
ReportTechnical 76
Envisioning the Effects of Robot Manipulation Actions

using Physics-based Simulations

Lars Kunze
Michael Beetz

TZI, Universität Bremen

TZI-Bericht Nr. 76
2014



TZI-Berichte

Herausgeber:
Technologie-Zentrum Informatik und Informationstechnik
Universität Bremen
Am Fallturm 1
28359 Bremen
Telefon: +49 421 218 94090
Fax: +49 421 218 94095
E-Mail: hq@tzi.de
http://www.tzi.de

ISSN 1613-3773



Envisioning the Effects of Robot Manipulation Actions
using Physics-based Simulations

Lars Kunzea,∗, Michael Beetzb

aIntelligent Robotics Laboratory, School of Computer Science, University of Birmingham, United Kingdom
bInstitute for Artificial Intelligence & TZI (The Centre for Computing Technologies), University of Bremen, Germany

Abstract

Autonomous robots that are to perform complex everyday tasks such as making pancakes have to understand how
the effects of an action depend on the way the action is executed. Within Artificial Intelligence, classical planning
reasons about whether actions are executable but make the assumption that the performed actions will succeed (with
some probability). In this work, we have designed, implemented and analyzed a framework that allows us to envision
the physical effects of robot manipulation actions. The envisioning is achieved by translating a qualitative physics
problem formalization into a parameterized simulation problem, performing a detailed physics-based simulation of
a robot plan, logging the state evolution into appropriate data structures and then translating these sub-symbolic
data structures into interval-based first-order symbolic/qualitative representations, called timelines. The result of the
envisioning is a set of detailed narratives represented by timelines which are then used to infer answers to qualitative
reasoning problems. By envisioning the outcome of actions before committing to them, a robot is enabled to reason
about physical phenomena and thereby can prevent itself from ending up in unwanted situations. Hence, robots can
perform manipulation tasks more efficiently, robustly, and flexibly and they can even accomplish previously unknown
variations of tasks successfully.

Keywords: Envisioning, Naive Physics, Everyday Robot Manipulation

1. Introduction

In recent years, we have seen substantial progress towards personal robot assistants accomplishing everyday
household chores which are beyond pick-and-place tasks such as cleaning a room1 or preparing a meal (Beetz et al.,
2011). However, designing and building robots that can autonomously perform an open-ended set of manipulation
tasks in human environments remains an unsolved problem and poses many challenges to the field (Kemp et al., 2007).
One of the challenges is robots that learn novel tasks from natural instructions. For example, a robot interprets natural
language instructions (Tenorth et al., 2010b) and analyzes observations of a human performing the task (Beetz et al.,
2010b). Based on this little information, a robot has to understand the nature of the task, that is, it has to reason about
how the physical effects of a manipulation action depend on the way the action is executed. In particular, to perform
the task itself, the robot has to understand how its own manipulation actions influence the physical effects from a
first-person perspective.

Within Artificial Intelligence (AI), the problem of reasoning about actions was often considered in the area of
classical planning. In contrast to the question of how effects depend on how an action is executed, the question that
has widely been considered is what effects are caused by an action? However, in the context of robotics the problem
has to be approached from a different direction, because the way how an action is executed has a major influence on its
consequences. Furthermore, traditional approaches are inadequate for mainly two reasons: First, the open-endedness
of tasks makes classical planning intractable, and second, robot control programs are not represented adequately by
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sequences of actions as noted in (McDermott, 1992). Logical axiomatizations for representing and reasoning about
actions and their effects have also been developed for problems such as, for example, cracking an egg (Lifschitz,
1998; Morgenstern, 2001). However, when temporal projections are made on the basis of logical formalizations
physical details of the manipulation actions are abstracted away and variants of the problem could only be handled by
extending the underlying theory. To enable robots to reason about the future, they have to predict the effects of their
actions before committing to them which requires handling of an enormous amount of interdependent temporal data
(Dean, 1989).

Evidence from cognitive psychology and the neurosciences show that humans perform their actions based on the
expected consequences of their actions (Haazebroek and Hommel, 2009; Ingram et al., 2010). One of the important
factors that determines how humans perform an action is, for example, the end-state comfort (Weigelt et al., 2006).
Mirror neurons allow humans to perform mental simulations and thereby enable us to recognize and understand the
outcome of actions (Oztop et al., 2006). The simulation theory of cognition is mainly based on three components:
firstly, behavior can be simulated, secondly, perception can be simulated, and thirdly, real and simulated actions can
provoke perceptual simulations of their most likely consequences (Hesslow, 2012). Thus, the question what would
happen if I perform this action? can be answered by simulating the action and looking at the simulated perceptual
outcome. Subsequently, the perceptual outcome can serve as stimulus for new simulated behavior. Evidence show
that even high-level cognitive processes are grounded in bodily-based simulations (Svensson and Ziemke, 1999).

Within this line of research we are interested in how robots can envision the outcome of both single actions like
reaching for an object and complex tasks through mental simulations. Let us now consider an illustrative example
scenario.

1.1. Example Scenario: Making Pancakes
In this article, we consider making pancakes as our running example by which we illustrate what physical knowl-

edge robots need to competently accomplish everyday manipulation tasks. As mentioned above, understanding ev-
eryday physical phenomena, that is representing and reasoning about them, is an endeavor in the field of Artificial
Intelligence which dates at least back to the work of Hayes (1979). More recently, there has been work on physical
reasoning problems such as “Cracking an egg” (Morgenstern, 2001) which is listed on the common sense problem
page2. In analogy to the problems listed on that page, we have formulated the task of making pancakes as follows:

“A robot pours a ready-made pancake mix onto a preheated pancake maker. Properly performed, the mix
is poured into the center of the pancake maker without spilling where it forms a round shape. The robot
lets it cook until the underside of the pancake is golden brown and its edges are dry. Then, the robot
carefully pushes a spatula under the pancake, lift the spatula with the pancake on top, and quickly turns
its wrist to put the pancake upside down back onto the pancake maker. The robot waits for the other side
of the pancake to cook fully. Finally, it places the pancake using the spatula onto an upturned dinner
plate.”

whereby a solution to the problem should also take the following variants into account:

“What happens if: the robot pours too much pancake mix onto the pancake maker? too little? the robot
pours the mix close to the edge of the pancake maker? the robot flips the pancake too soon? too late? the
robot pushes only half of the spatula’s blade under the pancake? the robot turns its wrist too slow? the
robot uses a knife/fork/spoon to flip the pancake? the pancake mix is too thick? too thin? the ingredients
of the mix are not homogeneously mixed?”

By following this challenge problem, a robot can acquire some basic knowledge about the task. However, it does
not know what could happen when the robot itself performs the task in a certain way. This knowledge is obtained by
what we call here envisioning (de Kleer, 1977).

For simplification, let us now consider natural language instructions how humans would typically describe the
process of making a pancake:

2Common Sense Problem Page: http://www-formal.stanford.edu/leora/commonsense
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• pour the pancake mix into a frying pan,

• flip the pancake around,

• place the pancake onto a plate.

Humans can understand such instructions easily and can immediately follow them. However, for robots these
instructions are highly underspecified and therefore they need other means to acquire the relevant knowledge which
enables them to perform the task. Figure 1 highlights some questions a robot has to answer in order to accomplish the
task successfully.

How to pour the pancake mix?
� where to hold the bottle of pancake mix?
� at what height?
� at what angle?
� for how long? . . .

How to flip the pancake?
� how to push the spatula under the pancake?
� at what angle?
� with how much force?
� how to lift the pancake? . . .

Figure 1: What should I do? And how should I do it?

To understand what makes this task in particular interesting, let us first consider the task-related objects, second
the actions a robot has to carry out to perform the task, and finally the physical effects that could result from the
actions. The task-related objects mentioned in the natural language instructions above are a pan (pancake maker), a
pancake mix, a pancake, and a plate. Not mentioned in the description are some additional tools, for example, the
container holding the mix and the spatula for flipping the pancake. Inferring these missing objects is straight forward
for humans given their common sense. However, robots have to figure out these objects by other means. Overall, the
task scenario comprises objects with different physical properties, namely solid, liquid, and deformable objects. This
task covers a range of manipulation problems since it involves a spectrum of different object types.

The main actions of this task are pouring the mix and flipping the pancake where the latter action can naturally be
split into the following sub-actions: pushing the spatula under the pancake, lifting it, and turning the spatula.

Pouring the mix onto the pancake maker successfully requires that the container holding the mix is positioned at a
certain height over the pancake maker. At this position the container has to be tilted for some time at a certain angle,
so that the mix flows out onto the pancake maker. Figure 2 shows a robot pouring a pancake mix onto a pancake
maker.

As mentioned above, flipping the pancake can be considered as several sub-actions. For pushing the spatula under
the pancake the spatula has to be held at an appropriate angle to get under the pancake. When lifting and turning the
pancake the spatula has to be tilted at a certain height that the pancake falls off and lands upside-down on the pancake
maker. Figure 3 shows some aspects of Rosie performing the flipping action.

The pouring and the flipping actions performed by the robot could have various effects ranging from desired to
undesired. Some of the undesired effects are depicted in Figure 4. During the pouring action, the robot could spill
some pancake mix onto the table or it could only pour the mix onto the pancake maker with lots of splashes. During
the flipping action, robot could damage the pancake by touching it from the top or the pancake could get stuck to the
spatula.

1.2. Physical Reasoning in AI
The basic idea of how commonsense reasoning about problems like the above can be realized using formal logic-

based methods is depicted in Figure 5. Humans try to anticipate the appropriate sequence and configuration of actions

3



Figure 2: Pouring mix onto the pancake maker.

Figure 3: Flipping a pancake.

that will lead to a desired outcome given an initial situation and an intended goal. However, it is not clear how this
kind of reasoning is accomplished by humans. The simulation theory of cognition mentioned earlier might be part
of the answer (Hesslow, 2012). In traditional AI, the initial situation and an action plan are described using a logical
axiomatization. Then, a specialized calculus, for example, the situation or the event calculus, are applied in order to
transform the axiomatization from the initial situation into a proof that resembles the intended goal.

