Fi nal von Nake_Buch_k1.gxd 07.11.2003 17: 3$ Seite 42

42

Algorithmik - Kunst - Semiotik

Zur Genese des informatischen
Programmbegriffs:

Begriffsbildung, metaphorische Prozesse,
Leitbilder und professionelle Kulturen

Hans Dieter Hellige, Universitat Bremen

“Bei unseren Tatigkeiten, gleich welcher Art sie seien und in welcher Situa-
tion wir sie vollbringen, begleiten uns Interessen, Absichten, Hoffnungen,
Wiinsche, Vorstellungen, Erwartungen, Maximen, Regeln - kurz, ein gan-
zes Biindel von motivierenden und orientierenden Verfasstheiten. Wir las-
sen uns von ihnen nicht nur begleiten, sondern auch leiten. Meist wirken
solche Orientierungen beildufig und wie selbstverstandlich, gar mit einer
gewissen Zwangslaufigkeit. Sie konnen einander auch widersprechen, oder:
unmittelbares Ziel unserer Tatigkeit und Gibergeordnetes Leitbild mdgen

nicht zusammenpassen.”

Frieder Nake 2003, S. 344

1. Die hermeneutische Analyse von Metaphern, Leitbildern
und professionellen Kulturen in der Technikgenese

Die Informatik und hier speziell die Software-Entwicklung, Software-
Ergonomie und die Gesellschaftstheorie der Informatik haben seit den
70er Jahren mit der Entdeckung der Bedeutung von Mentalen Modellen,
Benutzer-Modellen und Metaphern sowie mit dem Perspektiven- und
Model-Power-Konzept das Wissen iiber hermeneutische Prozesse zwi-
schen Technikproduzenten und -nutzern stark erweitert. Der besondere
Konstruktionsgegenstand Software hat hier Erkenntnisse zu Tage gefor-
dert, die der Mechanik- bzw. Elektrokonstruktionslehre verschlossen blie-
ben. Die Techniksoziologie und die Technikgeschichte widmen sich seit
den 80er Jahren intensiver der Analyse von Leitbildern, Metaphern und

o

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 43

Zur Genese des informatischen Programmbegriffs

generell kultureller Aspekte der Technikgenese. Schliefllich beteiligten
sich auch Psychologie und Philosophie verstéirkt an der Erforschung von
Modellbildungs- und Ubertragungsprozessen in der Technik. Von einer
elaborierten Hermeneutik des technischen Gestaltens kann man trotz
dieser Forschungsanstrengungen aber noch immer nicht sprechen. Dazu
fehlt es noch an einer Zusammenschau der verschiedenen Phidnomene
und erst recht an einer Systematisierung hermeneutischer Prozesse im
Technischen Handeln.

In einer groben Gliederung lassen sich allgemein-gesell-
schaftliche Horizonte wie Technische Kulturen, Technikstile und Tech-
nikbilder von den besonderen Erfahrungs- und Vorverstandnishorizon-
ten der Technikentwickler unterscheiden (vgl. Hellige 19954, S. 21 ft.).
Die allgemein-gesellschaftlichen wie die besonderen technisch-wissen-
schaftlichen Horizonte sind aufgrund des Hintergrundcharakters von
Vorverstindnissen nur partiell und dies auch nur mit spezifischen her-
meneutischen Methoden und Konzepten rational rekonstruierbar. Zu
ihnen gehort auf der einen Seite das vor allem in der Informatik entwi-
ckelte Perspektivenkonzept, das durch die Gegeniiberstellung unter-
schiedlicher Sichtweisen verabsolutierte Standpunkte auflost. Auf der
anderen Seite stehen eine Reihe bereichs- oder aspektspezifischer Orientie-
rungsmuster wie Mentale Modelle, Metaphern, Leitbilder und Konstruk-
tionsstile sowie spezielle professionelle Kulturen. Deren Zusammenspiel
soll im Folgenden am Beispiel metaphorischer Prozesse bei der Entste-
hung der Programmkonzepte untersucht werden.

