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Abstract

This paper introduces a modularized signal processing and analysis (MO-
SIS) framework for signal processing, stream analysis, machine learning and
stream mining applications. Here the requirements and the design concept
of the open source software framework are outlined. MOSIS is designed to
ease benchmarking efforts and rapid prototyping of stream-based algorithms.
Furthermore, it facilitates a design pattern driven approach and can easily
be expanded to include new modules as well as algorithms. The nature of
MOSIS enables use by researchers, enthusiasts and practitioners alike. At
the end, the structure, documentation and code quality make it suitable
for training and classroom scenarios. Here we motivate the framework and
outline its status quo.
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1 Introduction And Motivation

Today’s world generates enormous amounts of streaming data. With in-
creased digitization and computerization vast data sources are present in
almost every sector of modern living. Pretty much anything from sensors
applications, social media streams, log files, surveillance, network and traffic
monitoring to blog posts and emails can serve as a source of streaming data.
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Time and space constraints play an important role and might not always
allow for processing of data samples multiple times. Imagine a network
router that analyzes network traffic in order to detect intrusion patterns.
Such patterns need to be recognized as fast as possible and only a (very)
limited number of network packets can be buffered (if any at all). Thus
timing and memory requirements cannot be ignored, algorithms need to act
within a limited window of time and space. Latter point might be more
obvious, when crawling the Internet it is obvious that not all contents can
remain in main memory and massive parallelism must be possible.

Typical tasks of stream-based algorithms include but are not limited to
clustering, classification, outlier detection, trend analysis and querying (i.e.
range queries, top-k queries). Applications of (evolutionary) stream analysis
can yield to knowledge on “hot” topics on social media platforms or “hot”
news stories. Other applications may focus on analysis of financial streaming
data (i.e. currency exchange pairs, bonds, etc.) in order to generate trade
signals. Applications also include the detection of abnormal heart rates or
to detect symptoms in general (i.e. tremor [15,16], dyskinesia [6, 18]).

Stream mining algorithms provide a trade-off between real time updates
and memory usage at the cost of accuracy. They can be utilized to return
answers with high probabilities of being accurate. In contrast to traditional
mining algorithms, these algorithms require less memory (i.e. KB vs. GB)
as much of their work is done in hash tables. Thus only a small portion of
the data samples (if any at all) are maintained in memory. Anytime, the
model of such an algorithm is queried then the answer is simply looked-up
or computed. Thus real-time responses are possible.

A real world data stream or snapshot of such can present an arbitrary
number of samples (e.g. several thousands, several millions or even an in-
finite number of samples) to an algorithm. Thus such algorithms have to
operate under tight constraints in time and space which may be radically
different from traditional batch processing settings. The most important
ones can be summarized as follows [2]: (1) inspect each sample at most
once, (2) work in a limited window of time and memory and (3) be ready to
predict at any time. These are the core concepts of stream based learning
algorithms. The algorithm’s prediction model is continuously updated as
new (and relevant) data samples pass through. It maintains such a model
in order to be ready to predict at any time.

In comparison to traditional batch learning settings, stream learning is a
“relatively” new field. Established frameworks like Waikato Environment for
Knowledge Analysis (WEKA) are not available for stream learning or they
have not reached such popularity within the community. Many researchers

2



still start from scratch when developing new algorithms. Furthermore eval-
uation practices are not as well defined in this area. The field has grown
to include various stream learning algorithms, thus for a performance esti-
mation it is crucial to provide a critical evaluation with competitive state-
of-the-art solutions. The capacity to handle large (and possibly infinite)
streams should be demonstrated as well as their space and time constraints.
However, not all publications provide such information, thus making effec-
tive judgments on their applicability difficult and comparing them to newly
developed algorithms tedious. This is where MOSIS comes in. It is intended
to provide the community with:

• Collection of stream based algorithms as well as preprocessing and
post-processing methods;

• A modularized and flexible way to manage information flow and ease
rapid prototyping;

• Easy extensibility to add new modules (i.e. algorithms, filters, data
sources, data sinks, etc.);

• A way to create and manage benchmarks for an easy comparison of
algorithms and reproducibility.

