R) such that, for all p € PP, p(¢y,¢q,%1,%2) =75 Y(¢1,¢2,%1,82) if
and only if p € L.

A Church-Rosser picture language system CRPLS is an 8-tuple
C = (Fa Ev R7 ¢1a ¢27 $1$27 Y)

If the rewriting system R is not strictly reducing but shrinking, then the CRPL and
the CRPLS is called shrinking. In general, a finite, confluent picture-rewriting system
R with condition x € { non-increasing, size-reducing, strictly-size-reducing, reducing,
shrinking, strictly shrinking } is called a ©-CRPLS.

Definition A two-dimensional restarting automaton, 2D-RRWW-automaton for
short, is a one-space machine that is described by an 12-tuple M =
(Q,2,T,¢1,¢9,%1,%2,6,q0,k,1,0), where Q is the finite set of states, ¥ is the finite
input alphabet, T is the finite tape alphabet containing X, the symbols ¢4, ¢4, $1, and
$2 € T' are markers for the left, upper, right and bottom border of the work space,
respectively, € ¢ T' is special symbol to mark empty parts of the tape, qo € Q is the
initial state, k,1 > 1 are the sizes for the width and height of the read/write-window,
and

§:Q x PC™®D . p((Q x ({MVR,MVD, MVUP} U PC=H):=1)) ) {Restart, Accept})

1s the transition relation.

The automaton M is a deterministic two-dimensional restarting automaton (2D-
det-RRWW) if § is a (partial) function.

Here P(S) denotes the powerset of the set S, PC*D s the set of possible contents
of the read/write window of M, where PO are all possible blocks q of size at most
(,4) of a bordered possible picture p(¢q,¢q,%1,%2). If l1(q) < i holds, than the bottom
row of q consists only of occurrences of the border marker $5 and If la(q) < j holds,

than the rightmost column of q consists only of occurrences of the border marker $;.
PC=®)=W" gre il blocks of size at most (i, ).

Here the possible content of the read /write-window needs two parameters, the width
and height. The restarting automaton is allowed to perform up and down movements
to ensure that it can completely scan the picture in one cycle.

The transition relation describes five different types of transition steps:
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(1.) A move-right step is of the form (¢',MVR) € 6(q,u), where ¢,¢' € @Q and
u € U’C(k’l), u# ($1,---,%1)T. If M is in state q and sees the block u in its
read /write-window, then this move-right step causes M to shift the read /write-
window one position to the right and to enter state ¢’. However, if the contents
u of the read/write-window consists only of occurrences of the symbol $;, then
no shift to the right is possible.

(2.) A move-down step is of the form (¢, MVD) € d(q,u), where ¢,¢' € @ and
uwe PCFY u £ ($5,--,82). It causes M to shift the read/write-window one
position to the bottom and to enter state ¢’. This, however, is only possible if
the window is not already at the bottom of the picture.

(3.) A move-up step is of the form (¢, MVUP) € d(q,u), where ¢,¢' € Q and u €
PCHED w £ (¢q, - ,¢9). It causes M to shift the read/write-window one
position up and to enter state ¢’. This, however, is only possible if the window
is not already at the top of the picture.

(4.) A rewrite step is of the form (¢’,v) € §(q,u), where ¢,¢' € Q, u € PC*D 4 does
not contain only border markers, and v € PC=®)-=U) gych that v contains less
symbols than u. It causes M to replace the contents u of the read /write-window
by the possible picture v, and to enter state ¢’. Further, the read /write-window
is placed immediately to the right of v. However, some additional restrictions
apply in that the border markers must not disappear from the picture nor that
new occurrences of these markers are created.

For one-dimensional rewrite steps, this condition was to ensure that always two
border markers mark the ends of the tape. The number of border markers of a
picture is not fixed but increases with the size of the picture. Only in one case,
border markers are deleted from the picture. If a row or column is empty, i.e.
it is (¢16*$1) or (¢o*$2)7, then this row or column is deleted completely from
the picture.

Also, the read/write-window must not move across the right border marker $;,
that is if each row of u ends in $1, then so does the possible picture v. After
performing the rewrite operation, the read/write-window is placed on the block
(GRS

(5.) A restart step is of the form Restart € §(g,u), where ¢ € Q and u € PC*D,
It causes M to move its read/write-window to the left and upper end of the
picture, so that the top left symbol is empty, the leftmost non-empty symbol it
sees is the left border marker ¢; in each row and the topmost non-empty symbol
is the upper border marker ¢, in each column, and to re-enter the initial state
do-

(6.) An accept step is of the form Accept € §(q,u), where ¢ € Q and u € 1 OAONE (7
causes M to halt and accept.

