
	

	

	 	

	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

RTeec hpn ioc arl t 80
	
	
	
	

Towards Security Program Comprehension with Design
by Contract and Slicing

	
	

Karsten Sohr
Tanveer Mustafa

Philipp Hirch
Markus Gulmann

	

	
TZI, Universität Bremen

	
	
	
	

TZI-Bericht Nr. 80
2016

	 	

	 	

	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

TZI-Berichte
	

Herausgeber:
Technologie-Zentrum Informatik und Informationstechnik
Universität Bremen
Am Fallturm 1
28359 Bremen
Telefon: +49 421 218 94090

E-Mail: hq@tzi.de
http://www.tzi.de

	
ISSN 1613-3773

Towards Security Program Comprehension with
Design by Contract and Slicing

Karsten Sohr, Tanveer Mustafa, Philipp Hirch, Markus Gulmann
Center for Computing Technologies (TZI), Universität Bremen, Germany

{sohr|tanveer|phirch|gulmann}@tzi.de

Abstract—Over the last years, the field of software security
has evolved. More and more software vendors employ static code
analyzers as well as dynamic application security testing; at the
architectural level techniques such as Threat Modeling are used.
However, given that deep software security knowledge is still
rare in industry, tools are needed that support software vendors
in better understanding the implemented security architecture
of their applications. In this work, we present an approach to
software security comprehension based on principles of Design
by Contract (DBC). We reconstruct parts of an application’s
security architecture by means of program slicing and speci-
fication inference utilizing knowledge on software frameworks
and Security APIs. With the help of extended static checkers, we
then automatically check whether applications use Security APIs
in a way to satisfy their security requirements. Our proposed
methodology can be seen as a first step towards more systematic
security code audits.

I. INTRODUCTION

Security code audits belong to the most difficult and tedious
activities within a Security Development Lifecycle (SDL).
Although automatic code review tools, such as Fortify SCA
or IBM AppScan, let a security analyst identify low-level
programming bugs, security code audits still remain important.
Bug finding tools allow one to detect mostly isolated bugs
rather than revealing relations between different objects in-
volved in implementing a security requirement. On reviewing
encryption functionality, for example, a security analyst needs
to answer questions like “Which key is used for encryption?”,
“Which source is used for the symmetric key?” or “Which
data have been encrypted with which algorithm and encryption
mode?”. In a different scenario, an analyst might be interested
in understanding the access control policy implemented in a
security-critical web application, a task that bug finders do not
cover.

Despite the inherently manual nature of security code audits
the question arises of whether this process can be better
supported by tools. This allows one to better comprehend the
implemented security architecture of an application and finally
leads to more effective security reviews.

Since developing a general tool-supported approach to soft-
ware security comprehension is too challenging due to the di-
verse nature of security mechanisms implemented in software,
it is of importance to define a methodology for certain classes
of applications. One reasonable restriction is to define such
a process for applications that employ widely-used software
frameworks, such as Java Enterprise Edition (JEE) [49], Spring
[53] or the Android Framework [30]. Then an analyst can

start code audits from calls of security-relevant APIs of the
software framework. Security-relevant APIs can be encryption,
authentication, and authorization APIs, but also include APIs
that have indirect implications on the implemented security
architecture, such as communication APIs. For example, when
an HTTP API is employed, an analyst needs to know which
kind of data is sent over the channel, whether these data are
security-critical and whether TLS is used in case of sensitive
data.

An important subtask of code reviews is to check whether
security-relevant APIs are used correctly with respect to se-
curity. For example, a study has shown that many popular
Android applications implemented SSL functionality wrongly,
allowing middleperson attacks [25]. The study concluded that
SSL libraries were too complex and hence wrongly used. This
problem applies to cryptographic APIs as well, e.g., developers
use hard-coded secrets, generate keys with weak entropy or do
not know the security implications of selecting a cryptographic
algorithm [21].

In this paper, we propose a methodology that replicates
security code audits based on known software engineering
techniques including program slicing [34], [39], Design by
Contract (DBC) [46], [40], extended static checking [28], and
annotation inference [24]. We start our analysis from security-
critical API calls of software frameworks and automatically
determine dependences by means of backward slicing. This
step, for example, allows us to identify the origin of parameters
of the API calls, e.g., determining the concrete keys and data of
encryption API calls. Slicing also makes the step of extended
static checking more tractable because code that is irrelevant
for security is eliminated.

The use of DBC is twofold. First, it allows us to formulate
concise preconditions for security-relevant APIs. An extended
static checker can then verify whether these preconditions
are satisfied on each API call, addressing the aforementioned
problem of correct API usage. Second, DBC lets a security
architect specify application-specific security requirements in
form of postconditions, e.g., the access control policy. Again,
an analyst can check whether these requirements are satisfied
by means of an extended static checker.

Since annotating code with specifications has been shown
to be tedious [28], it is important to provide a method that
automatically inserts annotations into program code. For this
purpose, we use the Daikon tool, which can infer likely DBC
specifications by code instrumentation [24]. The preceding

slicing step helps the inference tool produce annotations that
better focus on the implemented security mechanisms.

In our approach we decided to adopt state-of-the-art analysis
tools rather than building tools from scratch because we aim to
utilize mature base analyses. Also, other approaches including
ComDroid [13], CryptoLint [21] or MalloDroid [25] in case of
Android are specific research tools and do not aim at providing
a unified and encompassing solution to the problem of security
code audits. Our approach can be applied to different Security
or security-relevant APIs as we address the general problem
of tracing back dependences of Security API calls.

None of the proposed basic analysis tools, however, could
be used out of the box. Rather, they had to be appropriately
adjusted to fit our purpose. For example, as precise context-
sensitive interprocedural slicing is computationally expensive,
we had to use optimized, but more imprecise slicing options
(e.g., neglecting heap dependences). Then a series of related
other slices had to be added automatically to compensate for
the missing precision—identifying the necessary supplemen-
tal slices for the specific analysis problem was one of the
challenges to be solved. Also, we had to extend the Daikon
tool to support exceptional specifications. This extension was
finally integrated into the Daikon itself as this feature was long
missing.

In summary, we believe that more systematic approaches to
security code audits are possible if advanced analysis function-
ality is incorporated into the next generation of static source
code analyzers. The problem of program comprehension for
security has not been addressed sufficiently so far as common
approaches to static code analysis overlook this aspect.

The remainder of this paper is structured as follows. Sec-
tion II describes the background of our work focusing on the
main concepts of DBC. In Section III, we first motivate and
then introduce our analysis technique, whereas Section IV
presents our current implementation of the approach. Sec-
tion V describes experiments that we carried out with a proof-
of-principle implementation of our approach. In Section VI,
we discuss the limitations of our approach and the current
tool support. We also elaborate on how future analysis tools
should look like. After discussing related work, we conclude
the paper in Section VIII.

II. BACKGROUND

We describe the background technologies which are the
foundation of our work.

A. Design by Contract
The principle of DBC allows a developer to specify pre- and

postconditions, which must be satisfied on function entry and
exit, respectively [46], [58], [7]. Invariants apply to the entry
and exit of all public methods. For most mainstream program-
ming languages, DBC extensions exist [7], [12], [41], most
notably, the Java Modeling Language (JML). A comprehensive
overview of DBC-based specification languages can be found
in a recent survey by Hatcliff et al. [32]. We now describe JML
in more detail because we use it for the discussion throughout
this paper.

Java Modeling Language: JML is a formal behavioral
interface specification language, specifically designed for spec-
ifying the functional behavior of Java programs [40]. JML
provides a rich set of language constructs that are necessary
to precisely specify the functional behavior of Java programs,
mostly, in the form of class invariants as well as pre- and
postconditions of methods. JML specifications are written in
special annotation comments in the form of /*@...@*/ or
simply //@... if a single line specification is intended. The
JML tools use these annotations to parse the JML specifi-
cations out of the Java programs. JML provides requires
and ensures clauses to specify pre- and postconditions of
a method. The preconditions enforce the client’s obligations,
whereas postconditions enforce the implementer’s obligations.
JML provides a logical variable \result that represents the
value returned by a method. In addition, JML supports the
concept of pure methods, which are side-effect free public
methods. Only these kinds of methods can be called within a
JML specification.

Extended Static Checking: A variety of tools exist that
allow one to check the JML constraints at run-time or
statically [7]. One such tool is ESC/Java2, which statically
detects inconsistencies between the code and the specification
using a built-in automatic theorem prover. However, since
such conformance checking is in general undecidable, false
positives and negatives may be produced. ESC/Java2 employs
modular reasoning, which is an effective technique when
used in combination with static checking. Java methods are
analyzed one at a time and their JML-based specifications can
be proven by inspecting only the specification contracts (and
not the code) of the methods called within their bodies [28].

B. Program Slicing

Program slicing was first introduced by Weiser who pointed
out that developers understand programs according to depen-
dences between statements and not necessarily to the natural
order of the code [57]. A backward slicing algorithm starts
from a statement, the so-called “slicing criterion”, and calcu-
lates all the statements that (transitively) influence the slicing
criterion. Slicing is often used for program comprehension and
debugging tasks in order to focus on those code parts that are
relevant for the analysis. Technically, slicing is usually im-
plemented by system dependence graphs (SDGs) [34]. SDGs
often contain the statements in static single assignment form
(SSA) [3], an intermediate representation well-suited to data
and control flow analyses, as well as call graph information.
In particular, an SDG represents methods via special nodes.
Context-sensitive slicing only allows accessible execution
paths, i.e., a method must return to the site where the method
has been called and not to other call sites of the method.
Krinke gives a detailed overview of slicing techniques [39].

