
Algorithmik – Kunst – Semiotik42

Zur Genese des informatischen
Programmbegriffs:
Begriffsbildung, metaphorische Prozesse,
Leitbilder und professionelle Kulturen

Hans Dieter Hellige, Universität Bremen

“Bei unseren Tätigkeiten, gleich welcher Art sie seien und in welcher Situa-

tion wir sie vollbringen, begleiten uns Interessen, Absichten, Hoffnungen,

Wünsche, Vorstellungen, Erwartungen, Maximen, Regeln – kurz, ein gan-

zes Bündel von motivierenden und orientierenden Verfasstheiten. Wir las-

sen uns von ihnen nicht nur begleiten, sondern auch leiten. Meist wirken

solche Orientierungen beiläufig und wie selbstverständlich, gar mit einer

gewissen Zwangsläufigkeit. Sie können einander auch widersprechen, oder:

unmittelbares Ziel unserer Tätigkeit und übergeordnetes Leitbild mögen

nicht zusammenpassen.”

Frieder Nake 2003, S. 344

1. Die hermeneutische Analyse von Metaphern, Leitbildern
und professionellen Kulturen in der Technikgenese

Die Informatik und hier speziell die Software-Entwicklung, Software-

Ergonomie und die Gesellschaftstheorie der Informatik haben seit den

70er Jahren mit der Entdeckung der Bedeutung von Mentalen Modellen,

Benutzer-Modellen und Metaphern sowie mit dem Perspektiven- und

Model-Power-Konzept das Wissen über hermeneutische Prozesse zwi-

schen Technikproduzenten und -nutzern stark erweitert. Der besondere

Konstruktionsgegenstand Software hat hier Erkenntnisse zu Tage geför-

dert,die der Mechanik- bzw.Elektrokonstruktionslehre verschlossen blie-

ben. Die Techniksoziologie und die Technikgeschichte widmen sich seit

den 80er Jahren intensiver der Analyse von Leitbildern, Metaphern und

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 42

43

generell kultureller Aspekte der Technikgenese. Schließlich beteiligten

sich auch Psychologie und Philosophie verstärkt an der Erforschung von

Modellbildungs- und Übertragungsprozessen in der Technik. Von einer

elaborierten Hermeneutik des technischen Gestaltens kann man trotz

dieser Forschungsanstrengungen aber noch immer nicht sprechen.Dazu

fehlt es noch an einer Zusammenschau der verschiedenen Phänomene

und erst recht an einer Systematisierung hermeneutischer Prozesse im

Technischen Handeln.

In einer groben Gliederung lassen sich allgemein-gesell-

schaftliche Horizonte wie Technische Kulturen, Technikstile und Tech-

nikbilder von den besonderen Erfahrungs- und Vorverständnishorizon-

ten der Technikentwickler unterscheiden (vgl. Hellige 1995a, S. 21 ff.).

Die allgemein-gesellschaftlichen wie die besonderen technisch-wissen-

schaftlichen Horizonte sind aufgrund des Hintergrundcharakters von

Vorverständnissen nur partiell und dies auch nur mit spezifischen her-

meneutischen Methoden und Konzepten rational rekonstruierbar. Zu

ihnen gehört auf der einen Seite das vor allem in der Informatik entwi-

ckelte Perspektivenkonzept, das durch die Gegenüberstellung unter-

schiedlicher Sichtweisen verabsolutierte Standpunkte auflöst. Auf der

anderen Seite stehen eine Reihe bereichs- oder aspektspezifischer Orientie-

rungsmuster wie Mentale Modelle,Metaphern,Leitbilder und Konstruk-

tionsstile sowie spezielle professionelle Kulturen. Deren Zusammenspiel

soll im Folgenden am Beispiel metaphorischer Prozesse bei der Entste-

hung der Programmkonzepte untersucht werden.

Metaphern bilden den Übergang von Mentalen Modellen zu

den Leitbildern. Denn auch hierbei wird an vertraute Gestaltmuster und

Erfahrungen angeknüpft, um möglichst übergangsgerechte Lösungsmu-

ster zu generieren. Metaphern sind keinesfalls nur eine Begleiterschei-

nung der Modellierung von Arbeits- und Handlungsabläufen auf dem

Rechner, wie es die informatische Metaphernforschung vielfach nahe-

legt. Die Historie der Gestaltfindung bei Telegrafen, Telefonen, elektri-

schen Herden, Waschmaschinen sowie von mechanischen Rechen- und

Schreibmaschinen zeigt vielmehr,dass man Metaphern offenbar als einen

wesentlichen Bestandteil der Artefaktkonstruktion ansehen muss. Vor

allem bei der Mensch-Maschine-Schnittstelle scheint der Rückgriff auf

vertraute Lösungsmuster unverzichtbar, sei es, weil neue Gestaltmuster

hier besonders schwer zu schaffen oder den Benutzern zu vermitteln sind.

Dabei lässt sich zeigen, dass Metaphern in Entwicklungsprozessen nicht

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 43

Algorithmik – Kunst – Semiotik44

nur als kognitive Medien kreativen Kombinierens zu betrachten sind,

wozu Thomas P.Hughes (1991,S.83 ff.) und die technikgenetische Meta-

phern-Studie von Mambrey, Paetau und Tepper (1995) neigen. Modell-

und Gestalt-Übertragungen, so meine Ausgangsthese, sind im hohen

Maße auch un- oder halbbewusste Momente des Vorverständnisses, also

hermeneutischer Natur. Neben der spielerisch-bewussten Konstruktion

mit Metaphern gibt es die Vorfixierung auf bekannte Muster und Sicht-

weisen. Dadurch kann der Lösungsraum u. U. von vornherein eingeengt

werden.

2. Zur Bedeutung metaphorischer Übertragungsprozesse in der
Wissenschaftsgenese der Informatik

Ein großer Teil informatischer Begriffe ist durch metaphorische Über-

tragungen aus anderen Technikbereichen oder Wissenschaften hervor-

gegangen. Das Metaphernsortiment der Informatik ist sogar, dies haben

Richard Lynch (1993), Peter Mambrey, Michael Paetau, August Tepper

und Carsten Busch (1998) betont,besonders bunt gemischt.Deren Erfor-

schung hat sich bisher auch in informatischen und techniksoziologischen

Analysen vor allem an geisteswissenschaftliche Methoden angelehnt.

Metaphern wurden vor allem als Kommunikationsformen und -medien

gesehen, bei der Interpretation aus dem Kontext gelöst und wie literari-

sche Metaphern oder wie rhetorische Figuren in Kommunikationspro-

zessen gedeutet. Dies mag bei bildhaften oder unmittelbar einsichtigen

Gestaltmetaphern wie Baum,Stapel,Schleife,Sprung und Bug,Virus oder

bei (auto)suggestiven Bildsymbolen in Technikhypes angemessen sein,

nicht jedoch bei komplexeren Analogiebildungen wie Programm, Pro-

grammiersprache,Schichtenmodell oder Architektur.Diese transportieren

über Gestaltanalogien hinaus ganz spezifische professionelle Sichtwei-

sen. Sie haben oft implizit oder explizit Leitbildfunktion. Dies wird

besonders bei konkurrierenden Metaphern deutlich: Software Enginee-

ring hat sich ab 1968 gegen die um 1965 noch protegierte Software-Archi-

tektur durchgesetzt, während Computer Engineering ab 1970 ganz ein-

deutig von der Computer-Architektur verdrängt wurde. Zur Erklärung

reichen da Etymologien und literarisch-philosophische Metaphern-

deutungen nicht mehr aus, hier muss der Zusammenhang von Meta-

phern und Leitbildkomplexen in professionellen Kulturen diskursanaly-

tisch betrachtet werden. Dies kann, wie bei Pflüger (u.a. 2002, 2003a/b)

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 44

45

anhand einer Kette epochaler Leitmetaphern mit epistemischen Char-

akter geschehen oder, wie im Folgenden, anhand einer vergleichenden

Untersuchung von Metaphernbildungen zu einzelnen zentralen Begrif-

fen und Konzepten der Informatik. So möchte dieser Beitrag am Beispiel

der Entstehung des Programmbegriffs zeigen,welche Bedeutung metapho-

rische Prozesse bei der Entstehung einer neuen Disziplin haben können

und wie Denkweisen bestehender professioneller Kulturen über sie auf

die neu entstehende einwirken.

Obwohl die Begriffe Programm, Programmiersprache zu den

Kernbegriffen der Informatik zählen,ist deren genauere Entstehung noch

weitgehend unerforscht. Die meisten Autoren historischer Rückblicke

arbeiten ohnehin mit einem universalen Programmbegriff: Dieser wird

für die Tempeltore des Heron von Alexandria, mittelalterliche Uhrwer-

ke, frühneuzeitliche Automaten und Spielwerke ebenso verwendet wie

für moderne Computer. Durch die Allgegenwart des Programmbegriffs

wird jedoch verdeckt, mit welcher Begrifflichkeit man jeweils arbeitete

und warum man Jahrhunderte lang ohne einen von den jeweiligen mate-

riellen Speichermedien Walzen, Lochkarten oder Stecktafeln losgelöste

abstrahierende Bezeichnung ausgekommen ist. Denn für Babbage, Lud-

gate und Torres stehen die Ketten der “Operational Cards”bzw.die Loch-

streifen noch genauso für das prozedurale Programm selber wie die Loch-

karten und die Walze für Jacquard und die Erbauer mechanischer

Musikinstrumente.

So bezeichnet Babbage, dem „mettre en carte“ bei Jacquard

entsprechend, Programmiervorgänge meistens als „arrangement“ oder

Diagramm des

Programmablaufs mit

Jacquard-Lochkarten

(Ada Lovelace, in:

Menabrea, Note D)

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 45

Algorithmik – Kunst – Semiotik46

„combination“ der verschiedenen „sets of cards“ zu einer „order by means

of cards“ bzw.„chain of operational cards“ (Babbage 1937, S. 17 ff. bes. S.

45 f.; Merrifield 1879,S.57).In einer Notiz vom Juli 1836 spricht er davon,

dass „cards (Jacquards) of the Calc. engine direct a series of operations“,

wobei in den Lochmustern „small pieces of formulae“ enthalten sind (zit.

nach Randell, S. 349). Daneben taucht aber bereits die Übersetzungs-

metapher auf: „In this light the cards are merely a translation of alge-

braical formulae, or, to express it better, another form of analytical nota-

tion“ (Menabrea 1842). Schließlich bedienen sich Ada Lovelace und

Babbage der viel zitierten Analogien zu den Jacquard-Webstühlen,indem

sie davon sprechen, mit dem „system of cards“ algebraische Muster zu

weben: „We may say most aptly, that the Analytical Engine weaves alge-

braical patterns just as the Jacquard-loom weaves flowers and leaves“

(Ada Byron-King, Note A in Menabrea). Ähnlich schreibt Babbage in

einem Brief an Arago im Dezember 1839 „we can communicate to a very

ordinary loom orders [sic!] to weave any pattern that may be designed.

