

Developing an empirically based agentbased model to support local transitions

Philipp S. Eppe, Thijs Bouman & Casper Albers

Philipp Eppe Maastricht 29.11.2023

Background and Research Questions

Background:

- → Significance of sustainable technologies (e.g. hydrogen) in achieving sustainability goals
- \rightarrow Low adoption rates despite potential benefits

Research questions:

- \rightarrow What are the most important factors for the adoption of sustainable technologies?
- \rightarrow What is the joined impact of these factors?
- ightarrow How to accelerate the adoption of sustainable technologies?

Approaches From Different Disciplines

	Environmental Psychology	Transition Studies
Insights:	Factors influencing individual sustainable technology adoption behaviour of e.g., electric vehicles or PV (micro level)	Diffusion of innovations on the system level (macro level)
Methods:	 Self-reports Experiments Field studies Etc. 	 System analysis Simulations (Agent-based modelling) Exploration of scenarios
Limitations:	 Static Limited insights on what happens after the adoption behaviour 	 Assumption of the rational actor in simulations (homo economicus) Low psychological (or social) reliability

Interdisciplinary Approach

→Integrating findings from the literature on sustainable technology adoption into an agent-based model

Aim:

- →Addressing the complexity of interrelated social and technical phenomena and heterogeneous social actors
- →Understanding sustainable technology adoption at the micro and macro level (emergent behaviour)

of Bremen

Methodology:

PRISMA Flow Diagram

Systematic

Psychological realism in agent-based models Philipp Eppe to support transitions 29.11.2023

PRISMA Flow Diagram adapted from: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

Key Findings

Psychological Factors

Factor	No. of Studies	No. of Part.	Mean r *	Std. Deviation
Subjective norm	125	104,689	0.480	0.156
Attitude	113	87,246	0.570	0.167
Environ. concern	77	55,324	0.456	0.137
PBC	75	65,687	0.535	0.176
Personal norm	53	47,103	0.596	0.164
Perceived benefits	48	25,989	0.440	0.193
Perceived ease of use	43	24,356	0.426	0.171
Techn. knowledge 40		22,965	0.407	0.178
Perceived costs	39	24,543	<u>- 0.311</u>	0.223

* Mean of the Pearson Correlation Coefficient;

Key Findings Differences in Technologies

	Technologies					
	Alternat Veh (n =	tive-Fuel icles : 99)	Energy-Efficient Appliances (n = 51)		Renewable Energy Technologies (n = 46)	
Factor	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Subjective norm	0.569	0.149	0.429	0.133	0.407	0.123
Attitude	0.657	0.143	0.484	0.167	0.505	0.124
Environ. concern	0.480	0.122	0.397	0.151	0.439	0.149
PBC	0.617	0.137	0.486	0.164	0.417	0.171
Personal norm	0.636	0.152	0.476	0.139	0.465	0.122
Perceived benefits	0.457	0.214	0.375	0.137	0.468	0.195
PEU	0.498	0.152	0.369	0.124	0.347	0.179
Techn. knowledge	0.408	0.214	0.428	0.150	0.362	0.155
Perceived costs	- 0.348	0.186	- 0.120	0.121	- 0.284	0.262

From: Scalco et al. (2018)

Integration Into Agent-Based Models

The next steps:

- \rightarrow Understand interrelatedness between factors:
 - How do perceived benefits and costs influence attitude?
 - How does technological knowledge influence ease of use?
- \rightarrow Formalisation:
 - Define attributes to each agent (empirically): Attitudes, PBC and personal norms (e.g., -1 to 1)
 - Define within-agent behaviours:
 - Attitude updates: Social interactions or technological advancements
 - Tech. knowledge: Likely to increase over time
 - Determine adoption threshold
- \rightarrow Model interactions:
 - Attitude diffusion through social networks (convergence or divergence?)
 - Normative influence: Agents with strong personal norms exert social pressure

Thank you!

Any ideas for further analysis?

Philipp Eppe Faculty of Resilient Energy Systems University of Bremen eppe@uni-bremen.de Summer School on Theories in Environmental Psychology

Bridging the Gap between Theory and Practice

Save the date: 24 - 28 June, 2024 Groningen

Contact: nextstep@rug.nl

Become a partner!

Merging Variables for Better Comparability