III. THE PROPOSED ANALYSIS APPROACH

First, we motivate the need for static analysis tools with
functionality for security program comprehension, and there-
after, we describe how such an analysis approach works. We

Excerpt from a security policy of a clinical information system

Req 1: Data about a patient’s prescriptions may only be read by clinicians who assume
the roles ‘‘Physician’’ or ‘‘Nurse’’ and are on the same ward as the patient.

Req 2: Data about a patient’s prescriptions may only be written by physicians who are
on the same ward as the patient.

Req 3: Patient data may only be read or written by clinicians with the role ‘‘Physician’’.

Req 4: Patient data may only be written or read by physicians who are
on the same ward as the patient.

Req 5: A doctor’s letter must be encrypted and digitally signed.

Req 6: Sending a doctor’s letter is only allowed for clinicians with the role ‘‘Physician’’.

Req 7: The communication with a Cloud-based server must be authenticated, and
confidentiality as well as integrity of the sent/received data must be assured.

Fig. 1: Security requirements of the clinical information system.

conclude this section with a discussion of several Security
APIs in the light of the DBC principle.

A. Motivation

We discuss our technique for tool-automated security code
audits with the help of a fictitious clinical information system,
which is to be evaluated by internal quality assurance (QA) or
an external evaluator (e.g., w.r.t. the Common Criteria [14]).
Among other functionality, it should provide means for reading
and writing electronic health records (EHRs). We further
assume that it is a JEE-based client-server application [49].

Fig. 1 depicts some security requirements for this applica-
tion as part of a hospital’s security policy. Req 3 requires
that a clinician must play the role Physician to read or
write the patient data of the EHR; for reading prescriptions,
the role Nurse suffices (Req 1). There are additional access
control requirements, which state that the clinician must be
on the same ward as the patient. The hospital’s security policy
also comprises confidentiality and integrity requirements, such
as “a doctor’s letter must be encrypted and digitally signed
with the treating physician’s certificate ” (Req 5). A doctor’s
letter is usually sent to a general practitioner after a patient’s
treatment at a hospital has been finished and a follow-up
treatment is necessary. As the hospital belongs to a healthcare
provider who runs several hospitals, storage capacity as a
cloud service is offered to the hospitals. The corresponding
connections must be appropriately authenticated and secured
(Req 7).

To illustrate our ideas, Fig. 2 depicts an excerpt of the
implementation of a fictitious clinical information system. The
implementation employs JEE’s programmatic authorization
EJBContext.isCallerInRole() to enforce that the
caller of a method plays the appropriate roles. For example,
the method readPrescriptions() (lines 5-11) checks
whether the caller has assumed the roles Physician or

Nurse. In addition, the code uses cryptographic functional-
ity, which is provided by Java security libraries. Also, SSL
functionality is implemented using Java security and Apache
libraries to enable secure communications with the Cloud.
We assume that the developers implemented SSL functionality
because they provide their own X.509 root certificate stored
in a Java key store.

The job of software QA now is to evaluate the software
w.r.t. the security requirements presented in Fig 1. Typical
questions to be answered by an analyst include “Does the
writePrescriptions() method satisfy Req 2?” and
“Does the sendDiagnosis() method make sure that pa-
tient data are signed and encrypted (Req 5), and if so, are
secure encryption algorithms used?”. It is often a laborious
task for an evaluator to understand the details of the code
and to identify the relevant code parts which implement an
application’s security architecture. In practice, the code is
much more complex than our example.

Given that Security APIs are increasingly used, knowledge
of the security functionality provided by these libraries should
be integrated into code analyzers. Specifically, a tool would
be desirable that

1) automatically extracts the relevant code locations that
implement the security requirements,

2) allows one to specify the security requirements, and
3) verifies the security requirements against the code.

For example, our discussions with product CERTs or QA of
large software vendors show that they rarely have the chance
to comprehensively validate the code against the security
requirements due to the high workload [36]. A tool that helps
them focus on the implementation of security requirements
would be very valuable for them.

1 @Resource EJBContext ctx;
2 Cipher mCipher;
3 Signature mSignature;
4
5 public String readPrescriptions(String ehrID, String userID){
6 Clinician clinician = getClinician(userID);
7 EHR eHR= getEHR(ehrID);
8 if !((ctx.isCallerInRole("Physician") || ctx.isCallerInRole("Nurse")) && eHR.getWard() == clinician.getWard())
9 throw new SecurityException("No sufficient access rights.");

10 return eHR.getPrescriptions();
11 }
12
13 public void writePrescriptions(String ehrID, String userID, String pres){
14 Clinician clinician = getClinician(userID);
15 EHR eHR= getEHR(ehrID);
16 if !((ctx.isCallerInRole("Physician") || ctx.isCallerInRole("Nurse")) && eHR.getWard() == clinician.getWard())
17 throw new SecurityException("No sufficient access rights.");
18 eHR.setPrescriptions(pres);
19 }
20
21 public String readPatientData(String userID, String ehrID){
22 Clinician clinician = getClinician(userID);
23 EHR eHR= getEHR(ehrID);
24 if !(ctx.isCallerInRole("Physician") && eHR.getWard() == clinician.getWard())
25 throw new SecurityException("No sufficient access rights.");
26 String patientData =
27 ehr.getAdministrativeData() + ehr.getPrescriptions() + ehr.getDiagnosis();
28 return patientData;
29 }
30
31 public void sendDiagnosis(String userID, String ehrID, Key key){
32 EHR eHR = getEHR(ehrID);
33 Clinician clinician = getClinician(userID);
34 if !(ctx.isCallerInRole("Physician") && eHR.getWard() == clinician.getWard())
35 throw new SecurityException("No sufficient access rights.");
36 byte[] signedData = signData(eHR.getDiagnosis().getBytes(), clinician.getKeyName());
37 byte[] encryptedSignedDiagnosis=encryptData(signedData, key);
38 String externalPractice = getExternalPractice();
39 String mailAddress = getMailAddress(externalPractice);
40 sendPatientData(encryptedSignedDiagnosis,mailAddress);
41 }
42
43 byte[] signData(byte[] data, String ksName, String keyAlias){
44 mSignature = Signature.getInstance("SHA256withDSA", "SUN");
45 KeyStore ks = KeyStore.getInstance("Hospital");
46 FileInputStream ksfis = new FileInputStream(ksName);
47 BufferedInputStream ksbufin = new BufferedInputStream(ksfis);
48 ks.load(ksbufin);
49 PrivateKey priv = (PrivateKey) ks.getKey(keyAlias, null);
50 mSignature.initSign(priv);
51 mSignature.update(data);
52 return mSignature.sign();
53 }
54
55 byte[] encryptData(byte[] data, Key key){
56 mCipher = Cipher.getInstance("AES");
57 mCipher.init(Cipher.ENCRYPT_MODE, key);
58 return mCipher.doFinal(data);
59 }
60
61 void conncectToHealthcareProviderCloud(URL url) throws IOException, GeneralSecurityException {
62 TrustManagerFactory tmf = TrustManagerFactory.getInstance("X509");
63 tmf.init(getKeystore());
64 SSLContext context = SSLContext.getInstance("TLS");
65 context.init(null, tmf.getTrustManagers(), null);
66 HttpsURLConnection urlConnection = (HttpsURLConnection) url.openConnection();
67 urlConnection.setSSLSocketFactory(context.getSocketFactory());
68 urlConnection.setHostnameVerifier(new AllowAllHostnameVerifier());
69 urlConnection.connect();
70 }

Fig. 2: Excerpt from the source code of a fictitious clinical information system.

1 /*@ public normal_behavior
2 requires ctx.isCallerInRole("Physician") &&
3 getEHR(ehrID).getWard() == getClinician(userID).getWard();
4 also
5 public exceptional_behavior
6 requires !(ctx.isCallerInRole("Physician") &&
7 getEHR(ehrID).getWard() == getClinician(userID).getWard());
8 signals_only SecurityException;
9 @*/

10 public void writePrescriptions(String ehrID, String userID, String pres){
11 Clinician clinician = getClinician(userID);
12 EHR eHR= getEHR(ehrID);
13 if !((ctx.isCallerInRole("Physician") || ctx.isCallerInRole("Nurse")) && eHR.getWard() == clincian.getWard()))
14 throw new SecurityException("No sufficient access rights.");
15 }
16
17 /*@ ensures mCipher.getInput().equals(mSignature.getOutput()) && mCipher.getKey().equals(key) &&
18 mCipher.getAlgorithm().equals("AES/CBS/PKCS5Padding") &&
19 mSignature.getInput().equals(ehr.getDiagnosis()) && ...;
20 @*/
21 public void sendDiagnosis(String userID, String ehrID, Key key){
22 EHR eHR = getEHR(ehrID);
23 Clinician clinician = getClinician(userID);
24 if !(ctx.isCallerInRole("Physician") && eHR.getWard() == clinician.getWard())
25 throw new SecurityException("No sufficient access rights.");
26 byte[] signedData = signData(eHR.getDiagnosis().getBytes(), clinician.getKeyName());
27 byte[] encryptedSignedDiagnosis=encryptData(signedData, key);
28 }
29
30 /*@ ensures mCipher.getInput().equals(data) && mCipher.getKey().equals(key) &&
31 mCipher.getAlgorithm().equals("AES/CBS/PKCS5Padding") && mCipher.getOutput().equals(\result);
32 @*/
33 byte[] encryptData(byte[] data, Key key){
34 mCipher = Cipher.getInstance("AES");
35 mCipher.init(Cipher.ENCRYPT_MODE, key);
36 return mCipher.doFinal(data);
37 }

Fig. 3: Annotated sliced source code.