However, several problems arise if robots are to use a similar mechanism as proposed by traditional AI approaches.
We see three major problems:

Level of abstraction Physical effects of actions strongly depend on the concrete parameterization of continuous vari-
ables. For example, the position of the hands and the tilting angle of the container when pouring the pancake
mix onto the pancake maker clearly affect the outcome of the action. Abstracting away from these relevant
details yields to oversimplified and inadequate conclusions.

Interfering effects/concurrent actions Effects of single and/or concurrent actions can interfere with each other. For

Figure 4: Physical Behavior Flaws: pancake mixed spilled, spatula placed over the pancake, pancake stuck on spatula.
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Figure 5: Commonsense reasoning and its formalization using first-order logic in traditional AI.

example, a robot that simultaneously moves its hand holding the pancake mix to a position over the pancake
maker and tilts it might spill some mix onto the table before reaching its target position. Generally, such
interfering effects are difficult to model using rules in a logical calculus.

Handling variants Robots should be able to handle variants of the original problem. An intrinsic feature of everyday
manipulation tasks is that they will never be performed under the same conditions. For example, ingredients or
tools a robot has to use might differ. If the pancake mix has a higher viscosity the robot has to pour for a longer
duration than usual. Of course, not all variants of a problem can be foreseen. However, to some extent a robot
should be able to cope with variants without the need to extend the underlying theory.

In conclusion, reasoning components for robots should be able to deal with the problems laid out above. That is,
they should operate at a level of abstraction that considers the robot’s actuators, sensors and control routines, handle
interfering effects, and also cope with variants of a problem. In the next section we will outline the principle by which
we enable robots to envision the outcome of their own actions adequately.

1.3. Our Approach

The basic idea of our approach is to allow robots to reason semantically about objects and actions that rely on the
richness of the continuous world. We embed reasoning components deeply within robot control programs. Thereby,
programmers can write very general control programs in a concise way. Task and context related decisions are made
and action parameters are determined based on the underlying components. The following excerpt of LISP pseudo
code illustrates the basic idea of constraint-based action specifications with the example of pouring:

(perform (an action
(type pour)
(object ?obj = (an object-part

(contained-in mug)
(type pancake-mix)))

(destination ?loc = (a location
(on pancake-maker)))

(desired-effect (and (size ?obj small)
(shape ?obj round)
(centered ?loc pancake-maker)))

(undesired-effect (spilled ?obj counter))))
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The type of the action is pour, the object ?obj is a part of an object of type pancake-mix contained in a mug, and
the destination ?loc is a location on the pancake-maker. The desired effect of the action is a conjunction of several
constraints. The object bound to the variable ?obj should be of small size and have a round shape. Furthermore, the
location bound to ?loc should be centered on the pancake-maker. An undesired effect of the pouring action is the
spilling of ?obj of type pancake-mix.

The above example should give the reader only an idea about how we envision the use of naive physics and
commonsense knowledge within cognition-enabled robot control. That is, the aim of this work is not to realize
this control mechanism but rather to acquire commonsense knowledge and generate models that can be used within
reasoning components.

By considering the manipulation scenario of making pancakes, we are aiming at finding appropriate representa-
tions and inference mechanisms that enable robots to predict the effects of their own actions which depend very much
on the way the actions are executed, i.e. their parameterizations. Therefore we have designed, implemented, and
analyzed a framework that allows us to envision the outcome of parameterized robot actions based on physics-based
simulations (Kunze et al., 2011b,a). Figure 6 shows the robot Rosie pushing the spatula under pancake and envision-
ing the action through mental simulation. Though we have used the example of Rosie making pancakes from our
previous work (Beetz et al., 2011) to motivate the overall problem, in the remainder of the article we use the PR2
robot to illustrate our ideas.

Figure 6: Left: Rosie pushing the spatula under the pancake. Right: Envisioning the pushing action using a physics-based simulation.

Figure 7 shows how the underlying idea of commonsense reasoning explained in the previous section is extended.
Based on the logical axiomatization, that is, a description of a manipulation scenario and a fully instantiated robot plan,
a physics-based simulation is parameterized. The states of task-relevant objects and actions are monitored and their
data structures are logged. These log files are interpreted and translated into interval-based first-order representations,
called timelines. Eventually, logical queries of the robot can be answered based on timelines which are grounded
in the logged data structures of physical simulations. These queries play a key role in the constraint-based action
specifications described above.

However, within our research we are not aiming to determine the physical effects at a very detailed level, but rather
to get the various qualitative effects right and to understand how these qualitative effects depend on the parameters
of the respective manipulation actions. Furthermore, the developed representations and inference mechanisms should
allow to diagnose and to revise the executed actions. In the context of learning, they make it possible to direct the
exploration in the search space based on the information of causal models.
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Figure 7: Envisioning of robot manipulation tasks based on physics-based simulations.

1.4. Contributions
In this work, we have integrated methods of the fields of Artificial Intelligence and Robotics in order to envision

and evaluate the physical effects of robot manipulation actions qualitatively. To this end, we have realized an open
source programming environment which combines logic programming and physics-based simulation in a coherent
framework. The main contributions of this work are as follows. We have:

• established an interface for parameterizing and controlling physics-based simulations from the logic program-
ming environment Prolog.

• linked first-order representations to physical object models that can be instantiated in simulation.

• started a library of physical object models and specialized physical behaviors which are not covered by rigid-
body simulations, for example, the mixing of liquids.

• developed a monitoring and logging mechanism (configurable from Prolog) that observes data structures of
interest within the simulator.

• introduced interval-based first-order representations (timelines) that tightly integrate sub-symbolic and symbolic
information from logged simulations as a powerful means for reasoning about the consequences of robots
actions.

1.5. Outline
The rest of the article is structured as follows. Related work is reviewed in Section 2. We explain the “Envisioning”

framework in Section 3. In Section 4, we describe as one example of a specialized physical behavior how fluids are
represented and simulated within the framework. Experimental results of various manipulation scenarios are reported
in Section 5. We discuss our approach and the experiments in Section 6. Finally, we summarize the approach, give an
outlook on future work and conclude in Section 7.
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2. Related Work

The present work can be considered as interdisciplinary research of two fields: Robotics and AI. With this research,
we want to enable robots to reason about the consequences of action parameterizations and thereby allowing them to
make appropriate decisions in their course of action by using well-established methods of AI and detailed physical
simulations.

Only recently, Smith and Morgan (2010) stressed the importance of using simulations in AI research. They
developed the open source simulator IsisWorld for investigating problems in commonsense reasoning. Although they
also employ a physics engine for their simulations, they consider actions such as picking up an object only at a very
abstract level, whereas we focus on the physical details of such actions in order to recognize qualitative phenomena
occurring during their execution.

In (Johnston and Williams, 2008), a general simulation framework and logic-based reasoning methods, in par-
ticular tableau-based reasoning, are integrated in order to establish a practical approach to commonsense reasoning.
In contrast to their work, we are not aiming at commonsense reasoning in general but rather at reasoning for naive
physics problems in the context of everyday robot object manipulation. Instead of looking at isolated problems, we
aim for a tight integration between our proposed reasoning system and other processes such as planning, e.g., to
predict whether a meal is edible when executing a specific plan for cooking pasta.

Work by Ueda et al. (2008) describes the design and implementation of a programming system based on EusLisp
that make use of a simulation for deformable objects. Thereby, robot control programs can easily exploit the special-
ized computations made by the simulation. Similarly, we use the logic programming environment Prolog and utilize
a physics-based robot simulator. In addition, we integrated methods for making simulation-based temporal projec-
tions into Prolog’s backtracking mechanism in order to perform reasoning about action parameterizations for robot
manipulation tasks.

The interactive cooking simulator (Kato et al., 2009) is relevant for our work, since the research aims at a deep
understanding of cooking operations, which could bring new insights with respect to representations and reasoning
mechanisms for manipulation actions in everyday meal-preparation tasks.

Exploiting physical simulators for effectively solving sub-problems in the context of robotics has become more
attractive as shown by a number of recent investigations, where simulations are employed for planning in robocup
soccer (Zickler and Veloso, 2009), for navigating in environments with deformable objects (Frank et al., 2009), and
for reasoning about the consequences of everyday manipulation tasks (Kunze et al., 2011b). A detailed evaluation for
using physics engines for improving the physical reasoning capabilities of robots is given in (Weitnauer et al., 2010).
But other fields also recognize simulators as valuable tools and utilize them, e.g., for character animation (Faloutsos
et al., 2001) and motion tracking (Vondrak et al., 2008).

In the context of Naive Physics (Hayes, 1979, 1985), solutions to the problem of egg cracking (Miller and Mor-
genstern, 2009), were formulated based on logical axiomatizations (Lifschitz, 1998; Morgenstern, 2001). Limitations
of these approaches are mainly that physical details are abstracted away and that variants cannot be handled very
flexibly. To overcome such limitations this work proposes a simulation-based approach: we take a logical axiom-
atization and translate it into a parametrized simulation problem, simulate and log simulation data, translate logged
simulation data into an interval-based first-order representation which is used for answering queries about a qualitative
reasoning problem. Please refer to our earlier work for more detailed account on the problem of egg cracking using
simulation-based techniques (Kunze et al., 2011b).

The integration of numerical simulation and qualitative methods has been investigated before (Weld and Kleer,
1990), for example, work on qualitative-numeric simulation (Berleant and Kuipers, 1992) and self-explanatory simu-
lations (Forbus and Falkenhainer, 1990). Work by Lugrin and Cavazza (2007) has shown an integration of numerical
simulation and qualitative modeling based on the Qualitative Process Theory (Forbus, 1984) for virtual interactive en-
vironments. But none of the approaches, we are aware of, have investigated a simulation-based approach for making
predictions in the context of everyday robot object manipulation.

The grounding of logical predicates such as contacts(o1, o2) in data of logged simulations is done similar to work
by Siskind (2001) who grounded semantics in visual perception. Similarly, we ground only primitive predicates
in logged simulations. Complex predicates are formulated in Prolog and are based on primitive or other complex
predicates similar to definitions of symbolic chronicles (Ghallab, 1996).
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A simulation-based approach for temporal projection in reactive planning is proposed in (Mösenlechner and Beetz,
2009), that is, predicting the interfering effects of continuous and concurrent actions. Similarly, this work proposes a
simulation-based approach for naive physics reasoning for robot manipulation tasks.