[...] Availing myself of the same beautiful invention, I have by similar

means communicated to my calculating engine orders to calculate any

formula however complicated [...]“. Doch im Gegensatz zu Ada streicht

er den Unterschied der ‘Programmierung’ von Jacquard-Maschinen und

der Analytical Engine heraus: „[...] but I have also advanced one stage

further, and I have communicated through the same means orders to fol-

low certain laws in the use of those cards [...]“ (zit. in Merrifield 1879, S.

57, meine Hervorhebung).

Der Übergang von der Mechanik zur Elektromechanik nach

1900 ändert an den Programmbegriffen und -Metaphern zunächst nur

wenig. Percy E. Ludgate wandelt mit seinen Lochstreifen nur den Ablauf

der Bedien- und Rechenprozesse ab,bleibt aber ansonsten noch ganz der

Babbage-Terminologie verpflichtet und greift einmal sogar auf die Ada-

Metaphorik zurück (Ludgate 1909).Leonardo Torres y Quevedo lehnt sich

bei dem Programmier- und Steuerungskonzept seiner elektromechani-

schen „Analytischen Maschine“ z. T. an Babbages Begriff des „Arrange-

ments“ von Operationen an und beschreibt dieses in seinen einzelnen

Berechnungsschritten.Dabei sieht er bereits die Zusammensetzung kom-

plexerer Arbeitsfolgen aus Elementaroperationen vor (Torres 1914, S.

100). Doch er entwickelt andererseits ein anthropomorphes Verständnis

des ‚Programmablaufs‘, wonach das hypothetische „automaton“ sich wie

ein intelligentes Wesen den jeweiligen Bedingungen anpasst und bei der

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 46

47

Pfadwahl selber Entscheidungen trifft:„In essence, the automaton acts as

a circumspect person and reflects: it examines the present circumstances

in order to decide what it should do and then it does it“ (Torres 1920, S.

116). Beim Fortschreiten der einzelnen Operationen der Formel-

berechnung folgt es zuvor aufgestellten Regeln bzw. Verhaltensmustern,

die das Arbeitsverhalten präzise festlegen. Dabei geht Torres sogar schon

von einer Erstellung des ‚Programms‘ in natürlicher Sprache aus.

Die Steuerung („contrôle“) der Maschine wird auf diese Weise

sehr einfach: Der „human calculator who uses the machine“ muss nur

von Zeit zu Zeit bestimmte Tasten drücken und selbst dies könne noch

automatisiert werden durch „a process similar to that which has been

used for operating a mechanical piano“ (Torres 1914, S. 88 f., Zitate in

engl. Übersetzung S. 95, meine Hervorhebung). Torres stellt mit dieser

Metapher eine direkte Verbindung zwischen seiner theoretischen Auto-

matologie und der Welt der Lochstreifen-gesteuerten Musikautomaten

her. Er erkennt, dass die Verallgemeinerung der ‚Programmsteuerung‘

alle Maschinen zu potentiellen Automaten macht.„These very principles

may be applied to other calculating machines and even to industrial

machines“ (Torres 1920, S. 116). Doch den Schritt zur Abstraktion eines

Hardware-unabhängigen Programmbegriffs geht Torres noch nicht,dazu

versperrte ihm sowohl die Fixierung auf die traditionelle Automatenwelt,

ihre Mechanismen und Steuerungen als auch die anthropomorphe Sicht-

weise intelligenter Automaten den Weg.

Wie und wann der Loslösungsprozess beginnt und welche

Rolle die Programmmetapher dabei spielt, ist noch ziemlich im Dunkeln.

Die Forschung stützt sich in der Regel ausschließlich auf das Oxford

English Dictionary,das die frühesten Belege bei Computern für 1945 aus-

weist (siehe u.a. Beniger 1986, S. 39, Coy 1998). Nach Paul E. Ceruzzi

(1998, S. 20 f.) liegt der Ursprung des Programmbegriffs des Computer-

bereichs beim ENIAC-Team der Moore-School, David Alan Grier ver-

weist ausdrücklich auf John Mauchlys berühmtes Memorandum von

1942 „Use of High Speed Vacuum Tube Devices for Calculating“, das die

ENIAC-Genese einleitete. In Studien über Konrad Zuse werden sogar

Manuskripte zitiert, in denen der Programmbegriff angeblich schon seit

1937 vorkommt. Doch diese Datierungen sind wenig glaubwürdig, da in

diesen Dokumenten bereits von der „Minimalform der rein universellen

Programmiersprache“,„allgemeinen Formalsprachen“,„algorithmischen

Sprachen“ und vom „bedingten Sprung“ die Rede ist, und zwar nicht nur

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 47

Algorithmik – Kunst – Semiotik48

in der später angefertigten Transskription, sondern bereits in der steno-

grafischen Notiz!

Zuse hat zwar schon seit dem Ende der 30er Jahre ein sehr

avanciertes ‚Programm‘konzept und eine informatische Sichtweise ent-

wickelt, die wissenschaftliche Probleme durch mathematische Modell-

bildung und Programmierung durchgängig rechnerunterstützt lösen will

(vgl. hierzu bes. H. Zuse 2003; zu den Datierungsproblemen des Zuse-

Nachlasses Hellige 2003, S. 415 f.). Doch hielt er bis in die zweite Hälfte

der 40er Jahre an dem in Rechenbüros bereits Anfang der 30er Jahre

üblichen Begriff „Rechenplan“ fest. Er definierte den „Rechenplan“ als

„Aufführung der aufeinanderfolgenden Rechenoperationen“, doch viel-

fach verwendete er ihn auch einfach synonym mit „Lochstreifen“:„Rechen-

pläne sind Lochstreifen, die von den Geräten abgetastet werden.“ (Zuse

1936, Zuse 1946, S. 2) Sehr weitreichend ist seine Unterscheidung von

Gesamtplan, der einer Formelsammlung bzw. einem Planbestand ent-

spricht,von aufgabenspezifischen Plangruppen und ganz speziellen Ein-

zelplänen, die z. T. aus Teilen des „dauernden Planbestands“ zusammen-

gesetzt sein können. Er entwickelte 1942-46 die Vorform einer

Programmiersprache,den „Plankalkül“ (Zuse 1945),doch bezeichnete er

diesen erst nach Abschluss der Arbeiten als „eine allgemeine mathe-

matische ›Zeichensprache‹“, mit der man „Anweisungen“ für die unter-

schiedlichsten „schematischen kombinatorischen Denkoperationen“

mechanisieren könne (Zuse 1947, S. 1 f.). Obwohl sein ‚Programm‘-Kon-

zept, ohne dass der Begriff selbst auftaucht, in den späten 30er und frü-

hen 40er Jahren den anderen Entwicklungen in Europa und den USA

weit überlegen war, hatte es aufgrund der Isolation Zuses keinen Einfluss

auf die Entstehung des Programmbegriffs. Deshalb wird es im Folgen-

den auch ausgeklammert.

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 48

49

3. Programmbegriffe in den professionellen Kulturen der
Steuerungs- und Regelungstechnik und der Lochkartentechnik

3.1 Von De Leeuws “program machine” zum “program control”
und Programmregler

An dem Mauchly-Beleg von 1942 ist keinem bisher aufgefallen, dass hier

nur von einem „programming“ bzw.„program device“ die Rede ist. Es ist

damit eine Art Programmschaltung oder Stecktafel gemeint, die in dem

geplanten System verketteter Rechenmaschinen den Ablauf zwischen den

verschiedenen Rechenwerken steuert:„this program device is capable of

arranging a cycle of different transfers and operations of this nature with

perhaps fifteen or twenty operations in each cycle“ (Mauchly 1942, S.

330). Ein solcher Mechanismus ähnelt den damals in der Steuer- und

Regelungstechnik üblichen „selbsttätigen Arbeitsfolge- und Zeitgeberein-

richtungen“. Für die „bekannteste Klasse“ von Regelungen bzw. Steue-

rungen,die „nach einem vorgeschriebenen Plan verändert wurden“,hatte

sich in Deutschland spätestens seit dem Ende der 30er Jahre der Begriff

„Programmregler“ eingebürgert, der seinerseits auf den älteren Begriff

„program control“ in USA zurückging (Schmid 1941; Engel, Olden-

bourg 1944, S. 200 f.).

Es handelt sich dabei um eine Automatisierungstechnik an der

Nahtstelle zwischen Steuerungs- und Regelungstechnik, bei der das Pro-

gramm durch Zeit- und Wertestellknöpfe oder Steckverbindungen einge-

stellt und zum Teil sogar in auswechselbaren Sichtscheiben angezeigt

wurde:„[...]der Arbeiter wird durch den Programmregler bei der Arbeits-

abwicklung unterstützt,so dass er seine Aufmerksamkeit anderen wichti-

geren Dingen zuwenden kann. Der Programmregler besitzt eine den

Arbeitsschritten entsprechende Anzahl von Sichtscheiben, die nachein-

ander, entsprechend den vorher gewählten Zeitabschnitten aufleuchten

[...] Durch Auswechslung der Sichtscheibe und Neueinstellung der Zeit-

stellknöpfe lässt sich der Programmregler leicht auf eine andere Arbeits-

folge umstellen“. Für Werkzeugmaschinen waren noch komplexere

Programmregler vorgesehen, die neben der Zeit und den Arbeitsschrit-

ten auch noch die Geschwindigkeit und die Werkzeugwahl steuerten

(Schmid 1941, S. 69). Kompliziertere Steuerungsabläufe wurden entwe-

der wie im Fall von Stromerzeugungs- oder -verteilungsanlagen über

motorisch angetriebene „Steuerwalzen“ oder wie beim Satz und Druck

nach dem Vorbild der Jacquard-Webstühle durch Lochkarten gesteuert:

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 49

Algorithmik – Kunst – Semiotik50

„Der Lochkarte wird die Denk- und Willensfunktion des Menschen

unmittelbar übertragen.Die Anordnung der Löcher bezeichnet die Sym-

bole für die Betätigungsvorgänge der Maschine“ (Meiners 1936, S. 86 ff.;

Strauch 1937, S. 476). Für die Planung und Erstellung der Schalt- bzw.