B. The Analysis Approach in Detail

Subsequently, we describe the core concepts of our approach
to tool-assisted security audits in more detail.

1) DBC-Based Annotations: We propose to utilize the
advantages of DBC-based analysis because we consider the
application of Security APIs a contract between the client
(the application) and the callee (the security library). The
precondition of a Security API method must be satisfied by the
client, whereas the postcondition must be fulfilled by the called
API method. Preconditions help a developer use Security APIs
correctly, e.g., using state-of-the-art cryptographic algorithms
or creating secure random numbers for a symmetric key. The
postconditions must then be strong enough to enforce an
application’s security requirements, e.g., the intended access
control policy. Consequently, the client is responsible for
choosing sufficient Security APIs and using them in a way
to guarantee its security requirements.

The aforementioned steps 2) and 3) can naturally be handled
by DBC and related tools. For example, the security require-
ment “Data about a patient’s prescriptions may only be written
by physicians who are on the same ward as the patient.” (see
also Req 2) is shown in Fig. 3 as a JML specification (lines
1-9). The method returns normally if the appropriate roles have
been activated and the additional context constraint is satisfied;
otherwise, a security exception is thrown.

Other security requirements can be formulated similarly, in
particular those that are related to cryptography. For example,
consider the JML annotation of the method encryptData()
in Fig. 3 (see lines 30-31). It states that encryptData()
ensures that data is encrypted with the symmetric key key
and the algorithm AES/CBC/PKCS5Padding.

2) Slicing: We have mentioned that ESC/Java2 is built on
an automatic theorem prover. This task is costly, in particular,
if Java libraries such as Java container classes are heavily
used. These libraries must also be annotated, which leads to
the so-called “specification creep” problem [28]. Furthermore,
verification conditions that must be internally processed by
the prover can become extremely large and hence cannot be
proven [28]. Lloyd and Jürjens, for example, carried out a
case study, a biometric authentication system, and pointed out
that it was difficult to check JML-annotated methods because
they were too large ([43], page 89). For this reason, we need
a way to narrow down the code to locations that implement
the security functionality. Here, the slicing step helps, which
allows one to automatically extract these relevant locations.

Enabling static checking is not the only motivation for
slicing. It is also helpful for program comprehension tasks.
For example, one can separate out permission-enforcement
code or the implemented crypto mechanisms and attempt
to understand these specific code views. Moreover, if one
attempts to automatically infer JML annotations from code,

High-level algorithm: Static Analysis of an Application against its Security Requirements

Input: The sources of an application and the employed Security APIs.

Step 0: Annotate the Security APIs with DBC specifications.
If the annotations are automatically generated, possibly revise them.

Step 1: Load the application’s source code into an SDG to enable program analysis.

Step 2: Search for calls of the Security API on the SDG
and add them to the slicing criterion (automated step).

Step 3: Do context-sensitive, interprocedural backward slicing w.r.t. the slicing criterion.

Step 4: Create a new source file with the sliced version of the application.

Step 5: Insert DBC annotations for each method by employing an automated inference mechanism,
such as Daikon.

Step 6: Call an extended static checker on the annotated code.

Result: A static checker’s report on specification violations of the specified
security requirements.

Fig. 4: Overall algorithm for abstracting and analyzing the implemented security policy of an application.

many unrelated code annotations will be generated. Slicing
reduces the number of these annotations.

The underlined code in Fig. 2 represents the slice that results
when using the doFinal(data) call as the slicing criterion
(see line 58). In particular, the lines 38 to 40 from Fig. 2 do
not belong to the slice. Since slicig respects data and control
dependences, we can track which data are encrypted by the
doFinal(data) call and find out that they are the signed
diagnosis data (see line 36, Fig. 2).

Furthermore, the example shows the usage of interpro-
cedural backward slicing; the backward slice starts within
the encryptData() method and runs through the sign-
Data() and sendDiagnosis() methods. Interprocedural
backward slicing gives a security analyst a more comprehen-
sive view on the security-relevant code, which is distributed
over several methods. In particular, a security analyst can
understand the relationships between the different Java objects
(and their configurations) that are involved in encrypting the
data array, e.g., the Cipher and the corresponding Key
object as well as the Signature, its PrivateKey, and the
KeyStore object.

Fig. 3 then shows the result of slicing the sendDiagno-
sis() method (see line 21-28) w.r.t. the doFinal(data)
and isCallerInRole(‘‘Physician’’) calls. Hence,
combined slices are also possible.

Table I shows typical APIs calls that can be used as slicing
criteria and let an analyst construct specific security views
for analysis tasks. Starting from these calls other relevant
statements are automatically added to the slice including calls
of other API methods of the surrounding API class, e.g.,
update() or init() in case of the doFinal() API

API API class Seed methods

JEE authorization API EJBContext isCallerInRole()
Java encryption Cipher doFinal()
Java signature Signature sign()
Java keystore KeyStore getKey()
Https-based communication HttpsURLConnection connect()

TABLE I: API calls to be used as slicing seeds.

method. Furthermore, new analysis problems can then be
defined by using other API method calls as slicing criteria,
i.e., the approach can be generalized.

3) Specification Inference: One open point of our approach
is the burden of code annotation [28]. We address this problem
by employing a dynamic approach, which, for example, is
implemented in the Daikon tool [24]. Daikon automatically
infers likely specifications by instrumenting the program under
analysis. The quality of the specifications depends on the test
cases that are used for instrumentation.

Due to the nature of the annotations to be inferred in our
case, we must consider the following aspects:

• We must capture data at exceptional program exit points
to generate exceptional and non-exceptional cases to
produce heavyweight JML specifications.

• We must support pure method calls within the JML
specifications. Since our overall approach is based on
properties of Security(-relevant) APIs, we expect an in-
creased use of pure method calls within specifications,
such as isCallerInRole() or getKey().

• We must support conjunctive invariants as shown in the
annotations from Fig. 3.

The inferred specifications contribute to a better under-
standing of the implemented security mechanisms. As the
aforementioned approach can only provide suggestions for
specifications, the source code must still be regarded during
analyses.

4) Summary of the Steps of the Proposed Approach: Fig. 4
depicts the single steps of our proposed analysis approach. In
the first step, we generate an internal representation of the code
(IR), suitable for program analysis, such as the SSA form [3]
and SDGs [34]. Thereafter, the tool searches for Security API
call statements (e.g., mCipher.doFinal(data)) on the
IR and collects them into one common slicing criterion. Since
an analyst does not need to enter the slicing criterion on her
own, this leads to a higher degree of automation. Here, our
technique utilizes knowledge of the applied Security API that
is preloaded into the slicer.

From the criterion, we conduct backward slicing, i.e., find
all the program statements that influence the slicing criterion.
We then obtain all the statements on which the Security API
calls depend. We refer to this sliced code as the “implemented
security architecture” of the analyzed application. This slicing
step is crucial because it enables us to carry out extended
static checking as well as annotation inference. Otherwise,
these tasks would be prohibitively expensive w.r.t. space and
time.

In the next step, we annotate the sliced application with
DBC specifications, which are based on the security require-
ments of the application. This can be done manually or
automatically with tools such as Daikon. If Daikon is used,
the annotations must be manually revised because Daikon only
infers likely rather than precise specifications.

As the last step, we check the annotations against the sliced
code by means of extended static checking. Please note that
we rely on modular reasoning here, a key concept of extended
static checking as indicated in Section II-A. In particular,
the Security API does not need to be verified; we even do
not need to provide the code of the API’s methods, but can
use the //@ assume statement made available by extended
static checkers. This statement allows the checker to assume
conditions without proving them.

For example, we do not have to prove the correctness of the
APIs provided by Java’s Cipher class and hence only need
to provide implementation stubs, which use //@ assume
statements. Fig. 5 shows this concept. The annotation for the
doFinal() method states that getOutput() returns the
result of encrypting data; the annotation of init() says the
parameter key is used with this Cipher instance. Methods
such as getOutput() and getKey() are specification-
only JML methods, which can also be used by clients of the
doFinal() method to make specification more readable.

In a prerequisite step (“Step 0”), DBC annotations for the
Security APIs including the implementation stubs must be
provided. This task must be done manually and hence requires
some effort. However, it needs to be carried out less often

1 public class Cipher{
2
3 /*@
4 requires algorithm.equals("AES/CBS/PKCS5Padding");
5 ensures \result.getAlgorithm().equals(algorithm)

&& algorithm.equals("AES/CBS/PKCS5Padding");
6 @*/
7 public static Cipher getInstance(String algorithm}{
8 Cipher res = new Cipher();
9 //@ assume res.getAlgorithm().equals(algorithm);

10 return res;
11 }
12
13 //@ ensures this.getKey().equals(key);
14 public void init(int mode, Key key){
15 //@ assume this.getKey().equals(key);
16 }
17
18 /*@
19 ensures this.getInput().equals(data) && this.

getOutput().equals(\result);
20 @*/
21 public byte doFinal(byte[] data){
22 byte[] res = new byte[42];
23 //@ assume this.getOutput().equals(res);
24 return res;
25 }

Fig. 5: Exemplary implementation stubs for the Cipher class.

than annotating applications. Usually, this is the case when the
initial version of a Security API is made available or when the
Security API changes.