Metaphern bilden den Ubergang von Mentalen Modellen zu
den Leitbildern. Denn auch hierbei wird an vertraute Gestaltmuster und
Erfahrungen angekniipft, um moglichst ibergangsgerechte Losungsmu-
ster zu generieren. Metaphern sind keinesfalls nur eine Begleiterschei-
nung der Modellierung von Arbeits- und Handlungsabldufen auf dem
Rechner, wie es die informatische Metaphernforschung vielfach nahe-
legt. Die Historie der Gestaltfindung bei Telegrafen, Telefonen, elektri-
schen Herden, Waschmaschinen sowie von mechanischen Rechen- und
Schreibmaschinen zeigt vielmehr, dass man Metaphern offenbar als einen
wesentlichen Bestandteil der Artefaktkonstruktion ansehen muss. Vor
allem bei der Mensch-Maschine-Schnittstelle scheint der Ruckgriff auf
vertraute Losungsmuster unverzichtbar, sei es, weil neue Gestaltmuster
hier besonders schwer zu schaffen oder den Benutzern zu vermitteln sind.
Dabei lisst sich zeigen, dass Metaphern in Entwicklungsprozessen nicht

o

43

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 44

44

Algorithmik - Kunst - Semiotik

nur als kognitive Medien kreativen Kombinierens zu betrachten sind,
wozu Thomas P. Hughes (1991, S. 83 ff.) und die technikgenetische Meta-
phern-Studie von Mambrey, Paetau und Tepper (1995) neigen. Modell-
und Gestalt-Ubertragungen, so meine Ausgangsthese, sind im hohen
Maf3e auch un- oder halbbewusste Momente des Vorverstidndnisses, also
hermeneutischer Natur. Neben der spielerisch-bewussten Konstruktion
mit Metaphern gibt es die Vorfixierung auf bekannte Muster und Sicht-
weisen. Dadurch kann der Losungsraum u. U. von vornherein eingeengt
werden.

2. Zur Bedeutung metaphorischer Ubertragungsprozesse in der
Wissenschaftsgenese der Informatik

Ein grofler Teil informatischer Begriffe ist durch metaphorische Uber-
tragungen aus anderen Technikbereichen oder Wissenschaften hervor-
gegangen. Das Metaphernsortiment der Informatik ist sogar, dies haben
Richard Lynch (1993), Peter Mambrey, Michael Paetau, August Tepper
und Carsten Busch (1998) betont, besonders bunt gemischt. Deren Erfor-
schung hat sich bisher auch in informatischen und techniksoziologischen
Analysen vor allem an geisteswissenschaftliche Methoden angelehnt.
Metaphern wurden vor allem als Kommunikationsformen und -medien
gesehen, bei der Interpretation aus dem Kontext gelost und wie literari-
sche Metaphern oder wie rhetorische Figuren in Kommunikationspro-
zessen gedeutet. Dies mag bei bildhaften oder unmittelbar einsichtigen
Gestaltmetaphern wie Baum, Stapel, Schleife, Sprung und Bug, Virus oder
bei (auto)suggestiven Bildsymbolen in Technikhypes angemessen sein,
nicht jedoch bei komplexeren Analogiebildungen wie Programm, Pro-
grammiersprache, Schichtenmodell oder Architektur. Diese transportieren
tiber Gestaltanalogien hinaus ganz spezifische professionelle Sichtwei-
sen. Sie haben oft implizit oder explizit Leitbildfunktion. Dies wird
besonders bei konkurrierenden Metaphern deutlich: Software Enginee-
ring hat sich ab 1968 gegen die um 1965 noch protegierte Software-Archi-
tektur durchgesetzt, wihrend Computer Engineering ab 1970 ganz ein-
deutig von der Computer-Architektur verdrangt wurde. Zur Erklirung
reichen da Etymologien und literarisch-philosophische Metaphern-
deutungen nicht mehr aus, hier muss der Zusammenhang von Meta-
phern und Leitbildkomplexen in professionellen Kulturen diskursanaly-
tisch betrachtet werden. Dies kann, wie bei Pfliiger (u.a. 2002, 2003a/b)

o

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 45

Zur Genese des informatischen Programmbegriffs

anhand einer Kette epochaler Leitmetaphern mit epistemischen Char-
akter geschehen oder, wie im Folgenden, anhand einer vergleichenden
Untersuchung von Metaphernbildungen zu einzelnen zentralen Begrif-
fen und Konzepten der Informatik. So mochte dieser Beitrag am Beispiel
der Entstehung des Programmbegriffs zeigen, welche Bedeutung metapho-
rische Prozesse bei der Entstehung einer neuen Disziplin haben kénnen
und wie Denkweisen bestehender professioneller Kulturen tiber sie auf
die neu entstehende einwirken.