Here researchers can simply built upon readily available filters, prepro-
cessing modules and algorithms to speed-up their benchmarking and devel-
opment efforts. These modules can be wired among each other to represent
the flow of information. We show an example in Section 4 and Figure 1.

The remainder of this paper is organized as follows: Section 2 highlights
related work to MOSIS, Section 3 and Section 4 list requirements and design
aspects of MOSIS (respectively), Section 5 discusses a set of repositories
employed by MOSIS and the framework’s status quo is outlined in Section
6. Section 7 concludes this paper.

2 Related Work

WEKA is a machine learning (ML) / data mining (DM) workbench [4,13,20]
with an ever growing popularity in the research community. Its basic func-
tionalities include but are not limited to: preprocessing (e.g. over 75 data
filters and several data sources), classification algorithms (e.g. naive bayes,
C4.5, M5, bagging, boosting, etc.), clustering (e.g. k-means, expectation
maximization (EM)-based mixture models, etc.) as well as a set of attribute
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selection and data visualization methods. Researchers benefit from the avail-
ability of a wide range of algorithms to compare against while practitioners
can apply these algorithms to their target domain.

WEKA has been designed for “traditional” DM and ML applications,
thus it does not natively support a stream-based analysis. It is meant to
filter data, extract features and apply learning algorithms on a finite set
of data samples. Despite the generally good quality of the code, the class
hierarchy and interfaces appear cluttered up. They seem historically grown
and their purpose is not always clear.

Massive online analysis (MOA) is an open source software framework
that includes a set of online and offline algorithms for clustering as well as
classification of evolving data streams. It has been created as an expandable
platform where researchers can contribute their algorithms and test them
against others [2]. Practitioners can utilize MOA’s capabilities to evaluate
real world problems on a set of algorithms and choose the best one [2]. MOA
is related to WEKA and algorithms in both frameworks can be used inter-
changeably. It can be utilized to create (and re-use) benchmark settings.
Thus enabling researchers and practitioners to create easily repeatable ex-
periments as well as reproducible results.

The general software architecture allows MOA to be easily extended
in three ways: (1) data sources / generators, (2) learning algorithms and
(3) evaluation methods. In principle, these points also describe the overall
workflow within the MOA framework. Thus a rather simple and sequen-
tial workflow is implemented in the framework, which represents a common
scenario and does make sense in cases where processed data is at hand.
However, there is rarely a real world case that does not require at least
some preprocessing of data streams. This functionality would come handy
in rapid prototyping scenarios. However, this kind of functionality greatly
enhances usability and eases prototyping efforts. Additionally, more flexi-
bility regarding the choice of workflows is desirable.

Additional related frameworks and projects exist. These include streams
[3], Spark [21] and Storm [11]. While these frameworks are related in the
sense that they provide modularized or iterative processing capabilities, they
do not meet the envisioned requirements for one reason or another. In
particular, some of these are intended for use in clustering environments and
utilize a map-reduce type of architecture. This may be effective but limits
the computations operations and transformations [21]. Another reason is
that most of these frameworks can only deal with sequential information flow
(i.e. flow between computational modules) or can not deal with graph-like
workflows (i.e. computational modules having both multiple predecessors
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as well as multiple successors).

3 Requirements

To overcome the above mentioned drawbacks the following requirements of
the MOSIS framework were elaborated.

• Stream-based: Data samples pass through modules and are intended
to be inspected once (or not at all). Nonetheless, modules may choose
to buffer data samples if time and space constraints allow it.

• Reusability: The reusability of framework components and modules is
essential. Each module is intended to perform a single task only.

• Scalability: The framework should support processing of streams that
contain large numbers of data samples (possibly infinite). The same
applies to stream-based algorithms within the framework.

• Maintenance: A set of design patterns [12] shall be used to ease main-
tenance and facilitate reusability.

• Flexibility: Information flow among modules can be dynamic (i.e. con-
ditional branching) as opposed to a static (not changing) flow of in-
formation.