5) Discussion of the Approach with the Help of Code
Examples: An extended static checker can use specifica-
tions of the Security APIs to verify that an application
satisfies its security requirements. The postcondition of the
encryptData() method (see Fig. 3, line 30) can be proven
by using the annotations of the Cipher class depicted in
Fig. 5. In particular, this implies that Cipher.init() and
Cipher.getInstance() must have been called before
with the appropriate parameters for the key and the encryption
algorithm.

The code in Fig. 2 contains several vulnerabilities. The
method writePrescriptions() does not implement
Req 2 correctly, i.e., nurses can also write prescriptions.

Furthermore, the hostname verifier in the SSL code is set to
an instance of AllowAllHostnameVerifier. This class
essentially turns hostname verification off. Even software ven-
dors with a well-defined SDL follow such practices, e.g., SAP,
who built this code into a mobile communication library such
that several (partly security-critical) apps were vulnerable.

To detect such situations, the setHostnameVeri-
fier() method of the HttpsURLConnection defines a
precondition as follows:

/*@ requires
v instanceof StrictHostnameVerifier ||
v instanceof BrowserCompatHostnameVerifier;

@*/

This precondition assures that the full implementation for
hostname verification is used.

A further vulnerability can be found in the statement (see
Fig. 3, line 34)

mCipher = Cipher.getInstance("AES");

In this code, neither the encryption mode nor a padding
scheme is defined. Depending on the installed Java crypto
provider, the electronic code book mode (ECB) could be the
default, which is known to be insecure [2].

If the Cipher.getInstance() method contains the
precondition

requires \result.getAlgorithm().equals("AES/CBC/
PKCS5Padding");

then an extended static checker automatically can identify the
aforementioned issue.

As a further observation, preconditions tend to correlate
to rules that guarantee the secure usage of an API method.
For example, the getInstance() method has a precon-
dition stating that the CBC mode should be used with AES
encryption. The same remark applies to the precondition for
the setHostnameVerifier() API method. Since precon-
ditions are required to be satisfied by the caller, they can
be conveniently provided by the called library (e.g., in a
knowledge base).

Postconditions, such as exceptional specifications and
ensures statements, let one express application-specific se-
curity requirements. Application-specific requirements include
the role-based policy or requirements stating which data are
to be encrypted or signed by which key.

In summary, our approach allows one to encode security
knowledge on APIs in form of JML annotations. Through the
automated extraction of security-relevant parts from the code,
the process of security reviews can be better automated. This
leads to more comprehensive and hence more effective code
reviews. Consequently, common situations can be avoided
where one security aspect has been considered deeply, whereas
others have been neglected. For example, SAP’s Android apps
showed quite good cryptographic implementation (reasonable
key management, usage of secure algorithms, secure random
number generation), but weaknesses in SSL/TLS encryption.
Most importantly, our approach replicates and automates the
procedure security analysts follow when auditing code. They
start their analysis from security-relevant API calls, such as
Cipher.doFinal() or UrlConnection.connect().
Then they trace back parameters, return values and further
related objects to their origins while carrying out manual
security analyses (quasi in their mind based on experience).

C. Example Security Libraries

We subsequently give three examples of Security APIs
beyond Java and JEE security that underline the relevance and
generality of our idea. These examples reflect different aspects
of application security.

Web-based authorization APIs: The Spring software
framework, for instance, makes available certain authorization
API methods such as hasRole() [51] as shown in the
following annotated code fragment:

/*@ public normal_behavior
requires securityExpr.hasRole("Manager") ||

securityExpr.hasRole("Financial Officer");
also
public exceptional_behavior
requires !(securityExpr.hasRole("Manager") ||
currentUser.hasRole("Financial Officer"));

signals_only SecurityException; @*/
public int getBalance(){

if(!(securityExpr.hasRole("Manager") ||
securityExpr.hasRole("Teller")))

throw new SecurityException("Access Denied");
return balance;

}

The access control check allows the method to be success-
fully completed only if the caller has activated the appropriate
roles. The hasRole() calls correspond to isCallerIn-
Role() calls and can be automatically extracted from the
code by slicing. The annotations are similar to those given
in Fig. 3. Other Security APIs with similar security features
for JEE-based web applications are Apache Shiro [55] and
ESAPI [50].

One note should be made on declarative access control,
which is widely-used in applications that employ Java-based
software frameworks such as JEE or Spring. In a preprocessing
step, the configuration files containing the role-method assign-
ments (e.g., deployment descriptors) can be parsed. Then //@
assume statements with appropriate role checks can be in-
serted at the beginning of the corresponding methods referred
to in the configuration files. For example, if the deployment
descriptor requires the role “Teller” for executing method
getBalance(), we can place the following statement at
method entry:

//@ assume currentUser.hasRole("Teller");

This step gives an analyst a unified view on the implemented
access control mechanisms in the analyzed application. So, we
can also cover declarative access control.

Java Trusted Software Stack (jTSS): A different kind of
Security API are libraries for accessing security hardware,
such as Trusted Platform Modules (TPMs) [9]. One such
library is jTSS, which is an implementation of the TCG Soft-
ware Stack for Java [37]. Specifically, jTSS provides security
functionality to measure the hardware and software status of
IT systems trustworthily, using secure storage and different
signing keys. Based on these security features, the implemen-
tation of many security-critical applications is conceivable. For
instance, we can build systems which provide digital evidence
(e.g., to be used at court) based on a TPM [52]. This system
must then ensure non-repudiation requirements. In case of
a dispute, it must not be possible to mistrust this “digital
evidence”. Due to the fact that APIs for TPMs tend to be
quite complex, flaws in the application are conceivable which
stem from the incorrect usage of the API and may lead to a
violation of non-repudiation requirements.

Our approach can support an analyst in asserting that
the application actually implements a digital-evidence system
correctly. To implement requirements, such as “evidence data
must be signed with a non-migratable 2048-bit RSA platform
key, and this key must be bound to the current software
state of the platform”, jTSS makes available a series of
API methods. E.g., TcIRsaKey.createKey() enforces
the binding of the signing key to the system configuration of
the platform. Slicing can extract these calls automatically and
extended static checking lets one verify that the appropriate
API methods have been called in the right order with the
correct parameter values.

Android SDK: Android has become one of the most
prominent smartphone platforms today. This is one reason
why it has attracted much attention in the security research
community. The Android Framework provides a rich set of
APIs, which allows a developer to implement small Java-
based applications called “apps”, which can be downloaded
from application repositories. Android apps usually consist
of components, such as activities (which implement the user
interface of an application) or services (which carry out
background jobs).

Researchers found out that many apps showed weaknesses
[13], [22], [31], [25], [44]; in some cases, an attacker could
even execute system permissions [31]. Some vulnerabilities
were caused by the erroneous usage of interprocess com-
munication (IPC). Android uses IPC for the communication
between apps, which are otherwise separated through different
Linux user IDs. Typically, a data structure called “intent”
is used on performing an IPC. Intents are responsible for
exchanging data and defining target addresses of the IPC.

If, for example, a mobile application does not appropriately
protect its components, other apps might have undesirable
access. In addition, intents must be secured; otherwise,
attacks such as Activity and Service hijacking are possible.
Similarly, if broadcast messages are not adequately protected,
eavesdropping or denial of service attacks are conceivable
[13], [22]. A typical security rule for Android apps is “always
specify an access permission on intent broadcasts if the target
component has not explicitly been defined and the intent
contains extra information”. A JML precondition can then be
defined as follows:

//@ requires (intent.getExtra()!= null &&
intent.getComponent()== null &&
intent.getClass()== null &&
intent.getPackage()== null) ==> broadcastPerm!=null;

Please note that we demand that the intent has an extra
field because this is additional information that may be sen-
sitive. The caller of the sendBroadcast() API method
must then assure that this precondition is satisfied. The Online
Manager app from the Deutsche Telekom1, for example,
showed behavior that violated this rule:

1https://play.google.com/store/apps/details?id=de.telekom.hotspotlogin.de,
more than 1 Mio. downloads

Intent localIntent = new Intent("de.telekom.hotspot.intent.
action.SMS_STATUS");

localIntent.putExtra("status", CredentialSmsStatusType.
SMS_STATUS_CREDENTIALS_RECEIVED);

localIntent.putExtra("username", paramString1);
localIntent.putExtra("password", paramString2);
paramContext.sendBroadcast(localIntent);

It sends the hotspot password of their clients per broadcast
message. Although meant as a private message for the internal
app components, it erroneously published the intent to all
other installed apps because no broadcast permission has been
specified. We reported this flaw to the developers and found
out that they had not understood the security ramifications of
the Android Framework. This underlines the need of tools that
encode security knowledge on software frameworks.

To implement a slicing tool for Android applications (avail-
able in Java source or byte code), additional edges must be
inserted into the call graph. For example, edges must be
added between sendBroadcast() calls and corresponding
onReceiver() calls of broadcast receiver components. On
selecting API calls, such as sendBroadcast(), start-
Activity() or startService(), as further slicing cri-
teria, parts of the security architecture of the app can be
reconstructed and used for program understanding tasks.