Steueranordnung entstand bei der AEG Mitte der 30er Jahre bereits das

Modellierungsinstrument des „Schaltfolgendiagramms“, das die einzel-

nen Schaltschritte mit den jeweiligen Verriegelungs- und Schaltbedin-

gungen in „Relaissymbolik“ graphisch darstellte. Es war so einfach und

nah am Produktionswissen des Anlagenpersonals,dass es noch Ende der

60er Jahre vom Erfinder der Speicherprogrammierbaren Steuerung (SPS)

Richard Morley als Vorbild für die SPS-Programmiermethode des „Kon-

taktplans“ („ladder diagram“) gewählt wurde (Meiners 1936, S. 35 ff.;

Scharf 1989, S. 9; Kröck 1991).

Die Idee des „program control“ entstand bereits Jahrzehnte

zuvor in den USA,spätestens 1920/22. In diesen Jahren entwickelte näm-

lich der Werkzeugmaschinen- und Automatisierungsexperte Adolph

Lodewyk De Leeuw (geb.1861),Consulting Editor am „American Machi-

nist“, ein seinerzeit Aufsehen erregendes, später aber wieder in Verges-

senheit geratenes Konzept für die automatische Steuerung von Maschi-

nen. Nach einer ersten Ideenskizze in der Zeitschrift „Industrial

Management“ im Juni 1920 gab er 1922 in einer auch als Buch erschie-

nenen Artikelserie im „American Machinist“ einen Gesamtüberblick über

die „Methods of Machine Tool Design“ und die Zukunftsaussichten von

„automatic machines“ speziell für die Kleinserienfertigung. Um das

Auslastungsproblem besonders von Werkzeugmaschinen zu lösen, ent-

warf er ein „system of control of automatic functions of machine ele-

ments“, in dem alle „automatic machining operations“ der sich abwech-

selnden Bohr-, Dreh-, Schraubwerkzeuge usw. zu einer Art

Bearbeitungszentrum integriert waren. Die einzelnen Bearbeitungsgän-

ge waren nicht direkt verkettet, sie wurden vielmehr nach einem zuvor

festgelegten Plan aufgerufen und stoppten nach dem Bearbeitungszyklus

von selber,um dem nächsten „predetermined cycle“ das Feld zu überlassen.

Die Steuerung erfolgt dabei durch ein „auxiliary mecha-

nism.[...] which we will call the ›program‹“, nämlich „an endless chain

which is advanced one link every time a cycle comes to an end“ (De Leeuw

1922a,S.641,meine Hervorhebung).Diese „program mechanism“ genann-

te Vorrichtung sollte im halbautomatischen Betrieb dem „operator“ durch

einen Buchstaben-Code den nächsten Arbeitsschritt anzeigen und im

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 50

51

vollautomatischen Betrieb alle „instructions“ [sic!] als Kette von Schalt-

folgen abwickeln. Mit diesem „program mechanism“ löste sich die kon-

zipierte Maschinensteuerung von den üblichen Kopierautomaten und

Fühlersteuerungen, die noch analoge Einzweckautomaten waren, es ent-

stand bereits die Idee einer codebasierten Mehrzwecksteuerung für unter-

schiedlichste Maschinen und Prozessfolgen.Dabei war ihm bewusst,dass

es sich um eine ganz neuartige Maschine handelte:„I would call this style

a ›program machine‹“ (ebenda). Das auslösende Moment für den Wech-

sel vom mechanisch fixierten Programmablauf zur programmierbaren

Code- bzw. Lochstreifensteuerung bildete eine Metapher. So heißt es bei

De Leeuw: „Instead of a chain, a perforated roll of paper might be used,

very much like the music rolls for a player piano“ (ebenda, S. 642). Ob

De Leeuw damit direkt an die automatologischen Visionen von Torres

anknüpft oder ob er selber eine metaphorische Verbindung zu traditio-

nellen Automatensteuerungen herstellt, bedarf noch weiterer Recher-

chen.Auf jeden Fall sind die Parallelen sehr auffällig,und es könnte durch-

aus sein, dass ihn gerade Torres’ Hinweis auf die „automatisation“

industrieller Maschinen im „Bulletin de la Societé d’Encouragement pour

l’Industrie Nationale“ von 1920 dazu veranlasst hat, dessen Überlegun-

gen weiterzuführen.Etwa,wenn er für die komplizierten Verknüpfungen

einer ganzen Reihe von Werkzeugen mit einfachen,parallelen und wieder-

holten Bearbeitungszyklen eine Art Assemblersprache entwickelte, so

dass es bei ihm bereits drei verschiedene Notationen gab: einzelne Buch-

staben oder ganze Worte bei der Programmplanung und für die Anzei-

gen sowie Lochmuster für die Maschine. Allerdings hatte er wohl noch

keine Symbol- und Formelsprache im Sinn,wie sie Franz Reuleaux schon

1875 für Getriebeelemente entwickelt und für eine codebasierte Maschi-

nenkonstruktion konzipiert hatte (Reuleaux 1875, S. 243 ff.).

Mit dem Programm- und Befehlsbegriff und der Codesteue-

rung ging De Leeuws „program machine“ von 1920-22 über die bekann-

ten programmgesteuerten Maschinenkomplexe der 20er bis 30er Jahre

hinaus. Denn während diese die Verknüpfung direkt in Lochstreifen,

Lochkartenstapeln, Stecktafeln oder in der Verdrahtung fixierten, dach-

te er bereits an ein flexibles Arrangement von Abläufen, bei dem allein

über Umcodierung neue Programme generiert und variiert werden konn-

ten. Für diesen neuen Aktionsraum der Kombination und Variation von

„instructions“ jenseits der reinen Lochstreifen-Codierung benötigte De

Leeuw einen Begriff, und er fand ihn im Ensemble von Musikprogramm

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 51

Algorithmik – Kunst – Semiotik52

und Lochbandsteuerung bei den automatischen Klavieren. Es hat den

Anschein, dass die Metapher der Lochband-gesteuerten automatischen

Klaviere nicht nur wie seinerzeit die Jacquard-Steuerung für Babbage die

Konstruktionsidee geleitet, sondern auch den Anstoß für die Verwen-

dung des Programmbegriffs geliefert hat. Jedenfalls leitet sich der infor-

mationstechnische Programmbegriff damit ursprünglich nicht aus dem

Radioprogramm ab, wie man meist annimmt, sondern aus der Welt der

Musikautomaten. Mit der Einführung der Begriffe „program“ und

„instruction“ war konzeptionell im Bereich der Maschinensteuerungen

die Trennung des Programms von seinen materiellen Trägern und den

manuellen Verknüpfungen eingeleitet.Über diese Metaphern entwickelte

sich in den 20er bis 30er Jahren die steuerungs- und regelungstechnische

Konstruktionstradition des „program control“.Ihr Leitbild war nicht mehr

die virtuose Handhabung der physikalischen Verknüpfungen wie bei den

Vertretern des „manuellen Programmierens“ (vgl.Hellige 1998),sondern

eine auf Automatisierung zielende Zusammenführung der Program-

mierschritte in „program devices“.

3.2 Das Programmkonzept bei verketteten Lochkartenmaschinen:
Das “setup” mit “automatic plugboards” bei Wallace Eckert

In den späten 20er und vor allem in den 30er Jahren erscheint das Kon-

zept einer zentralen Programmier- und Kontrollschnittstelle auch im

Bereich der Lochkartenmaschinentechnik sowie bei Rechen- und

Buchungsmaschinen. Die Schalt- bzw. Stecktafel wurde zwar schon 1895

von Otto Schäffler als „logischer Vermittlungsschrank“ auf der Basis der

Metapher des Telefon-Plugboards erfunden und war ab 1905 auch

Bestandteil von Hollerith-Maschinen (Zemanek 1988, S. 21). Doch erst

mit der Verkettung unterschiedlicher Lochkartengeräte zu Maschinen-

komplexen entwickelte sie ihre ganze Funktionsbreite.Aus den ursprüng-

lich nur für Zähl- und Sortierzwecke geschaffenen Lochkartenmaschi-

nen entstanden so multifunktionale Rechen- und Informations-

verarbeitungsmaschinen. Durch die Einführung des „removable“ bzw.

„automatic plugboard“ in der IBM 601 von 1934 wurde sogar die Speiche-

rung,Auswechslung und Weitergabe der Steck’programme’möglich (vgl.

Hellige 1998, S. 191 f.).

Bahnbrechend war hierbei besonders Wallace J. Eckert, der ab

1933/34 für astronomische Berechnungen verschiedene Lochkartenma-

schinen zu einem Maschinenkomplex verkoppelte.Sein Ziel war ein mög-

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 52

53

lichst vollautomatischer Ablauf komplizierter wissenschaftlicher Berech-

nungen,um den Menschen als Fehlerquelle auszuschalten:„For this work

it must be possible to change quickly from one complicated setup to anot-

her. The calculation control switch controls the operation of the multi-

plier, tabulator, and summary punch so that a cycle of different arithme-

tical operations can be performed in rapid succession“ (W. Eckert 1940,

S.22,meine Hervorhebung).Das Plugboard des „calculation control switch“

war über „rotating cams“ und „multicontact relays“ mit den jeweiligen

Speziallochkartenmaschinen verbunden, wodurch die Verdrahtung der

Plugboards effizient variiert werden konnte (ebenda, S. 76 f.). Die Gestalt

und die Bedienung der jeweils aus mehreren Lochscheiben gebildeten

Steuerwalzen folgte dabei der Metapher traditioneller Musikautomaten:

„A series of about twenty of these disks are attached to a common shaft

to form a sort of player piano roll“ (ebenda, S. 77).