Approaches to push grasping in robot object manipulation use planning methods and learning from experience to
generate possible grasps (Dogar and Srinivasa, 2011; Mericli et al., 2013). These approaches provide complementary
information to our approach and could be integrated to some extent. In particular, it would be interesting to integrate
the feedback from real work experiences into the simulation and thereby improve its accuracy.

3. The Envisioning Framework

In this section, we describe the overall envisioning framework. First, we give a general overview of the framework
and its components, and second, we explain the different components of the framework in detail.

3.1. Overview

The general principle of the framework is depicted in Figure 8, it is accessed via a logic-based interface, meaning
that both the framework’s input and output are formalized using first-order representations. The input is a description
of a situated scenario σ of a manipulation problem along with a parameterized action plan φ that potentially solves the
problem. The output of the envisioning framework is a timeline τ which holds information about object states, their
relationships to other objects and the performed actions of the robot. For example, a robot formalizes the problem
of making pancakes by providing a minimalist description of the environment including the kitchen work space,
manipulable objects such as a container holding the pancake mix and a spatula and a specification of the robot itself.
In addition, the robot provides an instantiated action plan based on the plan’s corresponding parameter space for
pouring the ready-to-use pancake mix onto the pancake maker, flipping the half-baked pancake and placing the full-
baked pancake onto a plate. Finally, based on the envisioned timeline the robot is able to evaluate its parameterized
action plan with respect to various performance measures, for example, whether the pancake mix was poured onto the
pancake maker without spilling. In order to evaluate a set of given action plans we sample parameter values from the
parameter space associated with a plan. In (Kunze et al., 2013), we have shown how a sensible range of parameter
values can be extracted from observations of human demonstrations.

Figure 8: Input and output of the envisioning framework.

Table 1 illustrates the individual steps of the envisioning process with the example of flipping a pancake. The
logical language allows the assertion of a certain scenario and initiate the envisioning process. Eventually, logical
predicates such as holdstt can be used to determine whether certain conditions hold within a time interval. For
example, the query in Table 1 asks whether the pancake was first on the pancake maker, then on the spatula during the
flipping action, and finally back on the pancake maker.

Having shown the envisioning process step-by-step in Table 1, Figure 9 visualizes how the process is embedded
within Prolog’s backtracking mechanism. Given Prolog’s depth-first search strategy a proof tree is generated whereby
the branches correspond to different parameterizations of robot plans. Eventually, the timelines are evaluated with
respect to desired and undesired effects.
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Table 1: Envisioning process for flipping a pancake. The process steps comprise the assertion of the scenario, envisioning over a set of parameterized
plans, and question answering based on timelines grounded in logged simulations.

Logic Programming Environment Physical Simulation

?- assert_scenario(Pancakes).

?- assert_scenario($Pancakes,kitchen).

?- assert_scenario($Pancakes,pr2).

?- param_space(flip,ParamSpace),

setof(TL,(member(P,ParamSpace),

envision($Pancakes,flip(P),TL)),

TLs).

?- member(TL, $TLs),

holds_tt(on(pancake,pancake_maker),I1,TL),

holds_tt(on(pancake,spatula),I2,TL),

holds_tt(on(pancake,pancake_maker),I3,TL),

before(I1,I2),before(I2,I3),

holds_tt(occurs(flip(P)),I4,TL),

during(I2,I4).
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envision(pancakes,flip(ParamTuple),Timeline)

occurs(Event,Time,Timeline)
              

stuck on 
spatula

 turned
successfully

pushed 
from griddle

simulate(pancakes,flip(ParamTuple),Log)
              

translate(Log,Timeline)
              

log_o(pose,[pancake, (1.31934 0.093622 0.932908), (-175.28 -6.22547 
-23.4585)], 120.597000000)
log_o(pose,[pancake, (1.31934 0.0936212 0.932908), (-175.279 -6.22827 
-23.4587)], 120.697000000)
log_o(pose,[pancake, (1.31934 0.0936213 0.932905), (-175.297 -6.20338 
-23.4612)], 120.798000000)
log_o(pose,[pancake, (1.31934 0.0936209 0.932906), (-175.307 -6.17945 
-23.4647)], 120.898000000)
log_o(pose,[pancake, (1.31934 0.0936206 0.932906), (-175.311 -6.15599 
-23.47)], 120.997000000)
log_o(pose,[pancake, (1.31934 0.0936199 0.932905), (-175.313 -6.12287 
-23.4742)], 121.098000000)
log_o(pose,[pancake, (1.31934 0.0936189 0.932905), (-175.314 -6.11547 
-23.4737)], 121.197000000)
log_o(pose,[pancake, (1.31934 0.0936185 0.932904), (-175.318 -6.10426 
-23.4777)], 121.297000000)
log_o(pose,[pancake, (1.31934 0.0936187 0.932902), (-175.323 -6.08893 
-23.4827)], 121.397000000)
log_o(pose,[pancake, (1.31934 0.0936179 0.932902), (-175.325 -6.06293 
-23.4868)], 121.497000000)
log_o(pose,[pancake, (1.31934 0.0936174 0.932904), (-175.329 -6.0583 
-23.4909)], 121.598000000)
log_o(pose,[pancake, (1.31934 0.0936168 0.932903), (-175.335 -6.03086 
-23.4916)], 121.697000000)
log_o(pose,[pancake, (1.31934 0.0936172 0.932901), (-175.351 -6.00921 
-23.4951)], 121.798000000)
log_o(pose,[pancake, (1.31934 0.093617 0.932902), (-175.355 -5.99698 
-23.4988)], 121.897000000)log_o(pose,[pancake, (1.31934 0.0936168 
0.932901), (-175.359 -5.97459 -23.5033)], 121.997000000)log_o(pose,

log_o(pose,[pancake, (1.31934 0.093622 0.932908), (-175.28 -6.22547 
-23.4585)], 120.597000000)
log_o(pose,[pancake, (1.31934 0.0936212 0.932908), (-175.279 -6.22827 
-23.4587)], 120.697000000)
log_o(pose,[pancake, (1.31934 0.0936213 0.932905), (-175.297 -6.20338 
-23.4612)], 120.798000000)
log_o(pose,[pancake, (1.31934 0.0936209 0.932906), (-175.307 -6.17945 
-23.4647)], 120.898000000)
log_o(pose,[pancake, (1.31934 0.0936206 0.932906), (-175.311 -6.15599 
-23.47)], 120.997000000)
log_o(pose,[pancake, (1.31934 0.0936199 0.932905), (-175.313 -6.12287 
-23.4742)], 121.098000000)
log_o(pose,[pancake, (1.31934 0.0936189 0.932905), (-175.314 -6.11547 
-23.4737)], 121.197000000)
log_o(pose,[pancake, (1.31934 0.0936185 0.932904), (-175.318 -6.10426 
-23.4777)], 121.297000000)
log_o(pose,[pancake, (1.31934 0.0936187 0.932902), (-175.323 -6.08893 
-23.4827)], 121.397000000)
log_o(pose,[pancake, (1.31934 0.0936179 0.932902), (-175.325 -6.06293 
-23.4868)], 121.497000000)
log_o(pose,[pancake, (1.31934 0.0936174 0.932904), (-175.329 -6.0583 
-23.4909)], 121.598000000)
log_o(pose,[pancake, (1.31934 0.0936168 0.932903), (-175.335 -6.03086 
-23.4916)], 121.697000000)
log_o(pose,[pancake, (1.31934 0.0936172 0.932901), (-175.351 -6.00921 
-23.4951)], 121.798000000)
log_o(pose,[pancake, (1.31934 0.093617 0.932902), (-175.355 -5.99698 
-23.4988)], 121.897000000)log_o(pose,[pancake, (1.31934 0.0936168 
0.932901), (-175.359 -5.97459 -23.5033)], 121.997000000)log_o(pose,

log_o(pose,[pancake, (1.31934 0.093622 0.932908), (-175.28 -6.22547 
-23.4585)], 120.597000000)
log_o(pose,[pancake, (1.31934 0.0936212 0.932908), (-175.279 -6.22827 
-23.4587)], 120.697000000)
log_o(pose,[pancake, (1.31934 0.0936213 0.932905), (-175.297 -6.20338 
-23.4612)], 120.798000000)
log_o(pose,[pancake, (1.31934 0.0936209 0.932906), (-175.307 -6.17945 
-23.4647)], 120.898000000)
log_o(pose,[pancake, (1.31934 0.0936206 0.932906), (-175.311 -6.15599 
-23.47)], 120.997000000)
log_o(pose,[pancake, (1.31934 0.0936199 0.932905), (-175.313 -6.12287 
-23.4742)], 121.098000000)
log_o(pose,[pancake, (1.31934 0.0936189 0.932905), (-175.314 -6.11547 
-23.4737)], 121.197000000)
log_o(pose,[pancake, (1.31934 0.0936185 0.932904), (-175.318 -6.10426 
-23.4777)], 121.297000000)
log_o(pose,[pancake, (1.31934 0.0936187 0.932902), (-175.323 -6.08893 
-23.4827)], 121.397000000)
log_o(pose,[pancake, (1.31934 0.0936179 0.932902), (-175.325 -6.06293 
-23.4868)], 121.497000000)
log_o(pose,[pancake, (1.31934 0.0936174 0.932904), (-175.329 -6.0583 
-23.4909)], 121.598000000)
log_o(pose,[pancake, (1.31934 0.0936168 0.932903), (-175.335 -6.03086 
-23.4916)], 121.697000000)
log_o(pose,[pancake, (1.31934 0.0936172 0.932901), (-175.351 -6.00921 
-23.4951)], 121.798000000)
log_o(pose,[pancake, (1.31934 0.093617 0.932902), (-175.355 -5.99698 
-23.4988)], 121.897000000)log_o(pose,[pancake, (1.31934 0.0936168 
0.932901), (-175.359 -5.97459 -23.5033)], 121.997000000)log_o(pose,

Figure 9: Prolog’s proof tree for three different flipping plans.
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To cope with the uncertainty inherent in robot object manipulation, the same set of action parameters can be
applied under varying conditions. To some extent, the physics-based simulation is already stochastic. Additionally,
the poses of objects and the robot itself and/or the initial state of objects can be varied. Thereby, the robustness
of a single parameterized plan can be evaluated on the basis of the set of resulting timelines. Further, it would be
possible to learn a joint probability distribution over the different outcomes of a robot plan. However, learning such a
distribution is beyond the scope of this paper.