In summary, we have discussed different Security or se-
curity-relevant APIs in the context of the proposed technique.
It is important for an application to use these APIs correctly to
meet its security requirements. An analysis tool that supports
the advanced analyses should foster knowledge of these APIs
in a knowledge base (in the form of code annotations). This
aspect will be discussed in Section VI.

Algorithm 1: Adding automatically additional slices.
Input : A program p to be sliced, a slicer and the slicing

criterion crit.
Output: A combination of slices s w.r.t. criterion crit

1 Initialize slicer with the options NO HEAP and
NO EXCEPTIONAL EDGES;

2 Build SDG sdg;
3 s = Slice p w.r.t. criterion crit;
4 for each method call statement mc in s do
5 for each parameter call statement pcall of mc do
6 if pcall not in slice s then
7 s’= Slice p w.r.t. criterion pcall;
8 s = Merge s and s’;

9 Return s;

IV. IMPLEMENTATION ASPECTS

We now describe the proof-of-concept implementation of
our analysis approach based on WALA and Daikon. The focus
of the description lies on extensions of the current tools to
better fit our purposes, e.g., by adding new features (in case
of Daikon) or building a new tool based on the analysis
infrastructure (in case of WALA).

A. Slicing with WALA

We used the slicer provided by the byte code analysis
framework WALA [19] as the basis for our implementation.
We also implemented a tool that lets an analyst enter slicing
criteria via a graphical user interface. Depending on the use
case, an analyst can select predefined security-critical APIs
(see I) as slicing criteria. Our tool then internally searches the
call graph part of the SDG via a depth-first search to find all
seed statements for slicing (see also Section III-B2) and finally
calls the WALA slicer.

We had to perform some optimizations to make slicing
feasible given that interprocedural slicing in general is of
quartic complexity [35]. In particular, we excluded about
380 classes/packages from the analysis space, e.g., Swing
classes or basic Java classes, such as java.lang.String.
Otherwise, the slicer would descend into the Java API imple-
mentation, which is prohibitively expensive.

We enabled WALA’s NO_HEAP option, i.e., data flows
through the heap are not followed. This analysis is in general
too costly as pointed out by Sridharan et al. [54]. Since the
slicing algorithms must also descend into library/API methods,
dependences may be lost on using NO_HEAP then. This leads
to false negatives, which are problematic because security-
critical code may not appear in the slice.

Two situations may occur when dependencies cannot be
correctly traced back through the body of an API method: (1) a
dependency to another API call of the same library class is lost
(e.g., Fig. 2, lines 57-58, lines 67-69); (2) a dependency that
influences one of the API call’s actual parameters is lost (e.g.,
Fig. 2, lines 49-50, lines 64 and 67). The former dependency
may stem from an internally used common member variable
of the API method’s surrounding class. The latter dependency
may originate from cutting off data flows going through the
method to the actual parameters. Both cases can be resolved
similarly by automatically adding further slices. For example,
the latter case can be addressed by the algorithm depicted in
Fig. 1. All actual parameter statements are used as additional
slicing seeds if they are not contained in the current slice. The
second case is slightly more complicated. The rough idea is
to add API method calls of the surrounding class as slicing
criteria if they are not contained in the slice yet and if they
occur earlier in the call graph or are located in the same
method.

Another optimization that we used is not to consider ex-
ceptional edges in the control flow. Otherwise all method call
statements that could potentially throw an exception would be
added to the slice which would lead to many false positives.

B. Annotation Inference with Daikon

We used the Daikon tool for automatically inferring JML
annotations for Java code. As Daikon needs concrete test cases
that the instrumentation process runs, this task is specific to
the analyzed software. The process of test-suite generation can
be automated by (1) determining the entry point methods of
backward slices and (2) generating test cases for these meth-

ods (e.g., looping through their parameters and the member
variables of the surrounding class).

To make the inference approach work for our purposes,
we extended Daikon. As Daikon did not support heavyweight
JML specifications including exceptional cases (see Fig. 3),
we adjusted Daikon’s bytecode instrumenter Chicory [24].
Chicory inserts hooks into the bytecode to print information
about program runs into a trace file that is later analyzed
by the Daikon engine. We extended Chicory to also proto-
col exceptional method exits including the type of thrown
exception. Our main contribution here lies in identifying code
locations where exceptions are thrown and writing out these
abnormal program exits into the trace file. Two situations
must be considered here: (1) a throw instruction is directly
encountered and (2) an exception is propagated up the call
stack. Case (1) is straightforward, whereas case (2) is more
difficult. We solved this problem as follows: insert try-catch
statements that cover the whole method, add code to protocol
an abnormal exit and finally rethrow the exception. With some
further optimizations, this approach works well and has been
finally integrated into Daikon’s current version.

Furthermore, Daikon was configured to produce specifica-
tions that contain pure method calls, such as isCaller-
InRole() or Cipher.getKey(). To utilize this feature,
we had to tell Daikon which methods are pure such that they
are considered while inferring JML annotations. Daikon had
some restrictions concerning this feature, e.g., pure method
calls must either have member variables of the surrounding
class as parameters or an empty parameter list. We adjusted
the software under analysis accordingly.

Another requirement was to support conjunctions in specifi-
cations (see Fig. 3). Daikon produces implications, which can
equivalently be translated with negations to conjunctions. For
producing meaningful implications, we used Daikon’s splitter
feature. This allows one to define certain “conditional program
points”, which Daikon then uses to infer implications/conjunc-
tions.

Furthermore, Daikon had to be adjusted to print the heavy-
weight specifications into Java classes. Fig. 6 depicts an-
notations inferred and thereafter automatically inserted JML
annotations. Lines 15 and 16 represent the fact that a secu-
rity exception is thrown in the exceptional case—both lines
together are then translated by our annotator into the clause

signals_only SecurityException;

A further point to be regarded is that Daikon produces many
specifications that are not relevant in our context (e.g., see
lines 3 to 6 in Fig. 6). We had to remove these constraints
manually to obtain more readable specifications. Furthermore,
Daikon was able to conclude conditional statements (impli-
cations) within a heavyweight JML specification. This, for
example, can be seen in line 7 in Fig. 6. Finally, Fig. 7 depicts
the revised specifications.

V. CASE STUDIES

JEE-based Web Application: We have implemented a test
web application, which is based on the code depicted Fig. 2.
The aim of this evaluation step is to demonstrate that our
tool can deal with different Java-based Security APIs, such
as Java cryptography, SSL/TLS functionality, and JEE-based
authorization. In particular, we generated code variants. The
purpose of this mutants-based testing approach [38] is to check
for false positives and negatives of the slicing process. False
positives are statements that occur in the slice, but are not
related to the analyzed security mechanism, whereas we speak
of false negatives when security-relevant code does not occur
in the slice. False positives only make the slice larger, whereas
false negatives may lead to misunderstanding of the code. If
extended static checking is used after slicing, then even flaws
may be missed.

The test scenarios include the following cases:

• introduction of further private helper methods (e.g., we
introduced an additional helper method getPrivate-
Key() to retrieve the private signature key from the
Java keystore)—this case tests for false negatives w.r.t.
interprocedural slicing,

• adding pointer assignment statements that influence the
slicing criterion, e.g., line 2 in the following code:
1 PrivateKey priv = (PrivateKey) ks.getKey(keyAlias,

null);
2 PrivateKey priv1 = priv;
3 mSignature.initSign(priv1);
4 mSignature.update(data)
5 return mSignature.sign();

• insertion of additional if-statements that influence the
slicing criterion,

• insertion of unrelated statements concerning local vari-
ables of primitives Java types,

• insertion of unrelated statements concerning local vari-
ables of class types,

• accessing unrelated member fields.
We considered the sign(), doFinal(), and the is-

CallerInRole() statements as slicing seeds for the test
cases.

In total, we generated 30 test cases for evaluating the slicing
step. Of all test cases, 12 false positives occurred, whereas two
false negatives were found (0.6 precision, 0.93 recall). The
false positives occurred when unrelated objects are accessed;
access to unrelated variables of primitive Java types did not
contribute to this rate. One reason for these false positives
is the fact that WALA also follows exceptional control flow
edges. In many cases, this is the desired behavior, but it led
to the false positives.

We found false negatives in situations similar to the code
example in the enumeration above. In that specific case,
WALA did not include the statement priv1 = priv; be-
cause WALA does copy propagation optimizations during SSA
generation for simple assignments. In a more complex case,
WALA missed statements due to the NO_HEAP option, i.e.,

data dependences are not followed through the heap. We
finally addressed this problem by adding two further slices
with initSign() and update()calls, respectively, as seed
statements. In Section VI, we discuss a different kind of false
negative. This situation is more fundamental as it is inherent
in our general approach and not in the slicing implementation.

After configuring the slicer as described before, we perform
program understanding tasks. For example, a security analyst
can follow the slice from the sign() statement back to the
code location where the private key is obtained. In the JEE
application, the private key has been retrieved from a Java
keystore (see Fig. 2, line 49):

PrivateKey priv = (PrivateKey) ks.getKey(keyAlias, null);

One can see that the keystore is not secured by a password
(null parameter), although a sensitive private key is stored
there. To automatically detect such situations, we specify the
following JML precondition for the getKey() API:

\\@ requires \typeof(\result) == PrivateKey
==> password != null;

Again this shows that rules for Security APIs can be
naturally specified as JML preconditions.