Obwohl die Begriffe Programm, Programmiersprache zu den
Kernbegriffen der Informatik zihlen, ist deren genauere Entstehung noch
weitgehend unerforscht. Die meisten Autoren historischer Riickblicke
arbeiten ohnehin mit einem universalen Programmbegriff: Dieser wird
fiir die Tempeltore des Heron von Alexandria, mittelalterliche Uhrwer-
ke, frithneuzeitliche Automaten und Spielwerke ebenso verwendet wie
fiir moderne Computer. Durch die Allgegenwart des Programmbegriffs
wird jedoch verdeckt, mit welcher Begrifflichkeit man jeweils arbeitete
und warum man Jahrhunderte lang ohne einen von den jeweiligen mate-
riellen Speichermedien Walzen, Lochkarten oder Stecktafeln losgeloste
abstrahierende Bezeichnung ausgekommen ist. Denn fiir Babbage, Lud-
gate und Torres stehen die Ketten der “Operational Cards”bzw. die Loch-
streifen noch genauso fiir das prozedurale Programm selber wie die Loch-
karten und die Walze fir Jacquard und die Erbauer mechanischer
Musikinstrumente.

So bezeichnet Babbage, dem ,,mettre en carte bei Jacquard
entsprechend, Programmiervorgange meistens als ,,arrangement“ oder

Tannau seLosian o Kome D

Yariables for Doea Wotklog Variable WVariabiles for Resulis

PVad ™yl "Vae LT L

+

b

Wy | 1wy

+| +

=
=

W Vi
+
o
a
o
n

o o
[[}
a 1]
o L]

St of Cpmtation
| Nature of Opesasine

|eeees+
o
ecco+
socee
sose+
looco+
scee+

i’ — % o ' =’
i o 7

[]

= e’
-

45

Diagramm des
Programmablaufs mit
Jacquard-Lochkarten
(Ada Lovelace, in:

Menabrea, Note D)

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 46

46

Algorithmik - Kunst - Semiotik

»combination® der verschiedenen,sets of cards®zu einer ,order by means
of cards® bzw. ,chain of operational cards® (Babbage 1937, S. 17 ff. bes. S.
45f.; Merrifield 1879,S.57). In einer Notiz vom Juli 1836 spricht er davon,
dass ,cards (Jacquards) of the Calc. engine direct a series of operations®,
wobei in den Lochmustern ,,small pieces of formulae“ enthalten sind (zit.
nach Randell, S. 349). Daneben taucht aber bereits die Ubersetzungs-
metapher auf: ,In this light the cards are merely a translation of alge-
braijcal formulae, or, to express it better, another form of analytical nota-
tion“ (Menabrea 1842). Schlief8lich bedienen sich Ada Lovelace und
Babbage der viel zitierten Analogien zu den Jacquard-Webstiihlen,indem
sie davon sprechen, mit dem ,,system of cards“ algebraische Muster zu
weben: ,,We may say most aptly, that the Analytical Engine weaves alge-
braical patterns just as the Jacquard-loom weaves flowers and leaves®
(Ada Byron-King, Note A in Menabrea). Ahnlich schreibt Babbage in
einem Brief an Arago im Dezember 1839 ,we can communicate to a very
ordinary loom orders [sic!] to weave any pattern that may be designed.
[...] Availing myself of the same beautiful invention, I have by similar
means communicated to my calculating engine orders to calculate any
formula however complicated [...]“ Doch im Gegensatz zu Ada streicht
er den Unterschied der ‘Programmierung’ von Jacquard-Maschinen und
der Analytical Engine heraus: ,,[...] but I have also advanced one stage
further, and I have communicated through the same means orders to fol-
low certain laws in the use of those cards [...]“ (zit. in Merrifield 1879, S.
57, meine Hervorhebung).

Der Ubergang von der Mechanik zur Elektromechanik nach
1900 4dndert an den Programmbegriffen und -Metaphern zunéchst nur
wenig. Percy E. Ludgate wandelt mit seinen Lochstreifen nur den Ablauf
der Bedien- und Rechenprozesse ab, bleibt aber ansonsten noch ganz der
Babbage-Terminologie verpflichtet und greift einmal sogar auf die Ada-
Metaphorik zuriick (Ludgate 1909). Leonardo Torres y Quevedo lehnt sich
bei dem Programmier- und Steuerungskonzept seiner elektromechani-
schen ,,Analytischen Maschine® z. T. an Babbages Begriff des ,, Arrange-
ments“ von Operationen an und beschreibt dieses in seinen einzelnen
Berechnungsschritten. Dabei sieht er bereits die Zusammensetzung kom-
plexerer Arbeitsfolgen aus Elementaroperationen vor (Torres 1914, S.
100). Doch er entwickelt andererseits ein anthropomorphes Verstindnis
des,Programmablaufs’, wonach das hypothetische ,,automaton® sich wie
ein intelligentes Wesen den jeweiligen Bedingungen anpasst und bei der