After we have looked at the general principle of the framework and its input and output specifications we show
how the envisioning functionality is achieved through the interplay of various components. Figure 10 shows the
components of the framework as well as their interactions among each other.

Figure 10: Envisioning framework overview.

As stated earlier, the framework’s interface is based on first-order representations. In our work, we employ Pro-
log3 to realize the interface of the envisioning framework. Given domain knowledge (knowledge base), a scenario
description and an action plan, Prolog initializes and orchestrates the overall envisioning process and eventually eval-
uates the resulting timelines. One of the main constituents of the envisioning process is a physics-based simulation in
which a specified robot performs manipulation actions according to its parameterized action plan. During simulation,
dedicated monitoring routines observe the world state, including object poses, velocities, contacts between objects,
etc. Similarly, the actions of the robot are monitored and logged. After the execution of the robot control program, the
logs are read by Prolog and translated into interval-based first-order representations, called timelines. Eventually, the
timelines are evaluated with respect to predefined goal conditions and other performance measures. Now that we have
placed all components of the framework into context, we will explain how the individual components are realized.

3.2. Knowledge Base

In this work, the robot runs physics-based simulations and evaluates their outcome in order to reason about a
manipulation problem such as flipping a pancake. To pursue this task most effectively, the robot is equipped with
knowledge about situated manipulation problems, action plans that generally describe how to solve these problems,
and parameter spaces of primitive actions occurring in the plans. We use first-order representations to formalize these
information within a knowledge base. For representing the knowledge, we mainly use Description Logic (DL), in

3SWI-Prolog: http://www.swi-prolog.org/
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particular the semantic web ontology language OWL4. We build our representations on OpenCyc’s5 upper-ontology
and extend type and property descriptions whenever necessary.

Following our previous work, we represent the environment of the robot with semantic maps (Tenorth et al.,
2010a). These maps describe not only the geometric properties of the environment but also the semantic categories
like cooking top within an ontology. Similarly, everyday objects that are to be manipulated by the robot are described
within the ontology. All physical objects are derived from a generic Object concept. The three major subclasses
are Solid, Fluid, and Deformable. Fluid has further specializations, namely Liquid and GranularFluid. Given the
principle of inheritance, properties of a concept are derived from their super-concepts. For example, Object has a
property named HasModel that relates Object to PhysicalModel. Thereby all sub-concepts of Object as well as their
respective sub-concepts have this property. As the environment is simulated, it makes sense to relate all objects
to physical models. These models can be described in all formats that can be loaded into the physical simulator
Gazebo6. In this work, we mainly make use of physical object models described in the Unified Robot Description
Format (URDF)7. But other formats such as COLLADA8 are also feasible. Eventually, a concrete instance of an
object is linked to a physical model that can be instantiated within the Gazebo simulator.

Figure 11 shows an excerpt of the ontology. At the top, it visualizes the relation between Object and Physi-
calModel, on the left, the hierarchical object taxonomy including the concepts Liquid, Solid, PancakeMix and Con-
tainer, on the right, the sub-concepts of PhysicalModel, and at the bottom, it shows concrete instances and their
relations among each other. The in relation between PancakeMix and Container is explained in Section 3.6.

Figure 11: Simplified Ontology about “Making Pancakes”.

The robot itself is specified by the Semantic Robot Description Language (SRDL) which we introduced in (Kunze
et al., 2011c). The description includes the kinematic structure of the robot as well as a semantic description of its
sensors and actuators. All of the above mentioned descriptions have links to physical models that can be instantiated
within a simulator. Action plans are represented hierarchically within the ontology as depicted in Figure 12.

3.3. Prolog — A Logic Programming Environment
Prolog is the heart of the envisioning framework. It serves as interface to the robot, and coordinates all other

components of the framework using a simple language for making temporal projections.

4http://www.w3.org/2004/OWL
5http://www.opencyc.org
6http://gazebosim.org
7http://www.ros.org/wiki/urdf
8http://www.collada.org
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Figure 12: Ontological representation of an action plan for making pancakes.

3.3.1. Overview
In order to answer a query from the robot, Prolog retrieves the descriptions of all task-related objects and the

robot’s environment from the knowledge base and sets up the simulation using these descriptions and launches a
parameterized robot control program that is executed within the simulator. During the execution, object states and
associated data structures are monitored and logged. After the execution of the program, Prolog stops the simulation
and the object logs are translated back into first-order representations and eventually they are evaluated in regard to
specified performance criteria. If the evaluation is successful, Prolog presents a solution, otherwise it backtracks over
different parameterizations. To realize this functionality we have developed a temporal projection language which is
explained in the following section.

3.3.2. Temporal Projection Language
The basic idea of a logic programming language for making simulation-based temporal projections is as follows.

First, a new scenario is asserted and task-relevant descriptions are added to it successively, for example, an environ-
ment description, a robot description, and a number of object descriptions. After initializing the simulator with the
asserted scenario descriptions, a robot control program is executed whereby formal control parameters are selected
from a specified range of possible values. States of the robot and objects that are traversed during simulation are
monitored, logged, and translated into interval-based first-order representations, namely timelines. Eventually, the
generated timelines are subject to further evaluations of specialized predicates. For example, a timeline is evaluated
with respect to desired (or undesired) outcomes, qualitative spatial relations, or other performance criteria such as the
speed of execution.

The following Prolog query shows how the simulation-based temporal projection can be used where terms starting
with an upper-case letter such as Scenario denote variables, terms starting with a lower-case such as kitchen env denote
concrete instances in the knowledge base, and the predicate occurs stands exemplarily for a specialized predicate that
evaluates a given timeline:

?- assert_scenario(Scenario),

assert_scenario(Scenario,kitchen_env),

assert_scenario(Scenario,pr2_robot),

assert_scenario(Scenario,obj1),

param_space(actionplan,ParamSpace),

setof(T, (member(P,ParamSpace),

envision(Scenario,actionplan(P),T)),Ts),

member(Timeline,Ts), occurs(event, Time, Timeline).

Values for the formal parameters, e.g. P, are selected from their respective range and are bound to the variable in
order to make them accessible for further evaluations. How to generate and/or select the values of the parameters more
effectively is another interesting problem. Intuitively, the parameters could be chosen depending on the qualitative
outcomes of the simulation, however, this is beyond the scope of this article.
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The language elements for making temporal projections, i.e., the Prolog programs (or predicates) that have been
implemented in order to assert a scenario, to perform a simulation-based temporal projection, and to logically evaluate
the resulting timelines, are explained in the following.

assert scenario(Scenario) Asserts a new scenario and generates a unique identifier (Scenario) to access the scenario
within other predicates.

assert scenario(Scenario, Entity) Asserts an entity or set of entities to a given scenario. There are three ways of
asserting an entity: either by naming the entity, if it is already known by the knowledge base including its
physical specifications that are needed by the simulator, by providing the physical specifications of a previously
unknown entity explicitly, or by providing an object type that can be generated by the object model factory.

envision(Scenario, Plan(Params), Timeline) Performs a simulation-based temporal projection for an asserted sce-
nario, a fully instantiated robot control program/plan, and returns an ID of the projected timeline. This program
is realized by two subprograms, namely simulate and translate.

simulate(Scenario, Plan(Params), Log) Sets up and runs the simulation. First, the Gazebo simulator is launched
and all entities that were added to the given scenario by the assert scenario command are loaded successively.
If necessary, entity specifications are generated on-the-fly by the object model factory and spawned into the
simulator. Second, the robot control program is executed, where formal parameters are selected from their
respective ranges. By utilizing Prolog’s backtracking mechanism the cross product of all valid parameter in-
stantiations is automatically generated. After a certain time, the simulation is stopped and all processes are shut
down. The output variable Log points to the log files of the robot control program and the task-related objects.

translate(Log, Timeline) Translates the logged simulations into an interval-based representation, i.e. a timeline, by
using the first-order predicates Holds(f,t) and Occurs(e,t). To differentiate between the individual timelines, a
unique ID (Timeline) is generated and attached to the individual fluents and events.

occurs(Event, Time, Timeline) Retrieves the given Timeline and evaluates it with respect to an event (Event) that
might have occurred at a point in time (Time) during the simulation. If the specified event is found in the
timeline the predicate evaluates to true.

holds(Fluent, Time, Timeline) Retrieves the given Timeline and evaluates it with respect to a fluent (Fluent) that
might have hold at a point in time (Time) during the simulation. If the specified fluent is found in the timeline
the predicate evaluates to true.

3.4. Physics-based Simulation

Within our approach, we utilize a physics-based simulator, namely Gazebo9, for computing the effects of robot
actions, object interactions and other physical events. We augmented the rigid-body physics to simulate specialized
behaviors.

3.4.1. Rigid-Body Simulation
We parameterize the simulator on the basis of the logical axiomatization, i.e. the domain knowledge, run simula-

tions and log data of features such as position, velocity, forces, and contact points between objects over time. After
explaining shortly how a physics-based simulator computes physical effects generally, we present how the Gazebo
simulator can be configured and how we derive a configuration based on the assertions in the knowledge base.

Generally a physics-based simulator works as follows: the simulator starts its computation of physical effects
based on an initial configuration. Then it periodically receives motor control commands which are translated into
forces and it updates the state of the simulated world according to physical laws. Within each tiny update step, forces
are applied to affected objects by considering both the object’s current dynamic state and its properties such as mass

9http://gazebosim.org
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and friction. Later we explain how we augment the simulation in order to account for physical phenomena such as
breaking or absorbing.

The initial configuration of the Gazebo simulator is based on an XML file, called world file. It describes properties
of the simulation, specifies parameters for the physics engine (ODE) and describes all things occurring in the world,
including robots, sensors and everyday objects. Within a world file each object has its own model description. Such
model descriptions comprise mainly the object’s shape and a set of physical properties such as size, mass, and rigidity.
When properties are not explicitly specified within the knowledge base, we simply assume default values.

To simulate physical phenomena such as breaking objects we augment the model descriptions, how this is realized
is presented in the next section.