A. Android Framework

The second case study shall demonstrate that our approach
can be applied to real-world code. Target of our analyses
is the Android Framework, specifically, Android system ser-
vices. The Android Framework makes available authoriza-
tion APIs, which mobile applications can use to enforce
more fine-grained access control policies [23]. Examples are
the checkCallingPermission() and checkCall-
ingOrSelfPermission() methods in the android.-
Context namespace. These methods serve a similar pur-
pose as the isCallerInRole() method from JEE. The
implementation of the Android Framework heavily uses these
authorization APIs, with more than 400 calls within system
services and content providers.

Here, we follow a case study, which has been discussed
elsewhere [47], but extend it in several ways. First, we can an-
alyze different Android versions and have carried out analyses
of Android 1.5 until Android 5.0—the approach followed in
[47] only considered Android 4.0.3. Furthermore, we are able
to analyze all Java-based system services, which are about 35
per Android version2. The source code of the system services
is (mostly) automatically collected from the code base. For
each Android version, we analyzed about 120,000 lines of
code in total (considering all Android system services).

In the following, we discuss some experiments that we
carried out with our analysis infrastructure regarding the
analysis of the implemented permission model in Android
system services. From Table II and Table III one can conclude

2Only in a few cases, the code could not be sliced because WALA could
not generate a call graph, e.g., see the entries in Table III denoted by “−−”.

1 /*@
2 @ public normal_behavior // Generated by Daikon
3 @ requires this.mHasFeature == refreshing;
4 @ requires this != null;
5 @ requires this.mContext != null;
6 @ ensures this.mHasFeature == \old(this.mHasFeature);
7 @ ensures (this.mHasFeature == false) ==> (this.mContext.checkCallingPermission(MANAGE_DEVICE_ADMINS) ==

PERMISSION_DENIED || this.mContext.checkCallingPermission(MANAGE_DEVICE_ADMINS) == PERMISSION_GRANTED);
8 @ ... // further invariants
9 @ also

10 @ public exceptional_behavior // Generated by Daikon
11 @ requires this == \old(this);
12 @ requires this.mHasFeature == \old(this.mHasFeature);
13 @ ... // further invariants
14 @ requires PERMISSION_DENIED == this.mContext.checkCallingPermission(MANAGE_DEVICE_ADMINS);
15 @ requires Exception != null;
16 @ requires Exception.getClass().getName() == java.lang.SecurityException.class.getName();
17 @*/
18 public void setActiveAdmin(ComponentName adminReceiver, boolean refreshing, int userHandle) {
19 if (!mHasFeature) return;
20 mContext.enforceCallingOrSelfPermission(MANAGE_DEVICE_ADMINS, null);
21 }

Fig. 6: Sliced and with Daikon annotated source code of the DevicePolicyManagerService.

1 /*@ public normal_behavior
2 @ requires checkCallingOrSelfPermission(MANAGE_DEVICE_ADMINS)== PERMISSION_GRANTED;
3 @ ensures (this.mHasFeature == false) ==>
4 @ (this.mContext.checkCallingPermission(MANAGE_DEVICE_ADMINS) == PERMISSION_DENIED ||this.mContext.

checkCallingPermission(MANAGE_DEVICE_ADMINS) == PERMISSION_GRANTED);
5 @ also
6 @ public exceptional_behavior
7 @ requires checkCallingOrSelfPermission(MANAGE_DEVICE_ADMINS) == PERMISSION_DENIED;
8 @ signals_only SecurityException;
9 @ */

10 public void setActiveAdmin(ComponentName adminReceiver, boolean refreshing, int userHandle) {
11 if (!mHasFeature) return;
12 mContext.enforceCallingOrSelfPermission(MANAGE_DEVICE_ADMINS, null);
13 }

Fig. 7: Slightly revised specification from Fig. 6.

for selected system services and Android versions that slicing
reduces the code size to less than 10% when considering
the access control policy. Since we used WALA’s NO_HEAP
option as handling a complete heap model appeared to be too
costly, we also looked for false negatives w.r.t. slicing. In the
PackageManagerService of Android 4.0.3 we compared
the results obtained by slicing with information that we gained
by a manual code review of the original code and identified
no false negatives. This behavior can be explained because
the permission enforcement checks and possible influencing
statements did not involve any access to variables stored on
the heap.

Moreover, Table IV shows the development of the per-
missions along different Android versions. One can see that
new permissions have been introduced that correspond to
new security-relevant Android functionality. The API re-
vokePermision(), for example, was only a local method
before Android 4.1.2. Thereafter, it was exported to allow
for the revocation of permissions at runtime and requires the
permission GRANT_REVOKE_PERMISSIONS. It still is an
undocumented feature that is exported as a hidden API and can
only be accessed via Java reflection. Other permissions that are
enforced in the PackageManagerService and that can-

not be granted to third-party apps are MANAGE_USERS and
INTERACT_ACROSS_USERS_FULL. The former allows the
management of multiple users on the smartphone, whereas the
latter allows communications between different smartphone
users.

Our approach contributes to a better understanding of such
“hidden features” and the corresponding access control policy.
In particular, the inference of JML annotations makes explicit
the access control policy for undocumented mechanisms.
Daikon helped us infer specifications as given in Fig. 7—the
sliced code was taken from the DevicePolicyManager-
Service, a service used to implement MDM apps. Interest-
ingly, Daikon concluded that if mHasFeature == false,
then no permission is required (see line 3 and 4), i.e., it
was able to infer conditional access control checks, which
are mostly undocumented. Other approaches that construct a
permission map for Android, such as PScout [5], do not cover
hidden features, which are only available to the system or
dedicated system apps.

Also, this case study demonstrated that the slicing step is
essential in enabling annotation inference. Without slicing, all
parameters as well as all member variables of the surrounding
class must have been considered and initialized by different

values by the test program. Due to slicing, we limited search
space only to parameters and member variables that are used
within the method. Without slicing, the trace file was simply
too large to be analyzed by the Daikon engine, e.g., in case
of the DevicePolicyManagerService.

The focus of this case study lies on the comprehension
of the implemented security mechanisms complex software
system rather than analyzing software w.r.t. secure usage of
the software frameworks. Since Google developers use their
own framework to implement critical system services, we do
not expect that relevant security holes can be found here with
the help of tools. This is more to be expected in third-party
Android apps or JEE-based web applications where adequate
security knowledge is often sparse. In that case, the JML-based
annotations come into play, which codify security knowledge
of Security APIs.

VI. DISCUSSION

We now discuss limitations as well as prospects of our
analysis approach including tool support, educational aspects,
and related software initiatives.

Tool Support and its Current Limitations: One reason
why we concentrate on JML in this paper is the rich tool set
available (see Section II-A). Although ESC/Java2 in particular
is quite mature and supports most of the JML features, such
as model methods, it has limitations, which make it difficult
to apply in industrial contexts. First, only Java versions up
to Java 1.4 are supported, i.e., Java generics cannot be dealt
with. Second, the problem of extended static checking is
undecidable, i.e., the tool will produce false positive and
negatives, but with a moderate rate [7].

To improve extended static checking, there are currently
ongoing efforts for building a new extended static checker
for Java within the OpenJML initiative3. At the time of
this writing, however, this tool does not completely imple-
ment heavyweight JML specifications [7], which are needed
to express exceptional behavior and which we use for the
analysis of access control checks. When this problem has
been addressed, we hope that our approach can be applied
to larger case studies in industrial contexts in the near future.
In particular, advanced JML concepts, such as model features
[7] as well as complex Java data structures (e.g., Java container
classes using generics), are then better supported. This newer
extended static checker is expected to leverage more powerful
backend SMT solvers such as Yices [20] and Z3 [17].

Fig. 8 displays a possible architecture of our proposed anal-
ysis infrastructure. Input is the code under analysis. Moreover,
the tool infrastructure contains a knowledge base which stores
information about the interface of different Security APIs and
software frameworks as well as their annotations. We further
assume that we have a common IR for the different tasks.
Program slicers, such as WALA (Java) [19] and CodeSurfer
(C) [1], and extended static checkers work on similar IRs.

3http://jmlspecs.sourceforge.net/

Developing such a common analysis infrastructure would
require a substantial engineering effort, but in the end, it would
lead to a better tool integration.

False Negatives: We have already mentioned that
WALA’s NO_HEAP option led to false negatives in some
situations. One possibility to mitigate this problem is to add
further slices. For example, by adding the criterion

mSignature.initSign(priv);

one can also follow the signing key priv if this dependency
is missed by the slicer.

Furthermore, some false negatives are inherent in the
analysis approach rather than in the tool support. For
example, consider the method sendDiagnosis() in
Fig. 2. If we use the cryptographic and programmatic access
control API calls as slicing criteria, then the statement

sendPatientData(
encryptedSignedDiagnosis, mailAddress);

will be ignored. If the parameter encryptedSignedDiag-
nosis contained only unencrypted data, then we would not
detect this flaw because the statement would not be in the
slice. One possible approach to address this problem is to add
a forward slice, i.e., all the statements that depend on the
slicing criterion. This can be easily implemented as WALA,
for example, also contains this option. In our case, the slicing
criteria again are the doFinal() and sign() calls, but now
as seeds for forward slices. Then the forward slices contain all
the statements that are influenced by the encrypted/signed data.
Although the aforementioned statement will still not occur in
the slice, an analyst will at least better understand where the
encrypted data are used (and where not).