For two-dimensional restarting automata we have the same restrictions as for the
one-dimensional ones.
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(a) Restrictions on the movement of the read/write window (expressed by the first
part of the class name):

RR- denotes no restriction,

R- means that each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the
class name):

-WW denotes no restriction,
-W means that no auxiliary symbols are available (that is, I' = ¥),

€ means that no auxiliary symbols are available and that each rewrite step
is simply a deletion (that is, if the rewrite operation u — v occurs in
the transition relation of M, then v is obtained from wu by replacing some
symbols by ¢).

Definition A configuration of a two-dimensional restarting automaton is of the form
aq(By, B2), where q is the current state, and o + (B, 52)T is the bordered possible
picture that is currently processed. Here, o denotes the sub-picture left of the current
window. This part cannot be visited again before a restart. The read/write-window is
on the top left part of B2. If a and By are empty, then it is a restarting configuration.
If in addition By contains only symbols from 3, then it is called an initial configuration.

A cycle is the part of a computation from one restarting configuration to the next. A
cycle can be divided into three part: First, the picture is scanned from left to right.
Here, arbitrary up and down movements are permitted. Then one rewrite step s
performed. Thirdly, the part to the left of the rewrite step is scanned from left to
right, before the cycle ends with a restart operation. Again in this third part arbitrary
up and down movements are permitted.

Definition The rewrite step of two-dimensional restarting automata is defined as
being strictly-reducing. If the rewrite step of a two-dimensional restarting automa-
ton A is not strictly-reducing, but condition x € { non-increasing, size-reducing,
strictly-size-reducing, reducing, shrinking, strictly shrinking } holds, then it is called
an x—two-dimensional restarting automaton.

If the width or the height is increased during a rewrite step, then the picture might
grow. In this case, not all columns or rows are framed by border markers. This
problem can be solved by framing the newly created rows and columns by additional
border markers. Definition and figure 1 explicitly state the new inserted rows and
columns.

In the following theorem, a connection between Church-Rosser picture languages and
two-dimensional restarting automata is shown.

Theorem 2 For each x-CRPL L there exists a deterministic two-dimensional x-
RWW-automaton R such that L(R) = L holds. x € {e, non-increasing, size-reducing,
strictly-size-reducing, reducing, shrinking, strictly shrinking }
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Proof. Let z € {e, non-increasing, size-reducing, strictly-size-reducing, reducing,
shrinking, strictly shrinking },

let C be a x-CRPLS . We will construct a two-dimensional x-RWW-automaton A with
L(C) = L(A).

Let p(¢q,¢q,%1,82) be a bordered picture. If p € L(C) then there exists at
least one sequence of rules from R starting from p(¢q,¢s,%1,%2) and ending in
Y (¢1,¢9,%1,%2). And as R is confluent, each sequence starting from p(¢q, ¢o,$1,$2)
ends in Y(¢q,¢q, $1, $2). A will simulate one of these sequences by always performing
the leftmost possible rewrite step.

A moves from top to bottom and from left to right over the picture. Whenever it
encounters a possible rewrite step, it is executed.

If the sequence ends with Y (¢4, ¢4, $1, $2), then A will do likewise and therefore accept.
If, on the other hand, A does not end in Y (¢, ¢q, $1,82), then A rejects. But that
means that C' will not accept the word either.

Thus L(C) = L(A) holds.
O

Unfortunately, it remains open whether the other direction holds or not. The proof
idea in the one-dimensional case is that a Church-Rosser language system can save
the states on the tape. Because it simulates a deterministic restarting automaton,
it can keep this information up-to-date. This idea can not be transferred to the
two-dimensional case. However we have the following strong conjecture:

Conjecture For each stateless two-dimensional x--RRWW-automaton A there exists
a z-CRPLS C such that L(A) = L(C) holds.

An automaton is called stateless if it does only have one internal state, for further
information see [24, 25]. It is unknown whether stateless two-dimensional restarting
automata are less expressive than their counterpart with states. Solving this does also
solve the question, whether each language accepted by a two-dimensional RRWW-
automaton is a Church-Rosser picture language.