• Extensibility: Adding new modules and algorithms must be easy.

• Involvement: The community shall be provided with the means to
easily add contributions to the framework.

• Portability: The framework and modules shall be usable on a broad
range of devices. This includes regular desktop computers, mobile
phones, wearables and other devices.

These requirements merely present a high-level outline. Some of them
may contradict each other. Thus their benefits and drawbacks need to be
evaluated to see which outweighs the other.

4 Design Aspects

MOSIS has been developed with a focus on several design aspects. Here a
set of fundamental design decisions and aspects are highlighted.
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Likely the most important and equally obvious design aspect relates to
the internal representation of a data stream. The stream itself may be
arbitrary typed (i.e. a simple sequence of floating point numbers in binary
format or a more complex structure such as user datagram protocol (UDP)
or transmission control protocol (TCP) packets). This must be carefully
considered as every module, every algorithm and every filter, in the MOSIS
framework will be influenced by this decision.

The main two options are: (1) create modules that parse streaming
data and provide the results to other modules or (2) have every module do
the parsing on its own. Latter approach would result in a simple interface
for modules. All inputs and outputs could be realized with simple byte-
streams (e.g. buffers in main memory, files, queue-like structures, etc.).
However, this simplicity comes at the cost of redundant code and fails to
adhere reusability and maintenance requirements (i.e. modules perform at
least three tasks: parsing stream, processing data and writing formatted
results). Additionally, more time on parsing and formatting streams would
be spend than absolutely necessary thus slowing things down.

On the other hand, the first option would result in a more complex in-
terface for modules and thus making it more difficult to verify compatibility
of succeeding modules (i.e. in terms of input and output data types). How-
ever, this approach fits in nicely with the requirements shown in Section 3.
In the end, it was decided that the benefits of this approach outweigh its
drawbacks. Thus MOSIS employs a mechanism that first splits a continues
stream of data into its atomic elements or data samples. These elements are
then pushed to the corresponding / succeeding modules. Another benefit
is that algorithms do not have to actively wait for data samples, but in-
stead they are activated on demand. Thus they are only used when needed.
Furthermore, this approach highlights the stream-based approach as each
module is presented with a single data sample at a time, thus online pro-
cessing is implicitly suggested by the interface.

Another important aspect deals with the representation of information
flow. In a simple form, modules could be viewed as nodes in a tree-like
structure (i.e. root=data source, leaf=sink). However, this approach fails to
support the ability to “merge” two or more streams into a single one. Neither
circles (or loops) can be modeled. For those reasons, a graph structure
was adopted. Thus each module can have an arbitrary number of inputs
(e.g. data samples from various streams) and outputs (e.g. filtered value,
processed values, results). Modules, that provide the service of reading a
stream and splitting them into usable chunks, are referred to as data sources
or data feeds. On the other hand data sinks can be utilized to store or
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transport the chunks.

Figure 1: An example demonstrating the flow of data samples within a
“sketch” or graph of MOSIS

.

As hinted in Section 3, each module is meant to be self-contained. They
do not have knowledge regarding its predecessors and successors. Instead
they require a certain type of input data and produce outputs of a certain
type. Knowledge about predecessors and successors resides in the design
of the information flow or graph / “sketch” (see Figure 1). This eases de-
velopment and rapid prototyping efforts. Developers can concentrate on
the development of their algorithms rather than having to worry about all
preprocessing and related matters.

Additionally, the concept of conditional branching is introduced in the
MOSIS framework. It can be used to guide data samples through the graph
based on whether or not they meet certain conditions. Links between mod-
ules can be equipped with the option to choose which data samples they
want to transport and which data samples they want to reject (i.e. reject
every second data sample, accept only samples above a threshold, etc.).

Each module can output an arbitrary number of data samples at a time.
Thus enabling modules to reduce and increase sampling frequencies within
the graph. Outbound data samples are pushed to all successors. Similarly,
each module can have multiple incoming connections. The actual transport
among modules follows an iterative deepening approach. The data sources
are queried first, then all successor modules are activated. This process
continues until a sink is reached (see Figure 2).