Similar remarks apply to HttpsUrlConnection objects
(see Fig. 2). Performing a forward slicing step (in combination
with backward slicing) w.r.t. the API call connect gives a
broader picture about http(s) communications of the applica-
tion. In general, forward slicing allows tracking the usage of
all objects on which Security APIs have been applied; these
objects are mostly security-critical and of interest for a security
analyst.

To sum up, our technique does not necessarily detect all
security-relevant code locations, and we are aware of the fact
that related tools are neither sound nor complete. However,
our approach is meant to alleviate the work of QA such that
they can conduct more effective security code reviews than
today. The tools will never replace the security expert.

Educational Aspects: Our proposed technique can also
be viewed from the educational perspective. First, developers
tend to roll out their own security features rather than using
well-tested security functionality [45]. As software vendors
adopt static code analyzers (hopefully, not only for reasons of
due diligence of the management) and the topic of software
security is widely taught at universities, Security APIs will
finally be employed to a larger extent than today. Second,
our tool should cover educational aspects, e.g., it could give

System Service (Source Code) 2.2.2 4.0.3 4.1.2 4.2.2 4.3.1 4.4.2

ActivityManagerService 14529 14609 15193 14567 14890 16415
BackupManagerService 2519 5642 5715 5756 5901 6056
DevicePolicyManagerService 944 2032 2042 2313 2481 2825
LocationManagerService 1885 2216 2459 1986 2156 2319
PackageManagerService 9839 8525 9383 10047 10805 11402
WindowManagerService 11417 9760 9999 11031 10399 10790

Total 41133 42784 44791 45720 46632 49807

TABLE II: Development of selected system services over different Android versions (original source code).

Systemservice (Slice) 2.2.2 4.0.3 4.1.2 4.2.2 4.3.1 4.4.2

ActivityManagerService 2716 2064 2155 2427 3109 1449
BackupManagerService 91 98 98 92 98 98
DevicePolicyManagerService 35 35 35 40 43 72
LocationManagerService 25 25 25 11 11 11
PackageManagerService 112 148 189 215 237 199
WindowManagerService 274 437 310 370 −− −−

Total 3253 2807 2812 3155 3498 1829

TABLE III: Development of selected system services over different Android versions (slices).

Permissions 2.2.2 4.1.2 4.4.2

CLEAR_APP_CACHE X X X
DELETE_PACKAGES X X X
CLEAR_APP_USER_DATA X X -
DELETE_CACHE_FILES X X X
GET_PACKAGE_SIZE X X X
GET_PREFERRED_APPLICATIONS X - -
SET_PREFERRED_APPLICATIONS X X X
MOVE_PACKAGE X X X
WRITE_SECURE_SETTINGS X X X
GRANT_REVOKE_PERMISSIONS - X X
INSTALL_PACKAGES - X X
CHANGE_COMPONENT_ENABLED_STATE - X X
PACKAGE_VERIFICATION_AGENT - X X
MANAGE_USERS - - X
INTERACT_ACROSS_USERS_FULL - - X

TABLE IV: Permissions of the PackageManagerService in selected Android versions.

explanations when the API is used insecurely. Similarly, tools
as Fortify SCA currently explain the kind and nature of the
security problem in case a possible vulnerability is flagged. As
Chess and West point out, didactic aspects have contributed
to the success of static code analyzers [11]. Didactic support
leads to a better acceptance of the tools.

Security Views: Security APIs and software frameworks
often cover quite different security aspects, such as crypto,
SSL functionality, access control, authentication, or security
for IPC functionality in case of Android. For this reason, it
would be desirable to let an analyst select each specific aspect
she wants to analyze. Slicing would then extract a specific
security view on the software, e.g., an access control view or
a view on IPC. These views could be selected either via a
graphical user interface or specific configuration files.

In this context, it should be clarified which stakeholder of
an SDL can use this tool. Certainly, a developer mostly does
not have the security knowledge to apply such a tool. Large
vendors, however, often have security-aware members in the
development teams as Fichtinger et al. report on the SDL of

Siemens [27]. This position seems to be well-suited for such
a task. Furthermore, support from the central product CERTs
could also help here.

Benefits for Common Criteria Projects: Our approach
can be useful for Common Criteria evaluation projects. The
Common Criteria demand for medium to high assurance
levels (EAL 4 upwards) evidence that the implementation
corresponds to the specification of the security functionality.
This assurance requirement is known as ADV_IMP according
to part three of the Common Criteria documents [15]. A
completely manual code review is difficult to carry out both
for QA and Common Criteria evaluators. Employing COTS
static analyzers does not solve this problem as they focus
on common implementation bugs. Applying our approach to
Common Criteria projects, we can extract the implemented ar-
chitecture automatically and pinpoint critical code regions. Ex-
tended static checking can then be employed for conformance
checking. Since the more widely-used levels EAL 4 and 5 only
require one to show conformance for parts of the code rather
than the complete software, slicing is well-suited for such a

Fig. 8: Analysis infrastructure.

project. Equipped with a knowledge base of specifications (see
Fig. 8), the evaluator can cover more security aspects than
relying solely on her own knowledge.

Recent Software Security Initiatives: Our approach also
relates to recent software security initiatives like the Building
Security In Maturity Model (BSIMM). BSIMM is supported
by large software vendors, among them, SAP, Microsoft, and
Adobe. It defines best practices, which organizations can
follow to secure their applications. One BSIMM activity is
to provide secure components, which correspond to our term
“Security APIs/libraries” (see also [6], SFD 2.1 “Build secure-
by-design middleware frameworks and common libraries”).

BSIMM suggests to define code review rules, which support
QA representatives in checking whether the secure compo-
nents are used correctly. In particular, the BSIMM docu-
mentation says Eventually the SSG can tailor code review
rules specifically for the components it offers. [6]. It further
concludes Generic open source software security architectures,
including OWASP ESAPI, should not be considered secure
out of the box. Our approach can help here by providing
DBC specifications for the Security APIs, administering these
annotations in a knowledge base and providing adequate tool
support for checking these rules.

VII. RELATED WORK

Static security analysis of software has evolved into an
active research area over the years. There are several works on
static checking for software security [42], [4], [12], [10], [26],
[21]. Important research prototypes from static analysis are e.g.
MOPS [10], Eau Claire [12], and LAPSE [42]. MOPS uses
temporal logics as formalism and model checking to discover
issues such as race conditions in C programs. The tool xg++
by Ashcraft and Engler was used to detect vulnerabilities in
the Linux Kernel [4]. Moreover, there is a work by Livshits
and Lam who present a tool to detect common low-level
vulnerabilities, such as SQL injection vulnerabilities, in Java
applications based on points-to analyses [42]. Felmetsger et
al. employ the Daikon tool [24] to dynamically infer secu-
rity specifications for web applications. Thereafter, they use
a model checker to detect application logic vulnerabilities
violating the specifications [26].

Similarly to our approach, the CryptoLint tool uses program
slicing [21]. This tool aims to detect the misuse of crypto-
graphic APIs in Android applications, but does not focus on

the more general aspect of security program comprehension.
Furthermore, as CryptoLint works on Android bytecode, it
cannot be used for Java software in general.

Some of the research prototypes evolved into commercial
tools such as Fortify SCA [29] and Coverity Prevent [16]. Most
of the aforementioned approaches and tools focus on finding
common kinds of low-level security bugs. Our approach is
complementary to them because we extract the implemented
security architecture from the code and check it against DBC
specifications. In particular, we focus on detecting vulnerabil-
ities and weaknesses that are caused by the wrong usage of
Security APIs. In addition, we provide an infrastructure for
program comprehension w.r.t. security aspects. Last but not
least, the task of automatically inferring security-relevant JML
annotations from Java code is very valuable for understanding
undocumented security features. COTS static analyzers like
HP-Fortify SCA do not have incorporated such advanced
functionality.

In contrast, threat modeling helps an analyst assess the
security architecture of an application [33]. Consequently, the
analyses are related to architectural documents rather than
considering the source code as we do.

Other approaches deal with the topic of detecting covert
channels in applications, e.g., based on non-interference prop-
erties [48]. Myers et al. introduced the JFlow language, an
annotation-based extension of Java, which allows a developer
to define security labels on variables. Proceeding this way,
hidden information flows, e.g., induced by the control flow of
the application, can be detected. Again, our proposed approach
differs from this work by verifying whether Security APIs have
been used correctly to satisfy the security requirements of an
application; we do not consider covert channel analysis as we
still face many basic security problems in software which are
prevalent and demand our immediate attention.

Several related works employ DBC concepts for security
analysis. Eau Claire allows the formulation of pre- and post-
conditions as annotations for C code. Similarly to ESC/Java
it is based on an automatic theorem prover [18]. Eau Claire
detects common security problems, such as buffer overflows
and race conditions. Although Eau Claire only focuses on
common security bugs in C applications, it shows the benefit
gained by employing static checking for security analysis.

Other case studies that use JML in the security context are
presented by Lloyd et al. (a biometric authentication system)
[43] and Cataño et al. (a JavaCard-based electronic purse) [8].
Both works use JML in conjunction with the static checker
ESC/Java for an already implemented application. They faced
problems like specification creep, annotation burden, and dif-
ficulty in generating and checking verification conditions for
the underlying theorem prover. The electronic purse case study
did not consider cryptographic operations. JML patterns for
security have been introduced by Warnier [56]. Contrary to our
proposed technique, all these approaches neither consider the
relationship between DBC and Security APIs nor the aspect
of security program comprehension.