8. Counting Connected Components

The application of the rewriting system will be briefly demonstrated in the counting
of connected components which is a standard problem in many computer vision tasks
(e.g. in character recognition). The meaning of this demonstration is that related
methods like four-way automata, cellular automata and grammars cannot solve it
because they disregard local connectivity. The problem has also been used to argue
against Perceptrons [34]. Given a black and white image, a black connected compo-
nent is recursively defined as a single black pixel and all other black pixels that are
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Figure 2: Counting connected components. Left: Two spiral shaped connected compo-
nents. Right: The components have been reduced to separate, single pixels. Defining
the weight of black pixels as 2 and the weight of white pixels as 1, the weight of the
picture (minus its size) represents the number of connected components.

EL HHED

) reduction b) separation ) piercing

Figure 3: Rules for counting connected components

adjacent to that connected component. For simplicity, we assume topological homeo-
morphism to a circular disk because it saves us lengthy descriptions of the labeling of
different components. Figure 2 (left) shows an example of two connected components.

The approach for counting connected components is to reduce each component to a
single pixel. Suitable weights are 2 for black pixels and 1 for white pixels. After
reduction, the number of connected components is represented by the weight of the
remaining symbols minus the image size (width x heigth).

To reduce the components, a set of rules is introduced that take a 3 x 3 block with
a black center pixel and rewrite it by a 3 x 3 block with a white center pixel (cf.
fig. 3a). Out of the 2% possible rules only those rules are created that preserve the
connectivity of the border pixels of the block (fig. 3b shows a counter-example) and
homeomorphism (fig. 3¢ shows a counter-example). The connectivity of the border
pixels must be preserved to avoid the possible partitioning of a connected component
into disconnected parts. Replacements in the border of a 3 x 3 block carry the danger
of creating holes as well. These rules are sufficient to reduce connected components
to single pixels. Please note that it is not necessary to use auxiliary symbols to solve
the problem. After the rewriting process, the image consists of single black pixels on
a white background. Since the weight of the black pixels is by 1 greater than the
weight of the white pixels, the number of components is given by the weight of the
image subtracted by its size.
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9. Sliding Window Filters

Next, we will demonstrate that the picture language is consistent with the concept
of sliding windows in image processing. The sliding window technique is a basic
method of local filtering, where the pixel values of an output image depend on a local
environment around each coordinate in the input image. First we need to separate
an alphabet ¥ C T of the input image from the disjunct alphabet ® C T, XN ® = {}
of the output image. The contents of the input image stems from X, whereas the
contents of the output image stems from ®. The alphabets are necessary to avoid
recursive filtering by separating input and output images. Phenomenologically, they
may refer to the same colours.

The basic idea is to define rules of the kind

vivgvy OO
v4 U5 Vg — O O O, (1)

vrugvg QO u

where u = u(vy,...,v9) € ® is the filtering result, and the symbol ¢ indicates a don’t
care element on the left hand side of a rule or not changing the original element of
the input image when used on the right hand side. It is customary to define rules
for all possible input patterns v1,...,v9 (each v € ) for the filtering process to run
smoothly. To achieve a defined sequence of execution from right to left and bottom
to top, the lower right environment of the input pattern must be a corner, border, or
element of the output alphabet. This can be achieved by defining rules such as

vy v2 v3 OO
U4UB'UG<>*)<><><><>
vrusvg ¢ QOO ud
CO e o OOOO

for the initial position of the sliding window at the lower right corner, or

vy U2 V3 OO
vy v5 06 O — OO OO (3)
U7USUQU/ <><>u0

for the inner part of the image, where the element v’ € ® from a previous filtering step
must be from the output alphabet. It is obvious that this procedure in theory allows
for the modeling of linear, rank order, and morphological operators. This includes a
number of efficient existing implementations.
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Figure 4: Original images [44] and detections of facial features [50] for two sample
images. The detected areas of the eyes, brows, nose, nasal bone, mouth, cheeks are
highlighted in different grey levels. For orientation, the outline of the face and shirt
are indicated as well. A certain amount of misdetections is visible.

10. How to use Church-Rosser Picture Languages in Picture Recognition

Although this article primarily deals with complexity issues of the rewriting system,
a few considerations will be given on the inference of the model.

One of the major problems in image processing is illumination invariance. In image
processing, good results have been achieved by modeling the appearance of an object
by local patterns of the gradient orientations. Therefore, a modeling of illumination
changes by rewriting rules is not essential. Instead, we propose to use feature images
as the starting point for the rewriting process. In a feature image, a label is assigned
to every pixel coordinate. The label indicates the presence or absence of a certain
feature, pattern or object. Figure 4 shows two feature images from a face recognition
task [50] as an example.