o

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 47

Zur Genese des informatischen Programmbegriffs

Pfadwahl selber Entscheidungen trifft:,,In essence, the automaton acts as
a circumspect person and reflects: it examines the present circumstances
in order to decide what it should do and then it does it“ (Torres 1920, S.
116). Beim Fortschreiten der einzelnen Operationen der Formel-
berechnung folgt es zuvor aufgestellten Regeln bzw. Verhaltensmustern,
die das Arbeitsverhalten prazise festlegen. Dabei geht Torres sogar schon
von einer Erstellung des ,Programms’ in natiirlicher Sprache aus.

Die Steuerung (,controle®) der Maschine wird auf diese Weise
sehr einfach: Der ,human calculator who uses the machine® muss nur
von Zeit zu Zeit bestimmte Tasten driicken und selbst dies kénne noch
automatisiert werden durch ,,a process similar to that which has been
used for operating a mechanical piano“ (Torres 1914, S. 88 f., Zitate in
engl. Ubersetzung S. 95, meine Hervorhebung). Torres stellt mit dieser
Metapher eine direkte Verbindung zwischen seiner theoretischen Auto-
matologie und der Welt der Lochstreifen-gesteuerten Musikautomaten
her. Er erkennt, dass die Verallgemeinerung der ,Programmsteuerung’
alle Maschinen zu potentiellen Automaten macht.,, These very principles
may be applied to other calculating machines and even to industrial
machines® (Torres 1920, S. 116). Doch den Schritt zur Abstraktion eines
Hardware-unabhingigen Programmbegriffs geht Torres noch nicht, dazu
versperrte ihm sowohl die Fixierung auf die traditionelle Automatenwelt,
ihre Mechanismen und Steuerungen als auch die anthropomorphe Sicht-
weise intelligenter Automaten den Weg.

Wie und wann der Loslésungsprozess beginnt und welche
Rolle die Programmmetapher dabei spielt, ist noch ziemlich im Dunkeln.
Die Forschung stiitzt sich in der Regel ausschliellich auf das Oxford
English Dictionary, das die frithesten Belege bei Computern fiir 1945 aus-
weist (siehe u.a. Beniger 1986, S. 39, Coy 1998). Nach Paul E. Ceruzzi
(1998, S.20 f.) liegt der Ursprung des Programmbegriffs des Computer-
bereichs beim ENIAC-Team der Moore-School, David Alan Grier ver-
weist ausdriicklich auf John Mauchlys berithmtes Memorandum von
1942 ,,Use of High Speed Vacuum Tube Devices for Calculating®, das die
ENIAC-Genese einleitete. In Studien iiber Konrad Zuse werden sogar
Manuskripte zitiert, in denen der Programmbegriff angeblich schon seit
1937 vorkommt. Doch diese Datierungen sind wenig glaubwiirdig, da in
diesen Dokumenten bereits von der ,Minimalform der rein universellen
Programmiersprache,,,allgemeinen Formalsprachen®, ,,algorithmischen
Sprachen® und vom ,,bedingten Sprung® die Rede ist, und zwar nicht nur

o

47

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 48

48

Algorithmik - Kunst - Semiotik

in der spéter angefertigten Transskription, sondern bereits in der steno-
grafischen Notiz!

Zuse hat zwar schon seit dem Ende der 30er Jahre ein sehr
avanciertes ,Programm‘konzept und eine informatische Sichtweise ent-
wickelt, die wissenschaftliche Probleme durch mathematische Modell-
bildung und Programmierung durchgingig rechnerunterstiitzt 16sen will
(vgl. hierzu bes. H. Zuse 2003; zu den Datierungsproblemen des Zuse-
Nachlasses Hellige 2003, S. 415 f.). Doch hielt er bis in die zweite Halfte
der 40er Jahre an dem in Rechenbiiros bereits Anfang der 30er Jahre
tiblichen Begriff ,Rechenplan® fest. Er definierte den ,Rechenplan® als
»Auffithrung der aufeinanderfolgenden Rechenoperationen®, doch viel-
fach verwendete er ihn auch einfach synonym mit,,Lochstreifen:,,Rechen-
plane sind Lochstreifen, die von den Geridten abgetastet werden. (Zuse
1936, Zuse 1946, S. 2) Sehr weitreichend ist seine Unterscheidung von
Gesamtplan, der einer Formelsammlung bzw. einem Planbestand ent-
spricht, von aufgabenspezifischen Plangruppen und ganz speziellen Ein-
zelplanen, die z. T. aus Teilen des ,,dauernden Planbestands® zusammen-
gesetzt sein konnen. Er entwickelte 1942-46 die Vorform einer
Programmiersprache, den ,,Plankalkiil“ (Zuse 1945), doch bezeichnete er
diesen erst nach Abschluss der Arbeiten als ,eine allgemeine mathe-
matische »Zeichensprache<, mit der man ,,Anweisungen® fiir die unter-
schiedlichsten ,,schematischen kombinatorischen Denkoperationen®
mechanisieren konne (Zuse 1947, S.1 £.). Obwohl sein ,Programm®-Kon-
zept, ohne dass der Begriff selbst auftaucht, in den spéten 30er und frii-
hen 40er Jahren den anderen Entwicklungen in Europa und den USA
weit iiberlegen war, hatte es aufgrund der Isolation Zuses keinen Einfluss
auf die Entstehung des Programmbegriffs. Deshalb wird es im Folgen-
den auch ausgeklammert.