3.4.2. Augmented Simulation
The Gazebo simulator is designed for simulating robots, sensors and objects, whereby physical aspects of objects

and their interactions are more or less limited to rigid body dynamics. Since we want to simulate naive physics
problems with phenomena such as breaking, mixing, and cooking we augment object model descriptions with detailed
shape models, controllers for simulating physical phenomena, and monitors for logging states of objects. The extended
model descriptions are collected in a library for simulating phenomena of everyday physics.

Instead of modeling objects as rigid bodies, we describe the shape of objects similar to Johnston and Williams
(2008) with graph-based structures which allow us to inspect physical aspects at a more detailed level. These model
configurations are derived from the information stored in the knowledge base. The basic entities for modeling the
shape of an object are bodies and joints, which are mutually connected. Properties of an object such as type, mass,
spatial extensions, and rigidity determine the attributes of these basic entities.

In order to simulate new classes of objects, for example, objects that are breakable and objects that change their
state from liquid to a deformable structure we add controllers to the object model descriptions. These controllers
are called within each simulation step and perform some specialized computation. The computation can be based on
physical properties calculated by the simulator or on results computed by other controllers. Thereby object attributes
such as being broken and being cooked can be computed. This allows us to simulate a new range of processes such as
breaking and cooking by only adding the respective attributes to objects in the knowledge base.

Given that there is only a limited number of processes that have to be implemented makes this approach scalable.
Furthermore, the implementation of the various continuous processes with procedural programs is easier than their
realization by the means of logical axioms. In Section 4, we provide more details on the augmented simulation. In
particular, we will explain how fluids are represented and simulated within the framework. However, as the augmented
fluid simulation itself is rather complex, we continue with the remaining components of the envisioning system for
the sake of a better understanding.

3.5. Monitoring of Simulations and Actions

In addition to controllers realizing physical behaviors, we add monitoring routines to observe and log the state of
objects at each simulation step. Additionally we monitor the actions the robot is performing.

Actions of the robot are monitored as follows. Ideally, robot control programs would be written as plans. For
example, using a plan language such as CRAM (Beetz et al., 2010a) allows robots to interpret and reason about its
own programs. However, in this work we treat a robot control program as a black box, so it can be implemented in
any kind of programming language. In order to reason about the actions of a robot, we assume that at least the actions
of interest are logged using a simple interface. The begin and the end of an action as well as its parameters should be
logged by the control program. This allows robots to relate their actions to the physical events of the simulation. An
example of an action log for picking up a spatula using the left robot arm is shown in Table 2. In the excerpt of the log,
the hierarchical decomposition of actions and sub-actions are visible. The pick up action is decomposed into several
action primitives including opening and closing the gripper, and moving the arm’s end-effector into certain pose.

The data structures of the world state we are monitoring are the position, orientation, linear and angular velocities,
and the bounding boxes of objects and their respective parts. Furthermore, we observe the physical contacts between
objects and log information such as contact points, contacts normals, and forces. All this information is constantly
monitored and only changes are logged.
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Table 2: Excerpt of the action log. Example: Pick-up action.

Time ID Status Action Parameter

53.917 12 begin pick up (spatula handle, left arm)
53.917 13 begin open l gripper (width, 0.09)
56.844 13 end open l gripper –
56.959 14 begin move l arm (l wrist flex link,

(position, (0.310885, 0.490161, -0.195159)), (ori-
entation, (-2.73593e-05, 0.013794, 0.00194869,
0.999903)))

59.175 14 end move l arm –
59.200 15 begin move l arm (l wrist flex link,

(position, (0.380885, 0.490161, -0.195159)), (ori-
entation, (-2.73593e-05, 0.013794, 0.00194869,
0.999903)))

60.573 15 end move l arm –
60.590 16 begin close l gripper (width, (0.0))
72.020 16 end close l gripper –
72.063 17 begin move l arm (l wrist flex link,

(position, (0.380885, 0.490161, 0.00484052)),
(orientation, (-2.73593e-05, 0.013794,
0.00194869, 0.999903)))

74.307 17 end move l arm –
74.315 12 end pick up –

3.6. Timelines
Reasoning about everyday object manipulation requires robots to understand the spatial and physical configura-

tions of objects and their parts over time. A general overview on spatial, physical and temporal reasoning is given in
the book by Davis (1990). Robots should be able to extract information about an object’s position, its contacts, and
its spatial relations to other objects from its environment in order to reason about a task. Since we employ physical
simulation, all this information can be abstracted from the data structures of the simulator. Conceptually, the robot
can access this information using the predicate SimulatorValue as follows:

SimulatorValue(

Function︷              ︸︸              ︷
position(o, pos),

Time point︷︸︸︷
t )

where position is an exemplary function for retrieving information about an object o at a certain point in time t.
Eventually, the information about the object’s position is bound to the variable pos. Table 3 lists further functions that
can be used to access information about an object’s world state. All functions provide information for a given object,
e.g. its position, orientation, velocity, dimension, and its bounding box. As we will see later, many spatial relations
are computed based on the object’s bounding box. Thereby, the bbox function plays an important role for reasoning
about the object’s state.

Another set of functions that can be accessed via the SimulatorValue predicate provides information about an
object’s contacts. Contact information is crucial for the interpretation and analysis of the physical effects of actions.
As information about contacts are always reported between two objects, all functions take two objects as arguments.
For example, the contacts function is true when there is a contact between two objects at a certain point in time. It is
a symmetric function, that is, whenever object o1 is in contact with o2, object o2 is in contact with o1. However, note
that not all functions about contacts are symmetric. For example, the force function provides information about the
force one object exerts onto another. Thus, the reported information about the force has a direction. Table 4 shows
functions that extract information about contacts between objects including contact positions, normals, penetration
depths and forces.
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Table 3: Functions for accessing the object’s world state.

Function Description

position(o, pos) 3D position of object o, pos is a vector 〈x, y, z〉
orientation(o, quat) 3D orientation of object o, quat is a quaternion

〈q1, q2, q3, q4〉

linear velocity(o, lv) linear velocity of object o, lv is a vector 〈lvx, lvy, lvz〉

angular velocity(o, av) angular velocity of object o, av is a vector 〈avx, avy, avz〉

dim(o, dim) dimensions of object o, dim is a vector 〈dx,wy, hz〉

bbox(o, bbox) bounding box of object o, bbox is a vector
〈xmin, ymin, zmin, xmax, ymax, zmax〉

Table 4: Functions for accessing contact information between objects.

Function Description

contacts(o1, o2) true if object o1 is in contact with object o2
positions(o1, o2, positions) list of contact positions between o1 and o2
normals(o1, o2, normals) list of contact normals at contact positions
depths(o1, o2, depths) list of penetration depths at contact positions
force(o1, o2, f orces) forces between o1 and o2, f orces is a vector

〈 fx, fy, fz〉
torque(o1, o2, torques) torques between o1 and o2, torques is a vector

〈tx, ty, tz〉

Fluents. Based on the low-level information about an object’s world state and its contacts, we define fluents, i.e.
conditions over time, about an object’s spatial relationships to other objects. Here we distinguish between different
types of spatial relations. Table 5 gives an overview of the implemented fluents.

Table 5: Fluents of Topological Relationships.

Type Fluent Description

Topological

on(o1, o2) either onrigid(o1, o2) or onfluid( f o1, o2)
holds

onrigid(o1, o2) rigid object o1 is on object o2

onfluid( f o1, o2) fluid object f o1 is on object o2

in(o1, o2) either inrigid(o1, o2) or influid( f o1, o2)
holds

inrigid(o1, o2) rigid object o1 is in object o2

influid( f o1, o2) fluid object f o1 is in object o2

Fluents describe conditions over time. For example, the condition that object A is on object B changes during the
course of action. Therefore, fluents have to be related to time. In this work, we represent fluents as functions and use
similar notations as in the Event Calculus (Kowalski and Sergot, 1986). The Holds predicate is used to test whether a
fluent is true at a certain point in time or not. Fluents that are interpreted as functions are called reified. Generally, the
Holds predicate looks as follows:

Holds(

Fluent︷︸︸︷
f ,

Time point︷︸︸︷
t )

where f is an arbitrary fluent from Table 5 and t a point in time.
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The truth values of fluents are defined by logical sentences. These sentences are formed on the basis of other
fluents and/or predicates that are grounded in the data structures of the simulator. For example, the on fluent is defined
as follows:

Holds(on(o1, o2), ti)⇔
Holds(contacts(o1, o2), ti, )∧
Holds(above(o1, o2), ti, )

An object o1 is on another object o2 whenever the objects are in contact with each other and the first object is
above the second. The contacts fluent is simply defined by the value reported by the simulator:

Holds(contacts(o1, o2), ti)⇔
SimulatorValue(contacts(o1, o2), ti)

The above fluent retrieves the bounding boxes of both objects and compares them in order to compute its truth
value:

Holds(above(o1, o2), ti)⇔
SimulatorValue(bbox(o1, bbox1), ti)∧
SimulatorValue(bbox(o2, bbox2), ti)∧
Above(bbox1, bbox2)

The Holds predicate, introduced above, can be used to assess a condition at a certain point in time. However, many
conditions hold not only a single point in time, but rather during a certain time span. To express that a fluent holds
during whole interval, we define another predicate as follows:

HoldsThroughout(

Fluent︷︸︸︷
f ,

Time interval︷︸︸︷
[t1, t2] )

whereby f denotes a fluent and [t1, t2] is a time interval. Sometimes we also use i to denote a time interval. The
HoldsThroughout predicate allows us to talk about enduring conditions over time. In order to relate fluents that
hold at different intervals we implemented predicates realizing the thirteen temporal relationships according to Allen
(1983). For example, the following logical sentence can be used to describe that the pancake mix was in the container
before it was on the pancake maker:

HoldsThroughout(in(mix, container), i1)∧
HoldsThroughout(on(mix, pan), i2)∧
Before(i1, i2)

Events. Besides fluents, a temporal representation must be able to describe the occurrence of events and actions. In
analogy to fluents, we assess the truth value of events and actions using the Holds and the HoldsThroughout predicates,
i.e.:

Holds(occurs

Event︷︸︸︷
(e) ,

Time point︷︸︸︷
t ) or HoldsThroughout(occurs

Event︷︸︸︷
(e) ,

Time interval︷︸︸︷
[t1, t2] )

For example, the event of cooking the pancake mix is formalized as

HoldsThroughout(occurs

Event︷        ︸︸        ︷
(cook(mix)),

Time interval︷︸︸︷
[t1, t2] ).