Zur Genese des informatischen Programmbegriffs

Programmierschnittstelle

für Wallace Eckerts

verkettete

Lochkartenmaschinen

(1940, S. 14)

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 53

Algorithmik – Kunst – Semiotik54

Wallace Eckert ging mit dieser äußersten Ausreizung der Mög-

lichkeiten der Lochkartentechnik einen großen Schritt in Richtung eines

frei programmierbaren Rechners (Kistermann 2000). Doch im Unter-

schied zu De Leeuw gelangte er trotz ähnlicher Metaphern und ‚Hard-

ware-/Software‘-Arrangements nicht zu einem von den physikalischen

Medien unabhängigen Programmbegriff. Er blieb in seiner Begrifflich-

keit vielmehr noch weitgehend der alten Lochkartenwelt verhaftet. Über

die darin üblichen Bezeichnungen „plugging“, „wiring“, „setup“ und

„arrangement“ hinaus findet sich bei ihm vor 1948 kein abstrahierender

Programmbegriff. Nur an einer Stelle seines Hauptwerkes von 1940, das

seine Arbeiten der 30er Jahre zusammenfasst, heißt es: „The planning of

an extensive program thus requires a careful analysis of many factors in

the light of all available data and experience“ (W.Eckert 1940,S.25,meine

Hervorhebung). Doch scheint vom Kontext her hier mit „program“ eher

ein Forschungsprogramm gemeint zu sein.1 Auch die in der Literatur

(Beniger 1986, S. 401; Weinhart 1990, S. 148) genannte Bezeichnung

„mechanical programmer“ für den „calculation control switch“ ist wohl

eher eine nachträgliche Begriffsschöpfung, jedenfalls taucht sie in den

Eckert-Schriften vor 1945 nicht auf.Gleichwohl gingen von diesem Kon-

zept der Plugboard-Programmierung wichtige Impulse auf die ENIAC-

Entwicklung aus.

3.3 Weiterwirken des “program control” Leitbildes bei John P. Eckert und John
Mauchly: Automatisierung durch Integration der Programmierschritte in
“program devices”

Auch beim ENIAC handelte es sich,wie gesagt,um eine aufgabenspezifisch

verbindungsprogrammierte Maschinenverkettung, deren einzelne

Arbeitsschritte mit Hilfe von „program devices“ konfiguriert und gesteu-

ert wurden. Aus der Bindung an die professionelle Kultur des „program

control“ erklärt sich auch das auffällig kontroll- und automatisierungs-

technische Verständnis des Programmierens bei den beiden aus der Elek-

trotechnik kommenden Chefdesignern John Mauchly und John Presper

Eckert. In den ENIAC-Proposals und -Berichten von 1942-44 erscheint

der Programmbegriff nämlich fast auschließlich in Verbindung mit „devi-

ces“,„circuits“,„pulses“ oder „switches“, die durch eine „program control

unit“ eingestellt und gesteuert werden. So heißt es etwa zur ENIAC-Pro-

grammsteuerung im Proposal vom April 1943: „A unit which contains

the necessary control units for initiating the various steps of the calcula-

1) “Program” ist auch im

ausführlichen Register aller

technischen Fachbegriffe

des Eckert-Bandes nicht

enthalten und kommt im

Text auch sonst nur in

Verbindung mit

Forschungsprogrammen vor

(ebenda, S. 79 ff.).

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 54

55

tion in their proper order. The program control unit can be equipped, if

desired, with a punch-card program selector to facilitate rapid set-up of

different problems“ (Mauchly,Eckert,Brainerd 1943,zit.nach Burks 1980,

S. 335 f.). Auch in den Berichten, Memoranden und Vorträgen der Jahre

1946/47, so in dem von Adele Goldstine verfassten ENIAC-Report vom

1. Juni 1946, der ersten öffentlichen Darstellung der Anlage durch beide

Goldstines im gleichen Jahr,den Moore-Lectures von Eckert und Mauch-

ly sowie in Mauchlys Skizze der EDVAC-Programmierung von 1947

bezieht sich der Programmbegriff fast nur auf die Hardware-gebundene

Programmabwicklung, während die Programmiertätigkeiten mit „plan-

ning“ und „preparation of problems“ bezeichnet werden.Selbst hinter dem

„master programmer“,der auf Vorschlag der Von-Neumann-Gruppe 1944

zu der bis dahin dezentralen Kontrollstruktur hinzukam, verbirgt sich

nicht etwa der Chefprogrammierer, sondern ein „central control switch-

board“,an dem durch Steckverbindungen die lokalen „controls“ der Unter-

programme zu einem „single program“ sequenziert wurden:„We propo-

se a centralized programming device in which the program routine is

stored in coded form.‘The’ crucial advantage of central programming is

that any routine,however complex,can be carried out whereas in the pre-

sent ENIAC we are limited“ (Brief von H. H. Goldstine an J. von Neu-

mann vom 2.9.1944, zit. nach Macrae 1992, S. 284; A. Goldstine 1946).

Der ENIAC-“Master-Pro-

grammer”, Panel 2

(www.kondo3d.com/eniac

/ DSCF2453.jpg)

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 55

Algorithmik – Kunst – Semiotik56

Mit dem Begriff „program routine“ deutet sich zwar die Los-

lösung des abstrakt-logischen Programms von der Hardware an, doch in

der überwiegenden Zahl der Belege, vor allem bei Eckert und Mauchly

selber,fielen „program“ und „programming“ noch immer mit der Gesamt-

heit der Kontrollgeräte und technischen Steuerungsprozesse zusammen.

Die Bindung an das steuerungs- und regelungstechnische bzw.

automatologische Programmierkonzept erhielt bei den ENIAC-Entwik-

klern eine folgenreiche kognitive Lenkungsfunktion. Sie bewirkte, dass

sie die Komplexität der Programmierung unterschätzten und von einer

schnellen Automatisierung der Programmierprozesse ausgingen. Bereits

1944 formulierte Eckert in dem berühmten Memorandum „Disclosure

of Magnetic Calculating Machines“ (Kopie 1.2.1945; Ms. 29.1.1944), das

die wohl früheste Formulierung des ‚Programmspeicher‘-Konzepts ent-

hält, auch das Leitziel des „automatic programming“: Wenn „discs“ oder

„drums“ und „multiple shaft systems“ zur Anwendung kämen, „a great

increase in the available facilities and for allowing automatic program-

ming of the facilities and processes involved may be made, since longer

time scales are provided. This greatly extends the usefulness and attrac-

tiveness of such a machine. This programming may be of the tempora-

ry type set up on alloy discs or of the permanent type on etched discs“

(Eckert 1944, meine Hervorhebung).

Bei den Moore-Lectures propagierte auch Mauchly eine mög-

lichst weitgehende Automatisierung der verschiedenen „steps“ von der

„preparation of problems“ bis zu „set up“ und „operation“,um so die „costs

of computing“ zu senken: „If these steps can be systematized and redu-

ced to more or less routine operations, there is hope of performing them

automatically“ (Mauchly 1946, S. 33 f.). „Automatic programming” im

umfassenderen Sinne einer automatischen Programm-Generierung2 ent-

wickelte sich sehr bald zu einem Schlagwort und Leitbild, das die Com-

puter Community lange Zeit fehlleitete, weil es die Komplexität der Pro-

grammierung vergessen ließ. Es ist daher kein Zufall, dass die

unterschiedlichen logischen und arbeitsorganisatorischen Prozesse der

Programmerstellung nicht im Umfeld der professionellen Kultur des

„program control“, der „Automatologie“ und der in ihrer Tradition ste-

henden ENIAC-Entwickler herausgearbeitet wurden,sondern von Mathe-

matikern wie John von Neumann und Alan Turing, die sowohl praktisch

wie theoretisch in die Rechner- und Programmkonstruktion involviert

waren.

2) Die von Elbourn und

Ware lebhaft beklagte

ständige Verwechslung bzw.

Gleichsetzung von

“automatic coding” und

“automatic programming”

(1962, S. 1059 f.) war ein

Kennzeichen dieser

Fehleinschätzung.

Zu den unterschiedlichen

Konzepten des “automatic

programming” siehe

Sammet 1969, S. 4, 13.

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 56

57

4 Die Genese komplexer informatischer Programmbegriffe in der
professionellen Kultur der Mathematik und der frühen Theorie
des Computing

4.1 ‚Programmieren’ als konstruktives Planen und Problemlösen
in der “Von-Neumann-Gruppe”

John v. Neumann entwickelte mit Hermann H. Goldstine und Arthur

Burks zusammen 1945-48 ein Sechsstufenmodell der Programmiervor-

gänge,wobei klar zwischen den nicht automatisierbaren konzeptionellen,

konstruktiven und dynamisch-analytischen Aufgaben einerseits und eher

routinisierbaren statischen Codierungsprozessen andererseits unter-

schieden wurde (Aspray 1990, S.70). Mit Blick auf die Mannigfaltigkeit

der Programmiertätigkeiten verzichtete von Neumann, der ansonsten

mit einer ganzen Reihe von Analogiebildungen aus Natur-und Technik-

wissenschaften experimentierte,hier auf eine technische,biologische oder

anthropomorphe Leitmetapher. Zwar wird der Code-Begriff, der teils

für das Gesamtresultat der Programmerstellung, teils auch für deren

Umsetzung in Maschinencode steht, in der „Preliminary Discussion“ gele-

gentlich mit der Sprach- und Übersetzungsmetapher belegt: „[...] pro-

blems can be coded, i. e. prepared in the language the machine can

understand [...] a unit which can understand these instructions and order

their execution.“3 Doch 1947 wandten er und Goldstine sich deutlich

gegen die Vorstellung einer bloßen Übersetzung. Die Annahme, Coding

bedeute „Translating a meaningful text [...] from one language (the lang-

uage of mathematics, in which the planner will have conceived the pro-

blem) into another language (that one of our code)“ sei falsch:„Thus the

relation of the coded instruction sequence to the mathematically con-

ceived procedure of (numerical) solution is not a statical one, that of a

translation, but highly dynamical [...] Since coding is not a static process

of translation, but rather the technique of providing a dynamic bak-

kground to control the automatic evolution of a meaning, it has to be

viewed as a logical problem and one that represents a new branch of for-

mal logics“ (Goldstine, von Neumann 1947, S. 82 f.). So wird in diesen

Schlüsseltexten zwar die Sprachmetapher für die Programmierung ein-

geführt, doch bei der ausführlichen Behandlung der einzelnen Prozesse

wieder explizit zurückgenommen.4

Es findet sich nicht einmal ein einheitlicher Begriff für die

Gesamtheit der Programmiervorgänge, ja von Neumann weigerte sich

4) Forschungsansätzen,

die auf Anthropo-

morphismen und Mensch-

Maschine-Hybride in der

Von-Neumann-Gruppe

fixiert sind, entgeht dieser

insgesamt sehr vorsichtige

Umgang mit derartigen

Metaphern

(vgl. Eulenhöfer 1998 und

Stach 1998).

3) Burks, Goldstine, von

Neumann 1946, S. 34 f.;

siehe auch Goldstine,

von Neumann 1946,

S 30 :"translate the pro-

blem (once it is logically

reformulated and made

explicite in all its details)

into the code."