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 49

Zur Genese des informatischen Programmbegriffs

3. Programmbegriffe in den professionellen Kulturen der
Steuerungs- und Regelungstechnik und der Lochkartentechnik

3.1 Von De Leeuws “program machine” zum “program control”
und Programmregler

An dem Mauchly-Beleg von 1942 ist keinem bisher aufgefallen, dass hier
nur von einem ,,programming" bzw. ,program device” die Rede ist. Es ist
damit eine Art Programmschaltung oder Stecktafel gemeint, die in dem
geplanten System verketteter Rechenmaschinen den Ablauf zwischen den
verschiedenen Rechenwerken steuert: ,,this program device is capable of
arranging a cycle of different transfers and operations of this nature with
perhaps fifteen or twenty operations in each cycle (Mauchly 1942, S.
330). Ein solcher Mechanismus dhnelt den damals in der Steuer- und
Regelungstechnik tiblichen ,,selbsttitigen Arbeitsfolge- und Zeitgeberein-
richtungen® Fiir die ,bekannteste Klasse“ von Regelungen bzw. Steue-
rungen, die,,nach einem vorgeschriebenen Plan verandert wurden®, hatte
sich in Deutschland spitestens seit dem Ende der 30er Jahre der Begriff
»Programmregler” eingebiirgert, der seinerseits auf den dlteren Begriff
»program control in USA zuriickging (Schmid 1941; Engel, Olden-
bourg 1944, S. 200 £.).

Es handelt sich dabei um eine Automatisierungstechnik an der
Nahtstelle zwischen Steuerungs- und Regelungstechnik, bei der das Pro-
gramm durch Zeit- und Wertestellknépfe oder Steckverbindungen einge-
stellt und zum Teil sogar in auswechselbaren Sichtscheiben angezeigt
wurde:,,[...]der Arbeiter wird durch den Programmregler bei der Arbeits-
abwicklung unterstiitzt, so dass er seine Aufmerksambkeit anderen wichti-
geren Dingen zuwenden kann. Der Programmregler besitzt eine den
Arbeitsschritten entsprechende Anzahl von Sichtscheiben, die nachein-
ander, entsprechend den vorher gewéhlten Zeitabschnitten aufleuchten
[...] Durch Auswechslung der Sichtscheibe und Neueinstellung der Zeit-
stellknopfe ldsst sich der Programmregler leicht auf eine andere Arbeits-
folge umstellen® Fiir Werkzeugmaschinen waren noch komplexere
Programmregler vorgesehen, die neben der Zeit und den Arbeitsschrit-
ten auch noch die Geschwindigkeit und die Werkzeugwahl steuerten
(Schmid 1941, S. 69). Kompliziertere Steuerungsabldufe wurden entwe-
der wie im Fall von Stromerzeugungs- oder -verteilungsanlagen iiber
motorisch angetriebene ,,Steuerwalzen“ oder wie beim Satz und Druck
nach dem Vorbild der Jacquard-Webstiihle durch Lochkarten gesteuert:

o

49

Fi nal

von Nake_Buch_k1.gxd 07.11.2003 17:34k Seite 50

50

Algorithmik - Kunst - Semiotik

»Der Lochkarte wird die Denk- und Willensfunktion des Menschen
unmittelbar tibertragen. Die Anordnung der Locher bezeichnet die Sym-
bole fiir die Betdtigungsvorginge der Maschine® (Meiners 1936, S. 86 ff.;
Strauch 1937, S. 476). Fiir die Planung und Erstellung der Schalt- bzw.
Steueranordnung entstand bei der AEG Mitte der 30er Jahre bereits das
Modellierungsinstrument des ,,Schaltfolgendiagramms®, das die einzel-
nen Schaltschritte mit den jeweiligen Verriegelungs- und Schaltbedin-
gungen in ,Relaissymbolik® graphisch darstellte. Es war so einfach und
nah am Produktionswissen des Anlagenpersonals, dass es noch Ende der
60er Jahre vom Erfinder der Speicherprogrammierbaren Steuerung (SPS)
Richard Morley als Vorbild fiir die SPS-Programmiermethode des ,,Kon-
taktplans® (,,]Jadder diagram®) gewéhlt wurde (Meiners 1936, S. 35 ff;
Scharf 1989, S. 9; Krock 1991).

Die Idee des ,,program control“ entstand bereits Jahrzehnte
zuvor in den USA, spitestens 1920/22.In diesen Jahren entwickelte ndim-
lich der Werkzeugmaschinen- und Automatisierungsexperte Adolph
Lodewyk De Leeuw (geb. 1861), Consulting Editor am ,,American Machi-
nist®, ein seinerzeit Aufsehen erregendes, spiter aber wieder in Verges-
senheit geratenes Konzept fiir die automatische Steuerung von Maschi-
nen. Nach einer ersten Ideenskizze in der Zeitschrift ,Industrial
Management“ im Juni 1920 gab er 1922 in einer auch als Buch erschie-
nenen Artikelserie im,,American Machinist“ einen Gesamtiiberblick tiber
die ,,Methods of Machine Tool Design® und die Zukunftsaussichten von
»automatic machines® speziell fir die Kleinserienfertigung. Um das
Auslastungsproblem besonders von Werkzeugmaschinen zu 16sen, ent-
warf er ein ,,system of control of automatic functions of machine ele-
ments®, in dem alle ,automatic machining operations“ der sich abwech-
selnden Bohr-, Dreh-, Schraubwerkzeuge usw. zu einer Art
Bearbeitungszentrum integriert waren. Die einzelnen Bearbeitungsgén-
ge waren nicht direkt verkettet, sie wurden vielmehr nach einem zuvor
festgelegten Plan aufgerufen und stoppten nach dem Bearbeitungszyklus
von selber,um dem néchsten ,,predetermined cycle“ das Feld zu tiberlassen.

Die Steuerung erfolgt dabei durch ein ,auxiliary mecha-
nism.[...] which we will call the »program<, ndmlich ,,an endless chain
which is advanced onelink every time a cycle comes to an end” (De Leeuw
1922a,S.641, meine Hervorhebung). Diese ,,program mechanism® genann-
te Vorrichtung sollte im halbautomatischen Betrieb dem,,operator durch

einen Buchstaben-Code den nichsten Arbeitsschritt anzeigen und im

o

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 51

Zur Genese des informatischen Programmbegriffs

vollautomatischen Betrieb alle ,,instructions” [sic!] als Kette von Schalt-
folgen abwickeln. Mit diesem ,,program mechanism® 16ste sich die kon-
zipierte Maschinensteuerung von den iiblichen Kopierautomaten und
Fiihlersteuerungen, die noch analoge Einzweckautomaten waren, es ent-
stand bereits die Idee einer codebasierten Mehrzwecksteuerung fiir unter-
schiedlichste Maschinen und Prozessfolgen. Dabei war ihm bewusst, dass
es sich um eine ganz neuartige Maschine handelte:,,I would call this style
arprogram machine< (ebenda). Das auslosende Moment fiir den Wech-
sel vom mechanisch fixierten Programmablauf zur programmierbaren
Code- bzw. Lochstreifensteuerung bildete eine Metapher. So heifit es bei
De Leeuw: ,,Instead of a chain, a perforated roll of paper might be used,
very much like the music rolls for a player piano“ (ebenda, S. 642). Ob
De Leeuw damit direkt an die automatologischen Visionen von Torres
ankniipft oder ob er selber eine metaphorische Verbindung zu traditio-
nellen Automatensteuerungen herstellt, bedarf noch weiterer Recher-
chen. Auf jeden Fall sind die Parallelen sehr auffillig, und es konnte durch-
aus sein, dass ihn gerade Torres’ Hinweis auf die ,,automatisation®
industrieller Maschinen im,,Bulletin de la Societé d’ Encouragement pour
I'Industrie Nationale“ von 1920 dazu veranlasst hat, dessen Uberlegun-
gen weiterzufithren. Etwa, wenn er fiir die komplizierten Verkniipfungen
einer ganzen Reihe von Werkzeugen mit einfachen, parallelen und wieder-
holten Bearbeitungszyklen eine Art Assemblersprache entwickelte, so
dass es bei ihm bereits drei verschiedene Notationen gab: einzelne Buch-
staben oder ganze Worte bei der Programmplanung und fiir die Anzei-
gen sowie Lochmuster fiir die Maschine. Allerdings hatte er wohl noch
keine Symbol- und Formelsprache im Sinn, wie sie Franz Reuleaux schon
1875 fiir Getriebeelemente entwickelt und fiir eine codebasierte Maschi-
nenkonstruktion konzipiert hatte (Reuleaux 1875, S. 243 ft.).