7



(a) Level 0

(b) Level 1

(c) Level 2

Figure 2: Illustrates the progressive deepening while iterating over modules
in the graph. A modified level-order iteration is being employed. At first,
all data feeds are queried (level 0). In the second step, the next level of
modules is queried as well as all data feeds (level 1). Afterwards, modules
of the third level are queried as well (level 2).

5 Repositories

MOSIS is meant to thrive on community contributions. For this reason
a packaging system is employed that enables easy extension and ensures
quality of code. Three repositories are envisioned.

• Core: It includes basic interfaces and modules that make up the frame-
work itself. The core is self-contained and provides a set of tools to
create and manipulate “sketches”.

• Extra: This is where filters, machine learning and signal processing
modules are located. Some dependencies to external libraries may be
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introduced.

• Community: Any member of the community can contribute modules
(i.e. new algorithms, filters, etc.). These can then be downloaded and
used in “sketches”.

For maintenance reasons, the “core” and “extra” repositories are solely
maintained by a set of dedicated developers and researchers. This decision
was made to ensure an adequate level of documentation and quality of code.
These restrictions do not apply to the “community” repository. Here all
members can create modules and share them with the community. This
does not exclude these modules from ever being part of the “core” or “extra”
repositories. Instead it is intended to speed-up the process of integration.
These modules are already available even before they have been integrated
(i.e. formatted and documented) in the official framework.

6 Status Quo

Currently, MOSIS provides a simple application programming interface (API).
It can be utilized to construct and execute graphs within the framework.
The framework supports several streaming sources / sinks (e.g. files, net-
work connections, etc.) as well as a set of formats (e.g. plain text, CSV,
binary, etc.). Additionally, a set of artificial data generators are available
(e.g. mathematical functions, noise). Apart from the input / output han-
dling, a small set of algorithms is already included in MOSIS.

Furthermore, MOSIS is capable of pushing data samples through graphs
/ “sketches” in an orderly and repeatable fashion. Modules are activated as
they are needed and can have any input / output data type. It can han-
dle circles within graphs and can dynamically increase / decrease sampling
frequencies.

At the time of writing a set of data generators (i.e. STAGGER Concepts
Generator [17], LED Generator [5]), classification algorithms (i.e. Hoeffd-
ing Tree [8], naive bayes, bagging, boosting), clustering approaches (i.e.
CluStream [1], D-Stream [19]) and stream mining methods (i.e. PC [10],
PCSA [10], LogLog [9], Count-Min [7]) as well as several filters and feature
selection methods are being realized in MOSIS.

The source code of MOSIS is publicly available on GitHub at [14].
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7 Future Work And Conclusions

This paper introduced the design concept of a framework for signal pro-
cessing, analysis and machine learning. The requirements, several design
aspects and its status quo have been discussed.

MOSIS bridges the gap between the fields of machine learning and signal
processing. Upon completion, it will provide a set of algorithms from both
worlds. Furthermore, it includes benchmarking abilities to ease evaluation
of stream learning algorithms and provide reproducibility. MOSIS is open
source and is extensible in many ways. The framework hopes to thrive on
community contributions.

The framework is intended to be used by researchers and practitioners
alike. Researchers can use MOSIS to evaluate newly developed algorithms
against a set of competitive solutions without having to implement them
themselves. Enthusiasts can utilize MOSIS as a learning platform for signal
processing and stream algorithms. Practitioners can use it to find a suitable
algorithm to their problem. It is not intended to replace existing imple-
mentation, but rather provide broader access to these methods in order to
kick-start development, learning and evaluation. Its simple structure allows
utilization in classroom scenarios.

The current version of MOSIS utilizes a simple API. However, it is planed
to include a command line interface as well as a graphical user interface. Lat-
ter interface should improve usability and further reduce rapid prototyping
efforts of streaming algorithms. At the time of writing, the collection of in-
cluded algorithms is being expanded for a more complete set of algorithms.
A set of show cases is being prepared as well.
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