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 57

Algorithmik – Kunst – Semiotik58

beharrlich in allen von ihm allein verfassten Texten, mit dem Pro-

grammbegriff zu arbeiten, und zwar auch noch nach 1948, als in der

Community die Bezeichnung „von Neumann’s programming method“

aufkam (Clippinger 1948). Aber auch in gemeinsamen Berichten mit

Burks und Goldstine sind „Planning“ und „Coding“ die Leitbegriffe,wäh-

rend „Programming“ nur selten erscheint.5 Und wenn, dann auch nur

in der partiellen Bedeutung der Bildung von Funktionen aus im Rech-

ner gespeicherten Subroutinen für Addier-, Gleitkomma- und derglei-

chen Operationen.6 Mit den Stufen Planung und logische Problemlösung

als übergeordneten Tätigkeiten und der Formulierung des Codes als

ausführende Detailarbeit wird die hierarchische Arbeitsteilung als Hinter-

grundperspektive erkennbar, die selber wiederum in eine Gesamtsicht

der am Computing beteiligten Akteursgruppen eingebettet ist. Und

diese implizite soziale Metaphorik ließ sich offenbar mit dem damals

noch stark kontrolltechnischen Verständnis des Programmbegriffs

nicht vereinbaren.

Von Neumanns Planungsbegriff für Programmierungsaufga-

ben korrespondiert auffällig mit seinem Organisationsbegriff für das

Rechnerdesign. Diesen hatte er zusätzlich zu seinem Organmodell der

Rechnerstrukturen und dem Neuronenmodell der dynamischen Rechen-

prozesse in die frühe ‚Architectural Community‘ eingebracht (vgl. Hel-

lige 2003, S. 418 ff.). So wie er mit dem Organisationsbegriff auf die

Bewältigung von Ziel- und Designkonflikten sowie auf Ressourcen- und

Dimensionierungsprobleme in der Computerkonstruktion aufmerksam

machen wollte,so sollte wohl auch der Planungsbegriff auf die Aufgaben-

komplexität und Vielfalt des Tätigkeitsspektrums hinweisen.Soziale Meta-

phorik und Multiperspektivität erklären sich so nicht zuletzt aus von

Neumanns dezidierter „Stakeholder-Sicht“ des Computing, die man bis-

her weitgehend übersehen hat: Er betrachtete nämlich die Bauprinzipien

von „computing machines“ sowohl aus dem Blickwinkel der konstruie-

renden Ingenieure,der Algorithmen entwerfenden Mathematiker als auch

der „user“ – bei ihm gab es 1946 bereits die Redewendung „the user des-

ires“ (Goldstine, von Neumann 1946, S. 22). Die „user“ fasste er ideal-

typisch unter der Bezeichnung „logician“ zusammen:„a hypothetical per-

son or group of persons really fitted to plan scientific tools“ (ebenda, S. 1).

Obwohl durch und durch Mathematiker,reflektierte von Neu-

mann Computer- und Programmstrukturen als komplexes, zielkonflikt-

behaftetes Konstruktionsproblem, für das ihm die Planungs- und

5) Siehe hierzu die Schriften

über Computerdesign und

Automatentheorie in: von

Neumann 1963, bes. Burks,

Goldstine, von Neumann

1946; Goldstine, von Neu-

mann 1947-48; vgl. allge-

mein Goldstine 1972 und

Aspray 1990

6) So heißt es in der

“Preliminary discussion”:

“these operations can be

programmed by means of

others.”; “programming it

out of operations built into

the computer”; “programm-

ed as subroutines out of

orders already incorporated

in the machine” (Burks,

Goldstine, von Neumann

1946, S. 70, 74, 77).

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 58

59

Organisationsmetapher adäquater erschien. Eine sehr ähnliche Design-

Auffassung veranlasste um 1960 Frederick Brooks, den Computer Engi-

neering-Begriff durch die Architekturmetapher zu ersetzen (Hellige 2003,

S. 436 ff.). Mit Organisation, Planung und Architektur hat die Informatik

reflexiv-soziomorphe Metaphern ins Spiel gebracht, die sowohl auf die

Arbeitsprozesse der Konstruktion, die Stakeholder-bezogene Zielkon-

fliktstruktur und die daraus resultierende Design-Komplexität dieser

technischen Gebilde verweisen. Der Wechsel zu sozialen Metaphern, die

nicht wie später die „Hierarchien“, „Pyramiden“ und „Fabriken“ vorab

bestimmte soziale Strukturen festschreiben wollen,signalisiert hier,zumin-

dest in der Entstehungsphase der Metaphern, ein Sicheinlassen auf die

technisch-soziale Komplexität konstruktiver Prozesse,die bei den anfäng-

lich dominierenden technischen und naturwissenschaftlichen Metaphern

noch ausgeblendet war.

4.2 Programmieren als Überbrücken von Sprachdifferenzen zwischen Mensch
und Maschine bei Turing

Ein Übergang von technisch-naturwissenschaftlichen zu sozialen Meta-

phern findet sich auch bei Alan Turing. Durch seinen Einstieg in die

Debatte über theoretische Fragen der Berechenbarkeit und der Struktu-

ren „universaler Maschinen“ hatte er bereits 1945/46 die Programmie-

rung im Spannungsfeld zwischen menschlicher und maschineller Intelli-

genz angesiedelt und als ein Problem der Sprachdifferenz gedeutet. Die

bei von Neumann nur angedeutete und später zurückgenommene Sprach-

metapher wird bei Turing Grundlage des Verständnisses des Program-

mierens. Die Lücke zwischen der symbolischen Sprache der Maschinen

und der Alltagssprache des Menschen ist für ihn wesentlich ein Kom-

munikationsproblem: „It should be possible to describe to the operator

in ordinary language within the space of an ordinary novel.These instruc-

tions will be not quite the same as the instructions which are normally

given to a computer, and which give him credit for intelligence“ (Turing

1946, S. 39). Das Nebeneinander verschiedener Notationen und „lang-

uages“ war nur über eine Kette von „translations“ und exakte Sprachen

zu überwinden: „The language in which one communicates with these

machines, i.e. the language of instruction tables, form a sort of symbo-

lic logic. The machine interprets whatever it is told in a quite definite

manner without any sense of humor or sense of proportion [...]“ (Turing

1947, S. 122). Turing entwarf daher bereits in seinem “Proposal” unter-

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 59

Algorithmik – Kunst – Semiotik60

schiedliche Sprachebenen für die „instruction tables“,mit denen die „jobs“

[sic!] abgearbeitet werden: die „machine form“,d.h.der Maschinen-Code,

die „permanent form“, die Lochkarten-Notation und die „popular form“,

eine symbolische Sprache,„which can easily be read“. Die in verschiede-

ner Form gesammelten Programme sollten nach klassischer Manier in

„a sort of library“ aufbewahrt und geordnet werden7 (Turing 1946, S. 70

ff., bes. 74).

Über die Sprach- und Übersetzungsmetapher erschloss sich auch ihm die

ganze Vielfalt und Komplexität der ‚Kommunikationsprozesse‘ mit dem

Rechner. Doch im Gegensatz zu von Neumann griff er 1947 den Pro-

grammbegriff der ENIAC-Gruppe auf.Er löste ihn jedoch von dem engen

Hardware- und Kontrolltechnik-Bezug und gab ihm aus seiner anthro-

pomorphen Perspektive die Bedeutung eines Bündels von Tätigkeiten

mit unterschiedlichen Intelligenzanforderungen und Sprachvermögen.

Die Prozesse der Programmerstellung und -durchführung sah er dabei

bereits wie lange zuvor schon Babbage und eher implizit John von Neu-

mann als ein hierarchisch strukturiertes System der Arbeitsteilung. An

der Spitze stand als „master“ der „programmer“,unter dem er nicht mehr

ein „device“ verstand, sondern den ‚human programmer’. So kehrte die

“Popular form” einer

Instruktionstabelle in

Turings “Proposal” von

1945 (1946, S. 75)

7) Die “Library”-Metapher

gibt es aber schon in der

Zeit der Jacquard-

Maschinen und bei

Babbage.

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 60

61

Metapher zum programmierenden Subjekt zurück und löste sich damit

auf. Durch seine zugleich personale und soziale Sicht der Programmie-

rung wurde Turing offenbar der Schöpfer des Begriffs „Programmierer“

im Computerbereich. Unter dem „programmer“ sorgten die „librarians“

für die Ordnung und Pflege der Programme,Routinen und Subroutinen,

die „girls“ erfassten die Werte und Daten und die „servants“ fütterten den

Rechner mit Lochkarten.Das Rechenzentrum wurde so nahezu ein Abbild

der akademischen Arbeitsteilung mit Bibliothek, Sekretariat und Hilfs-

kräften. Den weniger Qualifizierten drohte er bereits mit der baldigen

Verdrängung durch Fortschritte der Computertechnik. Die Maschinen

waren zwar in dem hierarchisch organisierten Intelligenzverbund die

‘Sklaven’: „It is also true that the intention in constructing these machi-

nes in the first instance is to treat them as slaves, giving them only those

jobs which have been thought out in detail“ (Turing 1947, S. 122). Doch

sie waren auch gelehrige Schüler („pupils“),die von ihren „masters“ lern-

ten, wenn man ihnen nur genügend Speicherplatz und Entfaltungsspiel-

raum gewährte. Wörtlich heißt es in der berühmten Passage: „What we

want is a machine that can learn from experience. The possibility of let-

ting the machine alter its own instructions provide the mechanism for

this, but this of course does not get us very far“ (ebenda, S. 123).

Turings Überlegungen von 1945 über die Sprachdifferenzen

zwischen Mensch und Maschine mündeten so zwei Jahre später in der

„idea of a machine with intelligence“, die selber im System der Arbeits-

teilung als Konkurrent auftrat.Es ist auffällig,dass George Stibitz zur glei-

chen Zeit in ähnlicher Weise die Vorgänge in einem Rechner als hierar-

chische Kette kooperierender Schichten darstellte,als eine „series of levels

of intelligence“ (Stibitz 1948, S. 96 ff.; vgl. Hellige 2003, S. 423 ff.). Auch

hier kündigte sich bereits der Übergang von den stärker technischen und

naturwissenschaftlichen Metaphern und Modellvorstellungen der

Anfangszeit zu soziomorphen Analogien und Modellierungen der ent-

wickelten Computer- und Programmiertechnik an. Doch die eigentliche

Zeit der Hierarchie-,Pyramiden- und Schichtenmodelle,der Produktions-

linien und Fabriken kam erst mit den 60er und 70er Jahren.