Mit dem Programm- und Befehlsbegriff und der Codesteue-
rung ging De Leeuws ,,program machine® von 1920-22 iiber die bekann-
ten programmgesteuerten Maschinenkomplexe der 20er bis 30er Jahre
hinaus. Denn wihrend diese die Verkniipfung direkt in Lochstreifen,
Lochkartenstapeln, Stecktafeln oder in der Verdrahtung fixierten, dach-
te er bereits an ein flexibles Arrangement von Abldufen, bei dem allein
iiber Umcodierung neue Programme generiert und variiert werden konn-
ten. Fiir diesen neuen Aktionsraum der Kombination und Variation von
»instructions“ jenseits der reinen Lochstreifen-Codierung benétigte De
Leeuw einen Begriff, und er fand ihn im Ensemble von Musikprogramm

o

51

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 52

52

Algorithmik - Kunst - Semiotik

und Lochbandsteuerung bei den automatischen Klavieren. Es hat den
Anschein, dass die Metapher der Lochband-gesteuerten automatischen
Klaviere nicht nur wie seinerzeit die Jacquard-Steuerung fiir Babbage die
Konstruktionsidee geleitet, sondern auch den Anstof8 fir die Verwen-
dung des Programmbegriffs geliefert hat. Jedenfalls leitet sich der infor-
mationstechnische Programmbegriff damit urspriinglich nicht aus dem
Radioprogramm ab, wie man meist annimmt, sondern aus der Welt der
Musikautomaten. Mit der Einfithrung der Begriffe ,,program® und
»instruction war konzeptionell im Bereich der Maschinensteuerungen
die Trennung des Programms von seinen materiellen Tragern und den
manuellen Verkniipfungen eingeleitet. Uber diese Metaphern entwickelte
sich in den 20er bis 30er Jahren die steuerungs- und regelungstechnische
Konstruktionstradition des,,program control® Ihr Leitbild war nicht mehr
die virtuose Handhabung der physikalischen Verkniipfungen wie bei den
Vertretern des,,manuellen Programmierens® (vgl. Hellige 1998), sondern
eine auf Automatisierung zielende Zusammenfithrung der Program-
mierschritte in ,,program devices®.

3.2 Das Programmkonzept bei verketteten Lochkartenmaschinen:
Das “setup” mit “automatic plugboards” bei Wallace Eckert

In den spiten 20er und vor allem in den 30er Jahren erscheint das Kon-
zept einer zentralen Programmier- und Kontrollschnittstelle auch im
Bereich der Lochkartenmaschinentechnik sowie bei Rechen- und
Buchungsmaschinen. Die Schalt- bzw. Stecktafel wurde zwar schon 1895
von Otto Schiffler als ,,logischer Vermittlungsschrank“ auf der Basis der
Metapher des Telefon-Plugboards erfunden und war ab 1905 auch
Bestandteil von Hollerith-Maschinen (Zemanek 1988, S. 21). Doch erst
mit der Verkettung unterschiedlicher Lochkartengerite zu Maschinen-
komplexen entwickelte sie ihre ganze Funktionsbreite. Aus den urspriing-
lich nur fiir Z&hl- und Sortierzwecke geschaffenen Lochkartenmaschi-
nen entstanden so multifunktionale Rechen- und Informations-
verarbeitungsmaschinen. Durch die Einfithrung des ,,removable® bzw.
»automatic plugboard® in der IBM 601 von 1934 wurde sogar die Speiche-
rung, Auswechslung und Weitergabe der Steckprogramme’ méglich (vgl.
Hellige 1998, S.191 f.).