Actions of a robot can be represented similarly. Pouring the pancake mix can be represented as

HoldsThroughout(occurs

Event︷        ︸︸        ︷
(pour(mix)),

Time interval︷︸︸︷
[t1, t2] ).
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time

pour(mix) pour

place(pancake) place

flip(pancake) flip

push(spatula) push

lift(spatula) lift

turn(spatula) turn

cook(mix) cook

in(mix,container) in

on(mix,pan) on

on(pancake,pan) on on

on(pancake,plate) on

on(pancake,spatula) on

spilled(mix,table) spilled

Figure 13: Timeline representation of making pancakes.

Timelines. In this work, we have developed timelines as a data structure to represent all information about narratives.
Similar to chronicles (Ghallab, 1996), timelines represent reified fluents in temporally qualified predicates. Figure 13
visualizes fluents and events of the “Making Pancakes” problem that are captured by a timeline. The actions of the
robot correspond to the formal representation shown in Figure 12 (yellow). The cooking event (blue) is relatively short,
since it only transforms the mix into a pancake. This behavior can be recognized by a change from fluent on(mix,pan)
to on(pancake,pan) (green). The undesired effect of spilling some pancake mix onto a table is represented by the
fluent spilled (red).

Timelines are comprehensive data structures that are consulted for answering queries about a particular narrative
or a set of multiple narratives. Therefore, it is important that queries can be formulated in a way that they relate
either to a single or multiple timelines. We achieve this, by extending all previously introduced predicates by a third
argument, namely a timeline. Hence the Holds predicate is finally formalized as follows:

Holds(

Fluent︷︸︸︷
f ,

Time point︷︸︸︷
t ,

Timeline︷︸︸︷
tl )

and the HoldsThroughout predicate as:

HoldsThroughout(

Fluent︷︸︸︷
f ,

Time interval︷︸︸︷
[t1, t2] ,

Timeline︷︸︸︷
tl )

whereby tl is a unique ID for accessing a timeline. Similarly, the SimulatorValue predicate is extended with an
additional argument.

We use Prolog’s search mechanism to retrieve answers from a set of timelines. In general, the linear search for
particular objects, fluents, and/or events over a set timelines is quite slow. Therefore, we have designed and imple-
mented several internal data structures that allow for an efficient search. For example, we use object-dependent skip
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lists (Munro et al., 1992) of temporal events to find fluents and events related to an object rather quickly. Furthermore,
instead of linear search we use binary search methods to retrieve information from a timeline in logarithmic time.

4. Augmented Simulation of Fluids

Fluids play an important role in everyday cleaning and meal preparation tasks. Davis (2008) presents a formal
solution to the problem of pouring liquids and in his work on the representation of matter (Davis, 2010), he investigated
the advantages and disadvantages of various representations including those for liquids. Simulating fluids is also of
interest in physics and chemistry (Allen and Tildesley, 1989). As some processes occur very fast, events might not be
observable in all its details in reality. The purpose of simulating liquids in our work is to observe the impact of the
robot’s action with respect to the liquid’s behavior, which is of importance when, e.g., pouring and mixing liquids.
Different approaches have been incorporated to simulate liquids depending on the required level of accuracy needed
(Griebel et al., 2007). In (Klapfer et al., 2012), we proposed two complementary approaches for simulating liquids,
(1) a graph-based model similar to (Johnston and Williams, 2008) and (2) a Monte-Carlo simulation for modeling
diffusion and convection (Frenkel and Smit, 2001). Neither simulates liquids in all their aspects, but provide enough
information for making logical inferences about qualitative phenomena.

4.1. Representing Fluids using Graph-based Models

The model for representing fluids was adapted from the work of Johnston and Williams (2008). Originally, it was
designed to simulate a wide range of physical phenomena including diverse domains such as physical solids or liquids
as hyper-graphs where each vertex and edge is annotated with a frame that is bound to a clock and linked to update
rules that respond to discrete-time variants of Newton’s laws of mechanics.

Our pancake mix model can be in two states: first, the mix is liquid, and second, the mix becomes a deformable
pancake after cooking. In the simulation we use a graph-based model for representing the mix and the pancake. The
vertices of the graph are particles where each particle is defined by a round shape with an associated diameter, a mass
and a visual appearance model. The benefit of this model is that it is realized as a graph with no connection between
the vertices whenever the state is liquid. This means that the individual particles could move freely to some extent.
This was useful for performing the pouring task. Due to the fact of the particles not being connected with joints, the
simulated liquid can be poured over the pancake maker where it disperses due to its round shape. A controller was
attached to the spheres that applies small forces to the particles in order to simulate the viscosity of the pancake mix.
Currently, we do not consider heat as the trigger of transforming the liquid to a solid pancake but simply assume the
event to occur after constant time. We identified all particles on the pancake maker and created the pancake based on
a graph traversal algorithm starting at the cluster center (Figure 14).

  

(a)

  

(b)

  

(c)

Figure 14: Generating a deformable pancake model from liquid particles. Illustration of the algorithm’s procedure: (a) Radial search from the seed
Point. (b) Creation of hinge joints to the neighbors. (c) Radial search and creation of joints in a recursive step.
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(a)

  

(b)

Figure 15: Basic idea of the clustering approach: during simulation we identify clusters of particles. For example, after pouring, one cluster resides
still in the mug, a second is on the pancake maker and a third is spilled onto the table. We are able to extract information including contacts,
position, extension, and size of the individual clusters.

4.2. Clustering of Fluid Particles

The basic idea of applying clustering methods is as follows. Let us, for example, assume that someone pours some
pancake mix onto a pancake maker as illustrated in Figure 15. After the pouring action some particles reside in the
container, some are spilled onto the table, and some others are on the pancake maker which will eventually form the
pancake. If we want to address the particles in these three locations, it makes sense to group them in chunks (clusters).
This reflects also how humans address fluids such as milk or sugar in natural language, e.g., there is some milk spilled
onto the table. Therefore the behavior and the contact information of clusters of particles in everyday manipulation
tasks are of particular interest.

We use a Euclidean Clustering strategy for computing the groups of particles. Instead of looking at the individual
particles when interpreting the outcome of a manipulation scenario we look at clusters of particles. For every cluster
we compute information such as mean, covariance, size (number of particles), and its bounding box. Since we have
full knowledge about every particle and its belonging to a cluster, we can keep track of it, i.e., if its pose or extension
change over time. However, whenever new particles become part of or are separated from a cluster we assign a new
ID to it. That is, clusters of particles have only a limited time during which they exist. Hence, we can recognize which
actions cause changes to clusters and their properties.

4.3. Monte Carlo Simulation of Fluids

Deformable bodies are seen as a big challenge in simulation and require a lot of computational power (Brown
et al., 2001). The physical simulation approach (Frenkel and Smit, 2001) uses a Monte-Carlo process to simulate
diffusion of liquids. Molecular movement is either provoked from heat or from a difference in potential. The rate
of change depends on the diffusion coefficient and its respective change. This is a well known concept in physics
described by Equation 1 and denoted as the macroscopic diffusion equation or Fick’s second law of diffusion. This
differential equation takes into consideration a change of concentration over time:

∂C
∂t = D · ∂

2C
∂2t (1)

where C denotes the concentration and D the diffusion coefficient. It can be shown (Frenkel and Smit, 2001) that
Random Walk gives one particular solution for the above partial differential equation. Motivated by this idea we
applied an algorithm proposed by Frenkel et al. to simulate this physical effect (Klapfer et al., 2012).

Stirring a material is another type of mass transfer called convection. Convection is the movement of mass due to
forced fluid movement. Convective mass transfer is a faster mass transfer than diffusion and happens when stirring is
involved. The faster the fluid moves, the more mass transfer and therefore the less time it takes to mix the ingredients
together (Gould et al., 2005). We simulated this physical property by simply introducing an impulse in the stirring
direction to the particles in the point cloud that are in reach of the cooking spoon.
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4.4. Measuring the Homogeneity of Mixed Fluids
Of particular interest is the homogeneity of the liquid when stirring was involved in the conducted experiments.

It was decided to use the local density of the particles represented as point cloud as a measure of divergence, while
using the assumption that the inverse of this is a measure of homogeneity. This distance measure (Majtey et al., 2005)
is known as the Jensen-Shannon divergence and used widely in information theory. It is defined as:

JS (P,Q) = 1
2 S

(
P, P+Q

2

)
+ 1

2 S
(
Q, P+Q

2

)
(2)

where S (P,Q) is the Kullback divergence shown in equation 3, and P and Q two probability distributions defined over
a discrete random variable x.

S (P,Q) =
∑

x P(x) log
(

P(x)
Q(x)

)
(3)

We propose the division of the point cloud in a three-dimensional grid (Figure 16). Each cell of the grid represents
a discrete probability distribution x defined on the mixed probabilities of the two classes P and Q, that could be
computed as the relative frequency.
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This term is known as the Relative Entropy. A symmetriced version of the Kullback-Leibner

divergence has been defined by Lin in [23] and is defined as
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where S is the Kullback divergence shown in equation 3.31, and P and Q two probability dis-

tributions defined over a discrete random variable x. The point cloud representing the particles

of the liquid was divided into a grid of static size. Each cell of this three-dimension grid repre-

sents one outcome of the discrete random variable x. As we are dealing with the problem of a

robot mixing two ingredients in a bowl, a consideration of a two class problem with the mixed

probability distributions of P and Q is taken. Let us assume both liquids having a different

colour, red and blue. Then for every cell in the grid it becomes possible to measure the density

for each class. We propose to divide the volume in a discrete grid of size wxhxd, which needs to

be adapted depending on specific configurations. The particles in the two liquids are illustrated

as red and blue points in Figure 3.17. Each cell of the grid represents a discrete probability
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Figure 3.17: The density grid ..

distribution x defined on the mixed probabilities of the two classes P and Q, shown respectively

in red and blue. Based on this, we compute the class density Di for a class i as

Di =
count ( Particlesclassi )

n
(3.33)

where n is the total number of samples and used for normalisation. There are some cases where

the Jensen-Shannon divergence (Equations 3.31 and 3.32) is not defined. There are some cases

Figure 16: Density grid used for discretization and local density estimation.

