


An Evolutionary View on the Emergence of Artificial Intelligence

Al innovations are becoming increasingly complex and specialized.

- Increase in complexity: Al is to bring greater economic benefits to companies and countries exploring it.
- Increase in relatedness: Al is becoming highly-specialized, meaning that Al innovations are becoming increasingly distinct from other technologies while also demanding greater efforts to be developed.

Distinct trend for innovations at the corefields of AI

• Decreasing relatedness between technological fields at the technological core of AI, meaning that AI innovations in these fields are becoming increasingly distinct from each other.

Theoretical background

Technologies present distinct specific characteristics that change over time: complexity (value) and relatedness (specialization).

- Complexity → more valuable technologies/products are harder to be produced because they demand more sophisticated capabilities (Hidalgo & Hausmann, 2009).
- Relatedness → companies are able to develop only technologies to which they share some related knowledge-base (Breschi et al., 2003).

Method and data

Patents and inventors' information as proxy for knowledge location (De Rassenfosse et al., 2019).

Analysis at the global and national level.

• Focus on four countries for the national perspective: US, South Korea, Japan, and China \rightarrow 92% of Al patents.

Technological space framework (Hidalgo et al., 2007) to <u>visualize</u> the relatedness and complexity of techn. Fields. Complexity and relatedness indices (Balland, 2017) to <u>quantify</u> the evolution of countries and AI over time.

Propositions

- Proposition I: Al emergence at the global level is associated with increasing related variety due to knowledge-relatedness as well as increasing complexity.
- Proposition II: Al's evolution affects the technological paths
 of countries exploring it by increasing the overall
 relatedness and complexity of innovations developed by
 these countries.

Main Takeaways

- Al increasingly complex, i.e., more sophisticated capabilities are needed to develop it but also increasing profitability.
- Al increasingly specialized, i.e., a higher variety of capabilities is needed to develop it and Al-specific knowledge can't be easily adapted to develop other technologies.
- <u>Countries</u> leading AI develop. are also <u>increasing the average</u> <u>complexity</u> (higher econ. benefits) of all of their inventions.
- Not all countries leading AI develop. are increasing the average relatedness of their inventions; i.e., some countries are producing technologies increasingly <u>distinct</u> from the ones they had created so far.

References

Balland, P. A. (2016), 'Relatedness and the geography of innovation', Handbook on the geographies of innovation, Edward Elgar Publishing.

Breschi, S., F. Lissoni and F. Malerba (2003), 'Knowledge-relatedness in firm technological diversification', Research policy, 32 (1): 69-87.

De Rassenfosse, G., J. Kozak and F. Seliger (2019), 'Geocoding of worldwide patent data', Scientific data, 6 (1): 1-15. Hidalgo, C. A. and R. Hausmann (2009), 'The building blocks of economic complexity', Proceedings of the national academy of sciences, 106 (26): 10570-10575.

Hidalgo, C. A., B. Klinger, A.-L. Barabási and R. Hausmann (2007), 'The product space conditions the development of nations', science, 317 (5837): 482-487.

Matheus Eduardo Leusin

PhD Supervisor Prof. Dr. Jutta Günther

Supported by Faculty of Business Studies and Economics,

Chair of Innovation and Structural Change.

Contact-Email leusin@uni-bremen.de