Mithilfe der Sprach- und Übersetzungsmetapher hatte sich

Turing die Verschiedenheit des menschlichen und maschinellen Sprach-

baus (Pflüger 1993) erschlossen und von daher die sozialen Arbeitspro-

zesse der Programmierung in den Blick bekommen.Er befreite damit die

Begriffe „program“ und „programmer“ von der Hardware-Fixierung in

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:34 Seite 61

Algorithmik – Kunst – Semiotik62

der professionellen Kultur des „program control“. Er entwickelte schon

1945,d.h.noch vor der von-Neumann-Gruppe,wohl als erster ein Sprach-

konzept der Programmierung, allerdings noch ohne den Begriff der

Programmiersprache. Dessen erstes Erscheinen ist wie das der Begriffe

Betriebssystem und Software noch immer nicht ermittelt. Mit dem Leit-

bild der „intelligenten Maschine“ überfrachtete Turing zugleich das erwei-

terte Programmverständnis mit anthropomorphen Ansprüchen, die die

Technik auf absehbare Zeit nicht einlösen konnte. So setzte Turing dem

unterkomplexen kontrolltechnischen Programmverständnis ein hyper-

komplexes entgegen, das sich am Ende ebenfalls als eine fehlleitende

Simplifikation erweisen sollte.

5 Die Anfänge von Rationalisierungsmetaphern in der
Programmierung und das Problem von metaphorischen
Prozessen mit unreflektierter Leitbildfunktion

John von Neumann und Goldstine haben beiden Tendenzen widerstan-

den, dem Glauben an eine schnelle Realisierung des „automatic pro-

gramming“,wie an eine baldige Überwindung der Sprachdifferenzen zwi-

schen Mensch und Maschine.Sie bewahrten sich aus ihrer gleichermaßen

theoretisch-mathematischen und nutzerbezogenen Problemsicht den

Blick für die Verschiedenheit der Prozesse als auch für den dynamisch-

konstruktiven Charakter des Programmierens. Dieses war für sie gerade

nicht „a mere question of translation (of a mathematical text into a code)

but rather a question of providing a control scheme for a highly dyna-

mical process,all parts of which may undergo repeated and relevant chan-

ges in the course of this process“ (Goldstine, von Neumann 1947, S. 84).

Das adäquate Modellierungsinstrument für diesen dynami-

schen Ablauf der Berechnung und die Verschachtelung der Programm-

teile war für die von-Neumann-Gruppe seit Sommer 1946 das graphi-

sche „Flussdiagramm“,das als „Ablaufschema“ oder „Strukturdiagramm“

traditionell in den Ingenieurwissenschaften zur Darstellung von kom-

plexen Anlagenstrukturen sowie von Stoff- und Energieflüssen verwen-

det wurde (Goldstine 1972, S. 266 ff.; Knuth, Pardo 1980, S. 208 ff.). Diese

„flow diagrams“ wurden erst im Laufe der 50er und frühen 60er Jahre

von den „flow charts“ abgelöst, die sich im Namen und in der Symbolik

an die Flowcharts der beiden Gilbreth anlehnten. Die Flowcharts dien-

ten im Computing ursprünglich nur zur Veranschaulichung von Arbeits-

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 62

63

und Informationsflüssen, doch wurde diese Darstellungsform auch bald

auf Programmabläufe übertragen, so dass sich am Ende die Unterschie-

de der Notationen verwischten (siehe die Klage darüber bei Chapin 1962,

S. 97). Dieser Wandel der Darstellungsmodelle steht aber bereits im

Zusammenhang mit dem breiten Einzug industrieller Metaphern und

Modellbildungen in diesem Zeitraum.Es ging jetzt nicht mehr vorrangig

um die Darstellung und Planung komplexer Strukturen,sondern um eine

Rationalisierung der Softwareproduktion.

Flowdiagram von

John von Neumann

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 63

Algorithmik – Kunst – Semiotik64

Dies wird nicht zuletzt daran deutlich, dass man auch für die Struk-

turierung des Software-Entwicklungsprozesses ab 1962/63 ebenfalls auf

tayloristische Rationalisierungsinstrumente wie das Gannt-Diagramm

zurückgriff.Daraus entwickelten sich später die Phasenmodelle des Soft-

ware Engineering,insbesondere das bekannte Wasserfallmodell von Barry

Boehm. Das Vorbild der industriellen Fertigungsmethoden für die Pro-

grammentwicklung wurde hier kaum mehr hinterfragt. Die Modell-

importe erhielten auf diese Weise eine weitgehend unreflektierte Leit-

bildfunktion. Nachdem aber erstmal das Bewusstsein verloren gegangen

war,dass es sich um konstruierteAnalogiebildungen mit begrenzter Reich-

weite handelt, konnte es leicht zu metaphorischen Zirkelschlüssen kom-

men. So bereits bei einer der frühesten Analogiebildungen von Pro-

grammierung und industrieller Fertigungsplanung,der bei Alwin Walther.

Walther, der in der Tradition verketteter Maschinensysteme

1942–44 mit Hilfe von steckbaren „Kopplungstafeln“ übliche elektro-

mechanische Rechenwerke, Tabulatoren bzw. Lochkartengeräte zu pro-

grammgesteuerten Rechenautomaten verband,interpretierte bereits 1946,

1952 und 1955 in Vorträgen den „Aufbau von Rechenautomaten“ als

Abbild und zugleich als Muster bzw. Kernstück der vollautomatischen

Fabrik. Die Kopplungstafel fungiert danach als „Befehls-Steuerwerk“,

das die „Einzelwerke“ steuert, bzw. als „Gehirn“, das „Arbeitsbefehle“ an

die Gliedmaßen und Muskeln gibt, d.h. die Addier- und Multiplizier-

werke (Walther 1956, S. 17; vgl. auch Eulenhöfer 1998, S. 260 f.). Letzte-

Process Charts der Gilbreth

als Vorbild der Flowcharts

(Barnes, S. 57)

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 64

65

re verglich er auch mit dem Fließband, während das „Kommandowerk“

das „Analogon zur Betriebsleitung“ darstelle (ebenda, S. 38). Auch das

noch so mühsame und langwierige Programmieren unterwarf er der

‚Fabrikordnung‘: Die einzelnen Prozesse und Phasen wurden exakt der

Fabrikationsplanung nachgebildet.

Dabei ließen die gleichzeitige Modellierung der Programm-

fertigung als Abbild der industriellen Fertigungsplanung und die Deklarie-

rung des Rechners und seiner Programmstruktur als Vorbild für die

Fabrikorganisation Ursprungs- und Zielbereich der Metaphernbildung

verschwimmen, und es kam zum metaphorischen Zirkelschluss. Wenn

aber die soziomorphe Modellierung von Technostrukturen und die

technomorphe Modellierung von Sozialstrukturen sich gegenseitig ver-

festigen, dann erhalten sie undurchschaubaren Ideologiecharakter, ein

Phänomen, das sich später bei den hierarchischen Pyramiden- und

Referenzmodellen bestätigen sollte (vgl. die Kritik bei Hammacher

1996, S. 88 ff.). Man sollte deshalb immer die Ambivalenz von Meta-

phern im Blick behalten: die Vorprägung durch Bestehendes und die

kreative Neuschöpfung.

Alwin Walthers industrielle

Programm-Metapher von

1956 (S. 41)

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 65

Algorithmik – Kunst – Semiotik66

6 Fazit: Aufgaben für die Metaphernforschung
in der Technikbewertung

Aus dem hermeneutischen Charakter von Übertragungsprozessen ergibt

sich, so meine These, eine veränderte Sicht der Rolle der Metaphernfor-

schung in der Technikbewertung. Metaphern sind weder bloße Geistes-

blitze, die man nur konstatieren, aber nicht beeinflussen kann. Sie sind

aber auch nicht der Angelpunkt der Erklärung und Bewertung von

Technikgeneseprozessen. Metaphern geben Auskunft über Vorver-

ständnisse, Absichten, Benutzerbilder usw., sagen aber wenig über die

systemische Problemstruktur und die Langzeitdynamik einer Technik

aus.

Eine mit historischen Vergleichen arbeitende hermeneuti-

sche Bewertung aktueller Techniken vermag zwar selbst keine direkte

Aussagen über falsche oder richtige Übertragungsvorgänge zu liefern.

Sie kann aber typische Problem- und Fehlerkonstellationen aufführen.

Dazu gehören:

• die Fixierung auf bestimmte Metaphern als Folge professioneller

Kulturen

• eine zu direkte Musterübertragung aus der alten in die neue Technik

• die mögliche Vererbung alter Probleme und impliziter Grenzen in die

neue Technik

• metaphorische Zirkelschlüsse mit unreflektierter Leitbildfunktion.

Da diese Problem- und Fehlerkonstellationen in der Informatik nicht sel-

ten auftreten und da aus inadäquaten Übertragungen oft folgenreiche

Irrwege entstehen können, hat eine historisch-vergleichende Meta-

phernforschung im Rahmen einer Technikhermeneutik wichtige Aufga-

ben zu leisten. Denn die Vorurteilstruktur des Verstehens ist nicht, wie

Gadamers Hermeneutik-Auffassung es nahelegt, unausweichlich, die

Reflexion kann vielmehr, wie Habermas es ihm entgegenhielt, das

„Medium der Überlieferung“ grundlegend wandeln: „Die transparent

gemachte Vorurteilsstruktur kann nicht mehr in der Art eines Vorurteils

fungieren. Die Kraft der Reflexion vermag den Anspruch der Tradition

auch abzuweisen“ (Habermas 1967, S. 175).

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 66

67

Literatur

Aspray, William (1990), John von Neumann, and the Origins of Modern Computing. Cam-

bridge, MA, London

Babbage, Charles (1837), On the Mathematical Powers of the Calculating Engine. In: Ran-

dell, Brian (ed.) (1973), 17–52

Barnes, Ralph M. (1958), Motion and Time Study. 4. Aufl., New York

Burks, Arthur W. (1980), From ENIAC to the Stored-Program Computer: Two Revolutions

in Computers. In: Metropolis, Nicholas C.; Howlett, Jack; Rota, Gian-Carlo (eds.), A

History of Computing in the Twentieth Century. A Collection of Essays, New York,

London, 311–344

Burks,Arthur W.; Goldstine,Herman H.; Neumann,John von (1946), Prelimininary Dis-

cussion of the Logical Design of an Electronic Computing Instrument, Part I, Volume 1.