The advantage of two-dimensional Church-Rosser languages is the possibility to access
geometrical information. To preserve this information in the process of rewriting, the
corresponding rules could define a uniform subsampling over the image plane. This is
consistent with the compositional approach and shows correspondences to the concept
of an image pyramid in image processing. Figure 5 gives an illustration.

To abet confluence, different levels of the pyramid should be modeled by separate vi-
sual alphabets. A training method would begin with the computation of the pyramids
for a number of sample images. In a top-down process, the elements of the higher
levels would be differentiated into constellations of elements on the lower levels. How-
ever, the high number of possible rule extensions demands a stronger generalisation
over varying patterns. One way to achieve this is to introduce rewriting rules that
simulate smoothing operations corresponding to e.g. certain morphological operators.

A strict scale factor between the pyramid levels limits the application of rewriting
rules to small sets of neighbouring elements.

On the other hand, special symbols can be introduced to code large homogeneous re-
gions. This way, irrelevant regions can be compressed very quickly. The computation
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c=1:1 c=1:8 c=1:16 oc=1:32 c=1:64

Figure 5: An image pyramid represents the feature arrangement at different sampling
rates o.

time is therefore spend on the difficult parts of the image. Here the search for local
structures also helps in detecting noise, that is false classified features.

This can be best described by using the example of the face recognition (see figure 4).
In both pictures there are singular features that are misdetections. These false posi-
tives can be detected by analyzing their surroundings. For example the small dots at
the bottom of the left picture are certainly not part of a face. This allows for classifi-
cation methods with a higher precision, that is more features are detected correctly.
These methods often have a bad recall, that is they do lead to more false positives.

By starting a recognition process with the marking of these large homogeneous regions,
deleting single features in it, and then combining regions that belong to the same
feature, the picture is reduced very fast. And the more difficult computations take
place on a much smaller picture.

The deletion of false positive is also useful, when the classification is allowed to label an
area with more than one feature. Thus making it more likely that the area is labeled
with the correct feature, but making the computation much more complicated.

At present, the possibilities of Church-Rosser languages for the modeling of visual
data have not been clearly outlined. In contrast to a Perceptron [34], connected
figures do not seem problematic for modeling. The hierarchical language structure
seems also well suited to represent recursively embedded patterns over multiple scales.
Such structures are more problematic in global approaches based on voting or fea-
ture constellations. Further research will show which visual patterns are consistent
with Church-Rosser languages. From an empiric point of view, a set of design pat-
terns for rewriting operations could also be useful to explore the domain of practical
applications.
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11. Conclusion

The modeling of structural information in images is highly relevant for many com-
puter vision tasks. The analysis of spatial relationships between the parts of a scene
provides much a more precise clues about the content of an image than the pure enu-
meration of depicted objects. Recent research results shows that the image structure
in certain object recognition tasks corresponds well with context free languages. Con-
text free languages are however inattractive because of their quadratic computational
complexity. Often extensions of context free methods are used, which increases the
complexity even more.

To overcome this computational limitation, we propose to use two-dimensional
Church-Rosser languages. While Church-Rosser languages are sufficiently expressive
for the modeling of complex visual information, they are only linear in run-time with
respect to the number of pixels. Compared to the simpler case of one-dimensional lan-
guages, two-dimensional Church-Rosser languages have the advantage of preserving
neighbourhood information. This avoids typical problems in traditional applications
of formal languages for computer vision tasks.

While language models represent structural information in a generative way, automata
models seem more appropriate to guide the object recognition procedure. Therefore,
we introduce a deterministic shrinking two-dimensional restarting automaton. New
transition relations extend movements within the input data from the one-dimensional
case to two dimensions. Special care is taken to maintain connectivity and han-
dle border-markers in the two-dimensional case. It is proven that every generalised
Church-Rosser picture language can be transformed to an equivalent automaton.

A hypothetical application to an object recognition task identifies a number of image
operators that are provided by the proposed rewriting system. The hierarchical lan-
guage representation thereby seems well suited to model image pyramids to achieve
scale-invariance. The rewriting of wide homogeneous regions in single symbols allows
for an early refusal of incomplete matches. Smoothing operations allow for a good
generalisation over varying object appearances.
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