The following example emphasizes the usage of this distance function related to the homogeneity of a liquid which
consists of two classes of particles. If we assume a perfect separation of the two classes as shown in Figure 17, we
would expect a high divergence and a low homogeneity as we define the homogeneity as its inverse.

  

(a) Maximum divergence, minimal homogeneity.

  

(b) Minimal divergence, maximal homogeneity.

Figure 17: A simple 2D density grid for a two class problem.
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5. Experiments

For showing the feasibility of our approach, we have conducted several robot manipulation experiments including
the problem of making pancakes as described in Section 1.1. In these experiments, we addressed the requirements
posed in the problem formulation.

The robot model used in our experiments is the PR2 robot platform developed by Willow Garage10. The PR2 has
an omnidirectional base, a telescoping spine and a pan-tilt head. Each of the two compliant arms of the platform have
four degrees of freedom (DOF) with an additional three DOF in the wrist and one DOF gripper. The sensor setup
is comprised of a laser sensor on the base, a tilting laser sensor for acquiring 3D point clouds, two stereo camera
setups and a high resolution camera in the head. The hands also have cameras in the forearms, while the grippers have
three-axis accelerometers and fingertip pressure sensor arrays. The entire setup is realistically modeled and ready to
use in the Gazebo simulator.

In this work, we present experimental results for the task of making pancakes. We have divided the task into
three sub-tasks, namely mixing, pouring and flipping. As these sub-tasks represent rather basic actions in the cooking
domain which are relevant for many meal preparation tasks the following results can be generalized to other tasks
such as, for example, making omelets.

5.1. Mixing Fluids — Analysis of Homogeneity
We used the Monte Carlo method previously described in Section 4.3 to simulate the physical effects when mixing

fluids with different trajectories.
We selected the coefficients to represent two viscous fluids. Figure 18 shows the course of homogeneity when the

robot stirs the fluids using (1) an elliptic trajectory, (2) a spiral trajectory, (3) a linear trajectory, and (4) no trajectory
(without stirring). As we expect, when the robot does not stir the fluids the ingredients do not mix very well because
only the diffusion process is influencing the homogeneity. Hence, the result of the experiment confirms our hypothesis:
Stirring increases the homogeneity of mixed fluids.
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Figure 18: Homogeneity over time of different stirring trajectories. The graph shows the change of homogeneity on the vertical axis for different
trajectories in direct comparison with the result of scenario of not stirring over time.

Furthermore, the result shows that with an elliptic trajectory the best result could be achieved. Given the knowl-
edge of homogeneous and non-homogeneous regions, a robot could adapt the trajectory dynamically by applying

10http://www.willowgarage.com/pages/pr2/overview
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Table 6: Attributes of the pouring domain with their respective types and ranges.

Type Attribute Range Description

Action
Parameter

Angle Low, Mid, High The angle at which the container is held during the
pouring action

Time Short, Med,
Long

Denotes the time during which the container is
held at a certain angle

Position Left, Behind,
Above, . . .

The position with respect to the pancake maker

Context
(perceptible)

Particles Few, Many Number of particles, i.e., the amount of pancake
mix in the container

Container Mug, Bottle The type of the container

Effect Size Small, Medium,
Large

The size of the pancake (particles that are on the
pancake maker)

Spilled Small, Medium,
Large

The amount of pancake mix that has been spilled
after the pouring action

techniques known from Reinforcement Learning. A qualitative interpretation could be based on a logical predicate
that is true when the homogeneity is above 0.7 and otherwise false. Thereby a robot could decide when to stop stirring
with a particular trajectory.

5.2. Pouring Fluids — Reasoning about Clusters

In this experiment, we address the scenario of pouring some pancake mix located in a container onto a pancake
maker: the robot grasps a mug containing the pancake mix from the table, lifts it and pours the content onto a pancake
maker. In this experiment we used the resulting timelines to analyze the qualitative outcome of the executed action.

The parameterization of the task included the gripper position, the pouring angle and the pouring time. We also
looked at different container types and fill levels. Table 6 gives an overview of attributes and their respective ranges
that are relevant for a pouring action. Some of the attributes are controllable parameters of the pouring action such
as angle, time, and position. Others describe the context of the scenario. Context-dependent attributes such as fill
level (particles) and container type (container ) are perceptible by the robot. Effects of the action include the size
of the pancake and the amount of spilled particles. Effectively all attributes, except ’container’, are continuous by
nature. However, as motivated earlier, we would like to learn interpretable action models. Therefore, we discretized
the ranges of all continuous attributes to nominal concepts using Euclidean Clustering methods.

The task was considered to be successful if no pancake mix has been spilled, i.e. the liquid resides on the pancake
maker or in the container and not on other objects such the kitchen table after the pouring action ends. We used the
resulting clusters and their corresponding contact and spatial information to examine the outcome. Figure 19 shows
how clusters of pancake mix are spatially related to other objects before, during and after the pouring action on a
single timeline.

The following Prolog expression shows how information about clusters can be retrieved from timelines (TL):

?- holds_tt(occurs(pour(Params)),I,TL), [_,End] = I,

partOf(X,pancake_mix), holds(on(X,pmaker),Time,TL),

after(Time,End),

simulator_value(size(X,Size),Time,TL).

where X denotes a cluster of pancake mix in contact with a pancake maker after a pouring action has been carried
out. Figure 20 shows results from experiments in which the position of the container was varied in x and y direction
over the pancake maker. The figure shows the amount of pancake mix (particles) that were spilled onto the table.
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time

pour(mug,pan) pour

in(X,mug) mix-13165510 (150) . . . mix-15635330 (96)

on(X,pan) . . . mix-16413171 (49)

on(X,table) mix-8927164 (1)

Figure 19: Visualization of the main clusters of particles before, during and after the pouring action. In this experiment the pancake mix was
represented by 150 particles. The number of particles of a cluster is shown in parenthesis. During the simulation there were more than 20 clusters
generated on this timeline.

The tested positions (red dots) are organized in a grid structure above the pancake maker. Given the symmetry of
the pancake maker, for each of the positions the pouring direction was always pointing towards north. As explained
earlier, we mapped the value of the particle count to a number of discretized classes (Small, Medium, and Large) to
be able to interpret the results semantically. Note that a similar query to the one above can be embedded within the
constraint-based action specification laid out in Section 1.3.

Additionally, we used logical queries such as the one above to extract data for learning decision trees in order
to classify pancake sizes and pouring angles. The input data that we extract from each simulation run is a tuple as
follows:

〈container, particles, time, angle, size〉

whereby container denotes the type of container (mug or bottle), particles denotes the fill level of the container (few
or many), time denotes the duration of pouring (short, medium, long), angle denotes the angle of the container while
pouring (low, medium, high), and size denotes the size of the resulting pancake (small, medium, large).

Figure 21 shows two situations after a pouring action has been performed using the same parameterization. The
left image depicts the situation when a mug was used, the right when a bottle was used for pouring. The distinctive
distributions of particles on the pancake maker show how the outcome of a pouring action depends qualitatively on
the context, that is, on the type of the container.

Figure 22 visualizes the relation of pouring angle and duration (time) quantitatively. The top row of the figure
shows results when the container contains only a few particles (50). The bottom row visualizes the results for many
particles (200). The left column shows the results for the mug, the right for the bottle. Looking at the results, it can be
observed that the size of a container’s opening (mug vs. bottle) has a dramatic effect on amount of particles that are
poured onto the pancake maker. Additionally, the type of the container has also a noticeable effect on the continuity
of the function describing the amount of pancake mix. The discontinuity results from the fact that the opening of the
bottle occasionally got clogged up. Further, it can be noted that a different fill level (few vs. many) has more impact
on the bottle than on the mug. In general, it can be seen that the pouring angle is more important for controlling the
amount of pancake mix than the time.

As we have discussed some of the quantitative results, we now proceed by explaining how we learn the qualitative
models.

Whenever it is desirable to describe quantitative measurements by qualitative concepts one has to find an appropri-
ate mapping between both. For example, if we want to distinguish between three different sizes of pancakes, namely
Small, Medium and Large, we have to provide a mapping that relates, for example, each size to a certain number of
particles. Such a mapping can either be based on thresholds or it can be learned.

We have chosen a decision tree for the classification of pancake sizes. Although decision trees are rather simple
models, they have the advantage that they are interpretable. For learning the size of a pancake we used Weka’s J48
algorithm in its default parameterization. The resulting decision tree is visualized in Figure 23. Overall, the learned
model achieves an accuracy of 92.41%. That is, out of the 474 instances used for learning, 438 are classified correctly
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Figure 20: Amount of spilled particles while pouring pancake mix from different positions (red dots). The blue dotted circle indicates the pancake
maker.

Table 7: Confusion matrix for classifying the size of the pancake.

C
la

ss
ifi

ed
as

Sm
al

l

M
ed

iu
m

L
ar

ge

Class

Small 348 2 0
Medium 17 8 7

Large 8 2 82

withing the 10-fold cross-validation. The most decisive attribute is the fill level (particles). If there are only a few
particles available, the robot can only make small pancakes. In case of many particles, the size of the pancake depends
first on the type of container, and second on the tilting angle. Only if the container is a bottle with a small opening
and the pouring angle is high, the robot can make pancakes of different sizes by varying the pouring duration (time).
The confusion matrix in Table 7 shows that mainly pancakes of medium size were misclassified.

In a second experiment we learn an action model for predicting the pouring angle. Again, we used Weka’s J48
algorithm for learning. The learned decision tree, depicted in Figure 24, achieves an accuracy of 64.35% in the 10-
fold cross-validation. Given a desired size of a pancake and a context determined by the container’s type and its fill
level, the robot can infer an appropriate angle. As the confusion matrix in Table 8 shows, mainly the mid angles are
misclassified.

5.3. Flipping a Pancake

The third experiment also follows the making a pancake scenario. We investigated the problem of flipping a
half-baked deformable pancake using a spatula at different angles.
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Figure 21: Different qualitative outcomes of a pouring action. Left: A mug with a large opening. Right: A bottle with a small opening.