VIII. CONCLUSION AND OUTLOOK

In this paper, we pleaded for integrating the concepts of
program slicing, DBC, and extended static checking into
future static code analyzers. Specifically, we argued that this
approach is well-suited to checking whether Security APIs
are used correctly by applications to implement their security
requirements. We motivated this thesis with the help of several
examples. We also showed that the topic of applying Security
APIs correctly is more and more relevant since Security APIs
of many software frameworks are quite complex.

However, to achieve a real impact on the Security De-
velopment Lifecycle, the current tool support for program
slicing and extended static checking must be substantially
improved to obtain a seamless tool chain. As a result, software
developers will have more powerful static code analyzers
that complement currently available tools and lead to more
systematic approaches to security code audits.

REFERENCES

[1] Anderson, P., Zarins, M.: The CodeSurfer software understanding
platform. In: Proc. of the 13th International Workshop on Program
Comprehension. pp. 147 – 148 (May 2005)

[2] Anderson, R.: Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley, 2nd edn. (2008)

[3] Appel, A.W.: Modern Compiler Implementation in Java. Cambridge
University Press (1998)

[4] Ashcraft, K., Engler, D.: Using programmer-written compiler extensions
to catch security holes. In: Proceedings of the IEEE Symposium on
Security and Privacy. p. 143. IEEE Computer Society (2002)

[5] Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: Analyzing the
Android Permission Specification. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. pp. 217–228.
CCS ’12, ACM, New York, NY, USA (2012)

[6] Building Security In Maturity Model: Intelligence: Security Features and
Design (SFD) (2013), http://bsimm.com/online/intelligence/sfd/

[7] Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens,
G.T., Leino, K.R.M., Poll, E.: An overview of JML tools and appli-
cations. Int’l Journal on Software Tools for Technology Transfer 7(3),
212–232 (2005)

[8] Cataño, N., Huisman, M.: Formal specification of Gemplus’s electronic
purse case study. In: FME 2002. vol. LNCS 2391, pp. 272–289.
Springer-Verlag (2002)

[9] Challener, D., Yoder, K., Catherman, R., Safford, D., Van Doorn, L.: A
practical guide to trusted computing. IBM Press, first edn. (2007)

[10] Chen, H., Wagner, D.: MOPS: an infrastructure for examining security
properties of software. In: Proc. of the ACM Conf. on Computer and
Communications Security. pp. 235–244 (2002)

[11] Chess, B., West, J.: Secure Programming with Static Analysis. Addison-
Wesley (2007)

[12] Chess, B.: Improving computer security using extended static checking.
In: IEEE Symposium on Security and Privacy. pp. 118–130 (2002)

[13] Chin, E., Porter Felt, A., Greenwood, K., Wagner, D.: Analyzing inter-
application communication in Android. In: Proc. of the 9th International
Conference on Mobile Systems, Applications, and Services (MobiSys),
Bethesda, USA. pp. 239–252. ACM (2011)

[14] Common Criteria: Common Criteria for Information Technology Se-
curity Evaluation—Part 1: Introduction and general model (2009),
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf

[15] Common Criteria: Common Criteria for Information Technology Secu-
rity Evaluation—Part 3: Security assurance components (2009), http:
//www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf

[16] Coverity: Coverity Prevent (2015), http://www.coverity.com
[17] De Moura, L., Bjørner, N.: Z3: an efficient smt solver. In: Proc.

of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 337–340. TACAS’08,
Springer, Berlin (2008)

[18] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for
program checking. Journal of the ACM 52(3), 365–473 (2005)

[19] Dolby, J., Sridharan, M.: Static and Dynamic Program Analysis Using
WALA, PLDI Tutorial (2010), http://wala.sourceforge.net/files/PLDI
WALA Tutorial.pdf

[20] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t).
In: Proc. of the 18th International conference on Computer Aided
Verification. pp. 81–94. CAV’06, Springer, Berlin (2006)

[21] Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical
study of cryptographic misuse in android applications. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security. pp. 73–84. CCS ’13, ACM, New York, NY, USA (2013)

[22] Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android
Application Security. In: Proc. of the 14th USENIX Security Symposium
(Aug 2011)

[23] Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security.
IEEE Security & Privacy 7, 50–57 (2009)

[24] Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C.,
Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection
of likely invariants. Sci. Comput. Program. 69, 35–45 (December 2007)

[25] Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L.,
Freisleben, B.: Why Eve and Mallory love Android: An analysis of
Android SSL (in)security. In: Proc. of the 2012 ACM Conference on
Computer and Communications Security. pp. 50–61 (2012)

[26] Felmetsger, V., Cavedon, L., Kruegel, C., Vigna, G.: Toward automated
detection of logic vulnerabilities in web applications. In: USENIX
Security Symposium. pp. 143–160. USENIX Association (2010)

[27] Fichtinger, B., Paulisch, F., Panholzer, P.: Driving secure software
development experience in a diverse product environment. IEEE Security
& Privacy 10(2), 97–101 (2012)

[28] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B.,
Stata, R.: Extended static checking for Java. In: Proc. of the ACM
SIGPLAN 2002 Conf. on programming language design and implemen-
tation. pp. 234–245 (2002)

[29] Fortify Software: Fortify Source Code Analyser (2015), http://www.
fortify.com/products

[30] Google Inc.: Android Development - Requirements (2015), http://
developer.android.com/sdk/requirements.html

[31] Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic Detection of
Capability Leaks in Stock Android Smartphones. In: Proceedings of
the 19th Network and Distributed System Security Symposium (2012)

[32] Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.:
Behavioral interface specification languages. ACM Comput. Surv. 44(3),
16:1–16:58 (Jun 2012)

[33] Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Uncover security
design flaws using the STRIDE approach. MSDN Magazine (Nov 2006),
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

[34] Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using de-
pendence graphs. ACM Transactions on Programming Languages and
Systems 12(1), 26–60 (Jan 1990)

[35] Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using de-
pendence graphs. SIGPLAN Not. 39(4), 229–243 (Apr 2004), http:
//doi.acm.org/10.1145/989393.989419

[36] Huebner., G.: Personal Communication (2013)

[37] Institute for Applied Information Processing and Communications, TU
Graz: IAIK jTSS - TCG Software Stack for the Java (tm) Platform
(2012), http://trustedjava.sourceforge.net/index.php?item$=$jtss/readme

[38] Jia, Y., Harman, M.: An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering 37(5), 649
–678 (2011)

[39] Krinke, J.: Advanced Slicing of Sequential and Concurrent Programs.
Ph.D. thesis, Universität Passau (2003)

[40] Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary Design of JML: A
Behavioral Interface Specification Language for Java. SIGSOFT Softw.
Eng. Notes 31(3), 1–38 (May 2006)

[41] Leino, K.R.M., Müller, P.: Using the Spec# Language, Methodology,
and Tools to Write Bug-Free Programs (2009)

[42] Livshits, B., Lam, M.: Finding Security Vulnerabilities in Java Appli-
cations Using Static Analysis. In: Proc. of the 14th USENIX Security
Symposium (Aug 2005)

[43] Lloyd, J., Jürjens, J.: Security analysis of a biometric authentication
system using UMLsec and JML. In: MoDELS. Lecture Notes in
Computer Science, vol. 5795, pp. 77–91. Springer (2009)

[44] Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting
Android apps for component hijacking vulnerabilities. In: Proc. of the
2012 ACM conference on Computer and communications security. pp.
229–240. CCS ’12 (2012)

[45] McGraw, G.: Software Security: Building Security In. Addison-Wesley
(2006)

[46] Meyer, B.: From structured programming to object-oriented design: The
road to Eiffel. Structured Programming (1), 19–39 (1989)

[47] Mustafa, T., Sohr, K.: Understanding the implemented access control
policy of Android system services with slicing and extended static
checking. International Journal of Information Security 14(4), 347–366
(2015), http://dx.doi.org/10.1007/s10207-014-0260-y

[48] Myers, A.C.: JFlow: practical mostly-static information flow control. In:
Proc. of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. pp. 228–241 (1999)

[49] Oracle Inc.: The Java EE 5 Tutorial (2013), http://docs.oracle.com/
javaee/5/tutorial/doc/bnbyk.html

[50] OWASP: OWASP Enterprise Security API (2012), https://www.owasp.
org/index.php/Category:OWASP Enterprise Security API

[51] Pivotal, Inc.: Spring security 3.1.2 (2013), http://static.springsource.org/
spring-security/site/index.html

[52] Richter, J., Kuntze, N., Rudolph, C.: Security digital evidence. In:
5th IEEE International Workshop on Systematic Approaches to Digital
Forensic Engineering, Oakland, USA. pp. 119–130 (2010)

[53] springsource community: Documentation (2013), http://www.
springsource.org/documentation

[54] Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: Proceedings of
the 2007 ACM SIGPLAN conference on Programming language design
and implementation. pp. 112–122. PLDI ’07 (2007)

[55] The Apache Software Foundation: Apache shiro 1.2.1 (2013), http://
shiro.apache.org/

[56] Warnier, M.: Language Based Security for Java and JML. Ph.D. thesis,
Radboud University, Nijmegen, Netherlands (2006)

[57] Weiser, M.: Program slicing. In: Proceedings of the International Con-
ference on Software Engineering. pp. 439–449. IEEE Press, Piscataway,
NJ, USA (1981)

[58] Zeller, A.: Why programs fail - a guide to systematic debugging. Elsevier
(2006)