Institute for Advanced Study Princeton, N. J. Juni 1946; 2.Aufl. 1947; nachgedruckt in:

Taub, Abraham H. (ed.), Complete Works of John von Neumann, 6 Bde.Oxford (UK),

New York 1961-63, Bd. 5, 34–79

Busch,Carsten (1998),Metaphern in der Informatik.Modellbildung,Formalisierung,Anwen-

dung. Wiesbaden

Ceruzzi, Paul E. (1998), A History of Modern Computing.Cambridge, MA

Chapin, Ned (1962), Einführung in die elektronische Datenverarbeitung. Wien, München

Clippinger, Richard F. (1948), A Logical Coding System Applied to the ENIAC (Electronic

Numerical Integrator and Computer). Ballistic Research Laboratories Report No. 673

Project No. TB3-0007 of the Research and Development Division, Ordnance Depart-

ment 29 September 1948 Aberdeen Proving Ground, Maryland; Internet:

http://ftp.arl.army.mil/~mike/comphist/48eniac-coding/

Coy, Wolfgang (1998), Hat das Internet ein Programm? Vortrag auf dem medienwissen-

schaftlichen Symposium der Universität Konstanz am 30.10.98, Internet:

http://waste.informatik.hu-berlin.de/Coy/Coy_Internet_11-98.html

De Leeuw, Adolph L. (1922), Methods of Machine Tool Design. American Machinist 57

(1922) Heft 17, Oktober 1922, S. 639-642 (Schlussabschnitt: ”The Program Machine

and Its Future possibilities”)

Eckert, John P. (1944), Disclosure of Magnetic Calculating Machine.29. Januar 1944, Kopie

1. Feb. 1945; gedruckt in: Lukoff, Herman From Dits to Bits: A Personal History of the

Electronic Computer, Portland, OR. 1979, 207–209

Eckert, John P. (1946), A Preview of a Digital Computing Machine, Lecture 10. In: Camp-

bell-Kelly,Martin;Williams,Michael R.(eds.),The Moore School Lectures.Theory and

Techniques for Design of Electronic Digital Computers (Charles Babbage Institute

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 67

Algorithmik – Kunst – Semiotik68

(Hrsg), Reprint Series for the History of Computing, Bd. 9), London, Los Angeles, San

Francisco 1985, 109–126

Eckert, John Presper; Mauchly, John W. (1945), Automatic High-Speed Computing: A Pro-

gress Report on the EDVAC. Report No. W-670-ORD-4926, Supplement No. 4, Moore

School Library, University of Pennsylvania, Philadelphia, 30. September 1945, Univer-

sity of Pennsylvania, Philadelphia 1946

Eckert, John Presper; Mauchly, John W.; Goldstine, Herman H.; Brainerd, John Grist

(1945), Description on the ENIAC. Moore School of Electrical Engineering, Universi-

ty of Pennsylvania, Philadelphia

Eckert,Wallace J. (1940), Punched Card Methods in Scientific Computation.Thomas J.Wat-

son Astronomical Computing Bureau, New York; wiedergedruckt in: Charles Babba-

ge Institute, Reprint Series for the History of Computing, Bd. 5, London, Los Angeles,

San Francisco 1984

Elbourn, R. D.; Ware, W. H. (1962), The Evolution of Concepts and Languages of Compu-

ting. Proceedings of the IRE 50, 1059–1062

Engel, F.V.A.; Oldenbourg, Rudolf C. (1944), Mittelbare Regler und Regelanlagen. Grund-

lagen, Aufbau und Anwendung. Berlin

Eulenhöfer, Peter (1998), Der Informatiker als ”deus ex mathematica”. In: Siefkes, Dirk;

Eulenhöfer,Peter; Stach,Heike; Städtler,Klaus (Hrsg.),Sozialgeschichte der Informatik.

Kulturelle Praktiken und Orientierungen, Wiesbaden, 257–273

Gilbreth, Frank B.; Gilbreth, Lilian M. (1921), Process Charts. Transactions of the ASME

43, Paper 1818, 1029–1050

Goldstine, Adele K. (1946), Report on the ENIAC (Electronic Numerical Integrator and

Computer),Technical Report 1. 2 Bde., Philadelphia 1. Juni 1946, Internet:

http://ftp.arl.army.mil/~mike/comphist/46eniac-report

Goldstine, Herman H. (1972), The Computer from Pascal to von Neumann. Princeton, N. J.

Goldstine, Herman H.; Goldstine, Adele (1946), The Electronic Numerical Integrator and

Computer (ENIAC). Mathematical Tables and other Aids to Computation 2 (1946)

Juli, 97-110; nachgedruckt in: Randell, Brian (ed.) (1973), 333-347

Goldstine, Herman H.; Neumann, John von (1946), On the Principles of Large Scale Com-

puting Machines (Ms. 1946). gedruckt in: Taub, Abraham H. (ed.), Complete Works of

John von Neumann, 6 Bde.Oxford (UK), New York 1961-63, Bd. 5, 1–34

Goldstine, Herman H.; Neumann, John von (1947/48), Planning and Coding of Problems

for an Electronic Computing Instrument, 3 Bde. Institute for Advanced Study, Prince-

ton 1947–1948; wiedergedruckt in: Taub, Abraham. H. (ed.), Complete Works of John

von Neumann,6 Bde.Oxford (UK),New York 1961-63,Bd.5,Part II,Volume 1: 80–151;

Volume 2: 152–214; Volume 3: 215–235; und in: Aspray, William; Burks, Arthur W.

(eds.), Papers of John von Neumann on Computing and Computing Theory, Cam-

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 68

69

bridge/Mass., London, Los Angeles, San Francisco 1987, Volume 1: 151–222; Volume

2: 223–285; Volume 3: 286–306

Grier, David A. (1996), The ENIAC, the Verb „to program“ and the Emergence of Digital

Computers. Annals of the History of Computing 18 (1), 51-55

Habermas, Jürgen (1967), Zur Logik der Sozialwissenschaften, in: Philosophische Rund-

schau, Beiheft 5, Tübingen

Hammacher, Bernd (1996), Referenzmodelle als Leitbilder der CIM-Gestaltung. In: Hellige,

Hans Dieter (Hrsg.), Technikleitbilder auf dem Prüfstand. Das Leitbild-Assessment

aus Sicht der Informatik- und Computergeschichte, Berlin, 71–95

Hellige, Hans Dieter (1993), Von der programmatischen zur empirischen Technikgenese-

forschung: Ein technikhistorisches Analyseinstrumentarium für die prospektive Technik-

bewertung. In: Technikgeschichte, Bd. 60, Nr. 3, 186–223

Hellige, Hans Dieter (1996a), Technikleitbilder als Analyse-, Bewertungs- und Steuerungs-

instrumente: Eine Bestandsaufnahme aus informatik- und computerhistorischer Sicht.

In: ders. (Hrsg.), Technikleitbilder auf dem Prüfstand. Das Leitbild-Assessment aus

Sicht der Informatik- und Computergeschichte, Berlin, 13–36

Hellige,Hans Dieter (1996b), Leitbilder im Time-Sharing-Lebenszyklus:Vom „Multi-Access

zur „Interactive On-line Community“. In: ders. (Hrsg.), Technikleitbilder auf dem Prüf-

stand. Das Leitbild-Assessment aus Sicht der Informatik- und Computergeschichte,

Berlin, 205–234

Hellige, Hans Dieter (1998), Der ‘begreifbare’ Rechner: Manuelles Programmieren in den

Anfängen des Human-Computer Interface. In: Rügge, Ingrid; Robben, Bernd; Hornek-

ker,Eva; Bruns,Willi (Hrsg.),Arbeiten und Begreifen: Neue Mensch-Maschine-Schnitt-

stellen, Münster, Hamburg, 187–200

Hellige, Hans Dieter (2003), Die Genese von Wissenschaftskonzepten der Computerarchi-

tektur: Vom “system of organs” zum Schichtenmodell des Designraums. In: ders. (Hrsg.),

Geschichten der Informatik.Visionen,Paradigmen und Leitmotive,Berlin,Heidelberg,

New York, 411–470

Hughes, Thomas P. (1991), Die Erfindung Amerikas. Der technologische Aufstieg der USA

seit 1870. Müchen

Kistermann, Friedrich W. (2000), The DEHOMAG D11 Tabulator - A Milestone in the

History of Data Processing. In: Rojas, Raúl; Hashagen, Ulf (eds.), The First Computers

- History and Architectures, Cambridge, MA, London, 221–235

Knuth, Donald E.; Pardo, Luis Trabb (1980), The Early Development of Programming

Languages,The Early Development of Programming Languages. In: Metropolis,Nicholas

C.; Howlett, Jack; Rota, Gian-Carlo (eds.), A History of Computing in the Twentieth

Century. A Collection of Essays. New York, London, 197–273

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 69

Algorithmik – Kunst – Semiotik70

Kröck, Alwin (1991), SPS ,der Schlüssel zur Automatisierung. Technische Rundschau, 47,

68–73

Ludgate, Percy E. (1909), On a Proposed Analytical Machine. Scientific Proceedings of the

Royal Dublin Society 12 No. 9, 77–91; nachgedruckt in: Randell, Brian (ed.) (1973),

71–85

Lynch, Richard K. (1993), On Analytical ‘Engines’, Data ‘Architectures’ and Software ‘Engi-

neers’: Metaphoric Aspects of the Development of Computer Terminology“. Ph.D. The-

sis, Columbia University Teachers College

Macrae, Norman(1992), John von Neumann. New York

Mambrey,Peter; Paetau,Michael; Tepper,August,(1995), Technikentwicklung durch Leit-

bilder. Neue Steuerungs- und Bewertungsinstrumente. Frankfurt a. M., New York

Mauchly, John W. (1942), The Use of High Speed Vacuum Tube Devices for Calculating.

nachgedruckt in: Randell, Brian (ed.) (1973), 329–332

Mauchly, John W. (1946), Digital and Analogy Computing Machines, Lecture 1. In: Cam-

pbell-Kelly, Martin; Williams, Michael R. (eds.), The Moore School Lectures. Theory

and Techniques for Design of Electronic Digital Computers (Charles Babbage Insti-

tute, Reprint Series for the History of Computing, Bd. 9), London, Los Angeles, San

Francisco 1985, 25–40

Mauchly, John W. (1947), Preparation of Problems for EDVAC-Type Machines. Proceed-

ings of a Symposium on Large Scale Digital Calculating Machinery; nachgedruckt in:

Randell, Brian (ed.) (1973), 365–369

Mauchly, John W.; Eckert, John Presper; Brainerd, John Grist (1943), Report on an Elec-

tronic Diff. Analyzer. Moore School of Electrical Engineering, University of Pennsyl-

vania, Philadelphia

Meiners., Gustav (1936), Die Technik selbsttätiger Steuerungen und Anlagen; neuzeitliche

schaltungstechnische Mittel und Verfahren, ihre Anwendung auf den Gebieten der Ver-

riegelungen und der selbsttätigen Steuerungen. München, Berlin

Menabrea, Luigi F. (1842), Sketch of the Analytical Engine Invented by Charles Babbage,

Esq., Bibliothèque Universelle de Geniève, No. 82, Okt. 1842, translated into English

with editorial notes by the translator, translated into English with editorial notes by the

translator, Augusta Ada, Countess of Lovelace. In: Taylor’s Scientific Memoirs, Bd. III,

Okt. 1843, Art.29., 666–731; wiedergedruckt in: Morrison, Philip; Morrison, Emely

(eds.), Charles Babbage and His Calculating Engines. Selected Papers by Charles Bab-

bage and Others,New York 1961; Internet: http://psychclassics.yorku.ca/Lovelace/men-

abrea.htm

Merrifield, C. W. (1879), Report of the Committee ... appointed to consider the avisability

and to estimate the expense of constructing Mr. Babbage’s Analytical Machine, and of

printing tables by its means. Report of the British Association for the Advancement of

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 70

71

Science, Dublin, 92–102, London 1879; wiedergedruckt in: Randell, Brian (ed.) (1973),

53–63

Nake, Frieder (2003), The Display as a Looking-Glass. Zu Ivan E. Sutherlands früher Vision

der grafischen Datenverarbeitung. In: Hellige, Hans Dieter, (Hrsg.), Geschichten der

Informatik. Visionen, Paradigmen und Leitmotive, Berlin, Heidelberg, New York,

339–365

Neumann,John von (1945), First Draft of a Report on the EDVAC.Moore School of Electri-

cal Engineering,University of Pennsylvania,Philadelphia 30.Juni 1945; wiedergedruckt

in: Annals of the History of Computing 15 (1993) 4, 27-67

Neumann,John von (1963), Design of Computers,Theory of Automata and Numerical Ana-

lysis. In: Taub,Abraham H.(ed.),Complete Works of John von Neumann,6 Bde.Oxford

(UK), New York 1961-63, Bd 5

Oxford English Dictionary (1989), Artikel: program, programme, programmer, program-

ming. 2nd ed., vol. XII, Oxford, 589–592

Pflüger, Jörg-Martin (1994), Über die Verschiedenheit des maschinellen Sprachbaues. In:

Bolz, Norbert; Kittler, Friedrich; Tholen, Christoph (Hrsg.), Computer als Medium,

München, 161–181

Pflüger, Jörg-Martin (2002), Language in Computing. In: Doerries, Matthias (ed.), Experi-

menting in Tongues: Studies in Science and Language, Stanford

Pflüger, Jörg-Martin (2003a), Writing, Building, Growing: Leitvorstellungen der Program-

miergeschichte. In: Hellige,Hans Dieter, (Hrsg.),Geschichten der Informatik.Visionen,

Paradigmen und Leitmotive, Berlin, Heidelberg, New York, 275–320

Pflüger, Jörg-Martin (2003b), Konversation, Manipulation, Delegation. Zur Ideengeschich-

te der Interaktivität. In: Hellige,Hans Dieter,(Hrsg.),Geschichten der Informatik.Visio-

nen, Paradigmen und Leitmotive, Berlin, Heidelberg, New York, 367–408

Randell, Brian (ed.) (1973), The Origins of Digital Computers. Selected Papers. Berlin, Hei-

delberg, New York

Reuleaux, Franz (1875), Lehrbuch der Kinematik, 1. Band: Theoretische Kinematik. Grund-

züge einer Theorie des Maschinenwesens. Braunschweig

Sammet, Jean E. (1969), Programming Languages: History and Fundamentals. Englewood

Cliffs, N. J.

Scharf,Achim (1989), Speicherprogrammierbare Steuerungen: Mehr Leistung und Komfort.

Hard and Soft 6 (7/8), 8–15

Schmid, Wolfgang (1941), Untersuchung der Arbeitsspiele der verschiedenen selbsttätigen

Steuerungen im Fertigungswesen. Feinmechanik und Präzision 49 (6), 65–69

Schmid, Wolfgang; Olk, Friedrich (1939), Fühlergesteuerte Maschinen. Essen

Stach,Heike (1998),Beschreiben,konstruieren,programmieren.Zur Verschmelzung von The-

orie und Gegenstand. In: Siefkes, Dirk; Eulenhöfer, Peter; Stach, Heike; Städtler, Klaus

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 71

Algorithmik – Kunst – Semiotik72

(Hrsg.), Sozialgeschichte der Informatik. Kulturelle Praktiken und Orientierungen,

Wiesbaden, 213–229

Stibitz, George R. (1947), The Organization of Large Scale Calculating Machinery. In: Har-

vard University Computation Laboratory (ed.), Proceedings of a Symposium on Large

Scale Calculating Machinery, Sponsered by the Navy Department Bureau of Ordnan-

ce and Harvard University at the Computation Laboratory Jan. 1947, Cambridge, MA

1948; wiedergedruckt in: Charles Babbage Institute (ed.),Proceedings of a Symposium

on Large Scale Calculating Machinery. Reprint Series for the History of Computing

Bd. 7 , London, Los Angeles, San Francisco, 91-100

Strauch, Helmar (1937), Selbsttätige Steuerung mechanischer Bewegungen durch Lochkar-

ten. Maschinenbau 5 (9), 476–478

The ENIAC (1943),Vol I.A Report Covering Work until December 1943. University of Penn-

sylvania, Moore School of Electrical Engineering, Philadelphia

Torres y Quevedo, Leonardo (1914), Essais sur l’automatique. Sa définition. Étendu théo-

rique de ses applications. In: Revue de l’Académie des Sciences de Madrid,1914; wieder-

gedruckt in: Revue Générale des Sciences Pures et Appliquées, 15.11.1915, 601-611;

übersetzt in: Essays on Automatics. Its Definition - Theoretical Extent of Its Applica-

tions (1914). In: Randell, Brian (ed.) (1973), 87–105

Torres y Quevedo, Leonardo (1920), Arithmomètre electromécanique. In Bulletin de la

société d’encouragement pour l’industrie nationale, Bd. 119, 588-599; englische Über-

setzung: Electro-mechanical Calculating Machine. In: Randell, Brian (ed.), (1973),

107–118

Turing, Alan M. (1945), Proposal for Development in the Mathematics Division of an Auto-

matic Computing Engine (ACE).presented to the National Physical Laboratory,; wieder-

gedruckt in: Computer Science 57, National Physical Laboratory, Teddington 1972;

wiedergedruckt in: Carpenter, B. E.; Doran, R. W. (eds.), A. M. Turing’s ACE Report of

1946 and other Papers (Charles Babbage Institute, Reprint Series for the History of

Computing, Bd. 10), London, Los Angeles, San Francisco 1986, 20-105

Turing, Alan M. (1947), Lecture to the London Mathematical Society on 20 February 1947.

wiedergedruckt in: Carpenter, B. E.; Doran, R. W. (eds.), A. M. Turing’s ACE Report of

1946 and other Papers (Charles Babbage Institute, Reprint Series for the History of

Computing, Bd. 10), London, Los Angeles, San Francisco 1986, 106–124

Walther,Alwin (1956), Moderne Rechenanlagen als Muster und als Kernstück einer vollauto-

matisierten Fabrik. In: Fritz Erler u. a. (Hrsg.), Revolution der Roboter, München, 7–64

Weinhart, Karl (Hrsg.) (1990), Informatik und Automatik. Führer durch die Ausstellung.

Deutsches Museum, München

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 72

73

Wilkes, Maurice V. (1980), Early Programming Developments in Cambridge. In: Metropo-

lis, Nicholas C.; Howlett, Jack; Rota, Gian-Carlo (eds.),A History of Computing in the

Twentieth Century. A Collection of Essays, New York, London, 497–501

Zemanek, Heinz (1988), Hollerith und Schäffler: Zwei Pioniere der Lochkartentechnik.

Datenverarbeitung am Ende des 19. Jahrhunderts. In:Ausgewählte Beiträge zu Geschich-

te und Philosophie der Informationsverarbeitung (Schriftenreihe der Österreichischen

Computer Gesellschaft, Bd. 43), Wien, München, 13–35

Zuse,Horst (2003), Konrad Zuses Visionen und Konzepte für die Anwendung seiner Rechen-

maschinen. In: Hellige, Hans Dieter, (Hrsg.), Geschichten der Informatik. Visionen,

Paradigmen und Leitmotive, Berlin, Heidelberg, New York, 61–77

Zuse, Konrad (1936), Die Rechenmaschine des Ingenieurs, Abschnitt: Die Aufstellung der

Rechenpläne. Nachlasskopien-Bestand des Heinz-NixdorfForums, Paderborn, HNF

009/001; Zuse-Internet-Archiv; ZIA 0234

Zuse, Konrad (1937), Paralleloperationen bei Programmen. Tagebuchnotiz vom 16.7.1937.

Gedanken zum künstlichen Gehirn. HNF 025/015; ZIA 0419

Zuse, Konrad (1938), Programmspeicherung. Tagebuchnotizen über die Entwicklung von

starren Rechenplänen und lebenden Rechenplänen. HNF 025/011; ZIA 0417

Zuse, Konrad (1939), Plankalkül Vorarbeiten. Tagebuchnotiz vom 25.5.1939 über flexible

Angabenstrukturen. Mechanisches Gehirn. HNF 025/012; ZIA 0418

Zuse, Konrad (1945), Plankalkül (Fassung von 1945). Abschrift 1946, HNF 011/008;

ZIA 0233

Zuse, Konrad (1946), Zuse-Rechengeräte. Ms. Mai 1946, HNF 010/005; ZIA 0332

Zuse, Konrad (1947), Zuse-Rechengeräte. Zuse-Ingenieurbüro Hopferau (Hrsg.), HNF

011/008; ZIA 0743

Zur Genese des informatischen Programmbegriffs

Final von Nake_Buch_k1.qxd 07.11.2003 17:35 Seite 73