Table 8: Confusion matrix for classifying the pouring angle.
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High 158 9 0
Mid 100 10 30
Low 30 0 137

The simulation model used in this scenario is built out of small spherical particles connected by flexible joints.
This enables the model to have the behavior of a soft deformable body (Figure 26). During this scenario, the simulated
PR2 robot uses a spatula to flip a pancake on the pancake maker. The parameter of interest in this case is the angle
of the spatula. The qualitative results of the experiments performed in this scenario are shown in Table 9. The
experiments were launched using the following query:

?- param_space(flip_pancake,ParamSpace),

setof(T, (member(P,ParamSpace),

envision(flipping,flip_pancake(P),T)),Ts),

member(Timeline,Ts).

Table 9: Qualitative results: Flipping a pancake.

angle 0.1 0.3 0.4 0.5 0.7 0.9

ok ok ok fail fail fail

The following Prolog query was used to evaluate whether the flipping action was successful or not:

?- holds_tt(on(pancake,pancake_maker),I1,TL),

occurs_tt(flip(pancake),I2,TL),

holds_tt(on(pancake,pancake_maker),I3,TL),

overlaps(I1,I2),

overlaps(I2,I3).

28



1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Angle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e

0

10

20

30

40

50

po
ur

ed
 p

ar
tic

le
s

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Angle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e

0

10

20

30

40

50

po
ur

ed
 p

ar
tic

le
s

(a) Fill level: 50 particles. Left: mug. Right: bottle.
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(b) Fill level: 200 particles. Left: mug. Right: bottle.

Figure 22: Relationship between pouring angle and time. The pouring results are shown for different types of containers and different fill levels.
Courtesy: Johannes Mikulasch.

That is, the pancake has to be on the pancake maker before and after the flipping action. In the query above,
we used the overlaps relations as the temporal relation between the fluents and the flipping action. In general, all
13 possible temporal relations between time intervals can be used to constrain the query (Allen, 1983). A detailed
explanation of the on relation itself has already been given in Section 3.6. Figure 25 visualizes the temporal relations
between the on fluent and the flipping action.

Pouring and flipping experiments can be combined by using the poured particles that end up on the pancake maker
for generating a more complex pancake model. We start at the particle closest to the center of the cluster and create a
graph-like flexible joint structure. Joints are created between the seed particle and the particles found within a certain
radius from it, and afterward these new particles become seeds themselves. To make the pancake model look more
realistic, a flexible textured mesh created from the convex hull is attached to the structure (Figure 26).

Note that a query such as the one above that was used to find flipping events across timelines, can also be used to
determine the objects the pancake is on top of. For example, during the execution of the flipping action, the pancake
would be on a blade, which is a part of the spatula object.

Overall, such logical queries allow us to select and filter data of logged simulations at an abstract/semantic level.
This is a distinct feature of the explicit logical abstractions developed in this work over implicit models that can be
learned through Reinforcement Learning and those that can be optimized using methods from Control Theory. This
is not to say, that our models would perform better than models from other fields or should replace them. On the
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Figure 23: Decision tree for predicting the size of a pancake. The size is discretized in three classes, namely Small, Medium, and Large. The tree
is learned from 474 instances and classifies 438 instances correctly (92.41%) and 36 incorrectly (7.59%).
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Figure 24: Decision tree for selecting an angle. The angle is discretized in three classes, namely Low, Mid, and High. The tree is learned from 474
instances and classifies 305 instances correctly (64.35%) and 169 incorrectly (35.65%).
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occurs(flip(pancake)) flip

on(pancake,pancake maker) on on

Figure 25: Timeline representation of flipping a pancake.

contrary, the presented methods should complement approaches from the other fields as they have the advantage that
they are interpretable and thereby allow robots to reason about the physical effects of their actions. In particular, robots
can employ the qualitative information about physical aspects of their manipulation actions to answer questions in the
following contexts:

Monitoring What is the expected outcome of an action?

Planning Which action will lead to the intended goal?

Diagnosis What has caused something to happen?

Question Answering Why has an action being performed?

Reinforcement Learning How to explore the parameter space of an action effectively?

This incomplete list of contexts and queries illustrates where the developed framework and learned models can be
employed in order to adjust the behavior and to improve the overall performance of robots. Hence, we believe that the
underlying idea and the developed methods of this work can have a broad impact in field of robotics.

6. Discussion

In this section, we discuss why autonomous robots should be endowed with methods allowing them to make
temporal projections about naive physics problems. We provide arguments to base these methods on detailed physical
simulations and elaborate on the right fidelity of these simulations. Furthermore, we outline how this approach of
logic programming using a simulation-based temporal projection can be used to adjust the behavior of robots. Finally,
we examine how far the proposed approach can be taken, and also name some possible application scenarios.

One might argue that most robotic applications are developed for specialized tasks and thereby robots do not need
robust commonsense reasoning capabilities, or as we propose, capabilities for naive physics reasoning. But in the
context of autonomous personal robots, the set of everyday manipulation tasks is not fixed, and furthermore, task
and environment conditions change all the time and therefore robots need flexible mechanisms to reason about the
appropriate parameters of their control programs.

In the literature there exist some approaches using symbolic reasoning methods for making inferences about simple
physical problems (Lifschitz, 1998; Morgenstern, 2001). The main limitations of these approaches especially in the
context of robotics are threefold: (a) important details such as positions of manipulators and objects are abstracted
away; (b) variants of problems such as manipulating an object with different physical properties cannot be handled
without extending the logical theory; and (c) consequences of concurrent actions and events are very difficult to
foresee with pure symbolic reasoning, e.g., what does a robot see when turning its camera while navigating through
its environment? All of these limitations do not occur in physics-based simulators. Even if the simulation do not
reflect the physical world, parameters can be learned by applying machine learning technologies as in (Johnston and
Williams, 2009).

One important issue when using high-fidelity physics models in simulations is performance. Currently, the system
cannot make predictions in a reasonable time that would allow us to use it for planning during execution. Nevertheless,
it is a powerful tool for robots to mentally simulate (offline) the consequences of their own actions either to prepare
themselves for new tasks or to reconsider task failures.
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Figure 26: The pancake model in different views: a generic circular model (up), a generated model showing the joint structure and flexible mesh
(down).

Related to the issue of performance is the issue of the right fidelity, i.e. how to make the physical models robust
enough to enable effective behavior and yet small enough to be usable during execution. When creating physical
models we are concerned about getting the qualitative behavior of objects right, i.e., we are not aiming at models
that reflect every sheer detail. Very detailed models do not readily provide the information needed to choose the
appropriate action parametrization, therefore we abstract the reality into a smaller qualitative state space.

Although it would be desirable to use the presented approach for planning during execution by using more realistic
physical models, we are currently not aiming at both, high performance and very realistic models. Rather the devel-
oped system represents a proof-of-concept of how to use simulation technologies for symbolic reasoning. In the long
run, we assume that issues regarding performance and the appropriate fidelity of physical models will be addressed
by the game and animation industry (e.g. (Cho et al., 2007)), which will provide powerful technologies that could be
employed.

The realized logic programming framework allows robots and programmers to automatically determine the appro-
priate action parameters by setting up a manipulation scenario, by executing differently parametrized control programs
in simulation, and finally, by evaluating queries based on the resulting timelines. An interface to the logic program-
ming framework is provided by both Prolog’s command-line and a ROS11 service, which takes arbitrary Prolog queries
as request and provides the respective variable bindings as response. Thereby, naive physics reasoning for manipu-
lation tasks can be flexibly integrated into control programs and planners in order to effectively change the robot’s
behavior as outlined by the example given in Section 1.3.

Finally, we want to approach the question of how far this approach can or should be taken, before we point to some
potential application scenarios. It is clear that one would not want to do this kind of full-fidelity physics simulation

11http://www.ros.org
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for all kinds of problems, e.g. problems in motion planning can be solved by employing more specific planners
as primitives. However, some kind of limited simulation seems to be very plausible, at least for some very hard
problems. We believe that lifting physics-based simulations to a symbolic level is beneficial for deriving solutions for
robot manipulation, and also other domains, where current methods are not effective.

Planning is increasingly considering physical platforms in complex, real world environments. The presented
framework could provide a more precise guidance in the planning process since the simulation-based methods for
making temporal projections are tightly linked to the technical details of platforms under question. Naive physics
reasoning could also be used as a tool for developing robot control programs. Programmers could recognize and
prevent problems from occurring during execution more easily. Additionally, the presented framework could be used
for benchmarking purposes. For example, data generated by the simulations could serve as basis for inference tasks.
Thereby, different approaches to physical reasoning could be compared in a straight forward way. In general, the usage
of the open source software such as Gazebo and ROS allow to employ the naive physics reasoning to new problems
including other robot platforms and different objects quite easily. Therefore we believe that logic programming using
detailed physical simulations is a well-suited tool for making predictions about every manipulation tasks and also for
other potential applications.

7. Conclusions

In this paper, we presented a framework for envisioning the effects of everyday robot manipulation actions using
physics-based simulations.

Within this framework, we designed and implemented components for asserting the initial conditions of a manip-
ulation scenario and for utilizing a simulation-based approach for making temporal projections about parameterized
robot control programs. We conducted experiments for three scenarios, namely stirring pancake mix, pouring pancake
mix, and flipping a pancake, in which formal parameters of robot control programs were systematically selected from
ranges of possible values. These experiments, or more precisely their resulting timelines, were evaluated with respect
to specified performance criteria, e.g. desired and undesired effects. In the discussion section, we explained the de-
mand of equipping robots with means of naive physics reasoning and provided arguments for basing this reasoning
on detailed physical simulations. Furthermore, we also pointed to potential applications.

In future work, we will continue our research on how we can extract information from human demonstrations per-
formed in a virtual manipulation environment to automatically determine the parameter space of robot manipulation
actions from timelines (Kunze et al., 2013). Furthermore, to cope with the uncertainty inherent in robot manipulation
tasks we will extend our approach by integrating probabilistic representations over timelines as briefly outlined in
Section 3.1. Finally, we will also integrate our system with a real robot system.

We believe that the presented framework provides an important functionality for robots by giving them the ability
to autonomously determine the action parameterizations for unspecified and ambiguous instructions by the means of
logic programs using simulation-based temporal projections.
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