Bahnbrechend war hierbei besonders Wallace J. Eckert, der ab
1933/34 fiir astronomische Berechnungen verschiedene Lochkartenma-
schinen zu einem Maschinenkomplex verkoppelte. Sein Ziel war ein mog-

o

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17: 3$ Seite 53

Zur Genese des informatischen Programmbegriffs 53

lichst vollautomatischer Ablauf komplizierter wissenschaftlicher Berech-
nungen, um den Menschen als Fehlerquelle auszuschalten:,, For this work
it must be possible to change quickly from one complicated setup to anot-
her. The calculation control switch controls the operation of the multi-
plier, tabulator, and summary punch so that a cycle of different arithme-
tical operations can be performed in rapid succession (W. Eckert 1940,
S.22,meine Hervorhebung). Das Plugboard des,,,calculation control switch®
war iber ,rotating cams“ und ,multicontact relays“ mit den jeweiligen
Speziallochkartenmaschinen verbunden, wodurch die Verdrahtung der
Plugboards effizient variiert werden konnte (ebenda, S. 76 f.). Die Gestalt
und die Bedienung der jeweils aus mehreren Lochscheiben gebildeten
Steuerwalzen folgte dabei der Metapher traditioneller Musikautomaten:
»A series of about twenty of these disks are attached to a common shaft
to form a sort of player piano roll“ (ebenda, S. 77).

Programmierschnittstelle
fiir Wallace Eckerts
verkettete
Lochkartenmaschinen

(1940,5.14)

PR o T

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17:3 Seite 54

54

1) “Program” st auch im
ausfiihrlichen Register aller
technischen Fachbegriffe
des Eckert-Bandes nicht
enthalten und kommt im
Text auch sonst nur in
Verbindung mit
Forschungsprogrammen vor

(ebenda, S. 79 ff.).

Algorithmik - Kunst - Semiotik

Wallace Eckert ging mit dieser dufersten Ausreizung der Mog-
lichkeiten der Lochkartentechnik einen grofen Schritt in Richtung eines
frei programmierbaren Rechners (Kistermann 2000). Doch im Unter-
schied zu De Leeuw gelangte er trotz dhnlicher Metaphern und ,Hard-
ware-/Software‘- Arrangements nicht zu einem von den physikalischen
Medien unabhingigen Programmbegriff. Er blieb in seiner Begrifflich-
keit vielmehr noch weitgehend der alten Lochkartenwelt verhaftet. Uber
die darin tiblichen Bezeichnungen ,,plugging®, ,,wiring®, ,,setup® und
»arrangement® hinaus findet sich bei ihm vor 1948 kein abstrahierender
Programmbegriff. Nur an einer Stelle seines Hauptwerkes von 1940, das
seine Arbeiten der 30er Jahre zusammentfasst, heifit es: ,, The planning of
an extensive program thus requires a careful analysis of many factors in
the light of all available data and experience® (W. Eckert 1940, S.25, meine
Hervorhebung). Doch scheint vom Kontext her hier mit,,program® eher
ein Forschungsprogramm gemeint zu sein.! Auch die in der Literatur
(Beniger 1986, S. 401; Weinhart 1990, S. 148) genannte Bezeichnung
»mechanical programmer* fir den ,calculation control switch® ist wohl
eher eine nachtrigliche Begriffsschopfung, jedenfalls taucht sie in den
Eckert-Schriften vor 1945 nicht auf. Gleichwohl gingen von diesem Kon-
zept der Plugboard-Programmierung wichtige Impulse auf die ENIAC-
Entwicklung aus.

3.3 Weiterwirken des “program control” Leitbildes bei John P. Eckert und John
Mauchly: Automatisierung durch Integration der Programmierschritte in
“program devices”

Auch beim ENIAC handelte es sich, wie gesagt, um eine aufgabenspezifisch

verbindungsprogrammierte Maschinenverkettung, deren einzelne

Arbeitsschritte mit Hilfe von ,,program devices“ konfiguriert und gesteu-

ert wurden. Aus der Bindung an die professionelle Kultur des ,,program

control” erkldrt sich auch das auffillig kontroll- und automatisierungs-
technische Verstandnis des Programmierens bei den beiden aus der Elek-
trotechnik kommenden Chefdesignern John Mauchly und John Presper

Eckert. In den ENIAC-Proposals und -Berichten von 1942-44 erscheint

der Programmbegriff ndmlich fast auschliefSlich in Verbindung mit,,devi-

ces, ,circuits®, ,pulses oder ,,switches®, die durch eine ,,program control
unit® eingestellt und gesteuert werden. So heif3t es etwa zur ENIAC-Pro-
grammsteuerung im Proposal vom April 1943: ,,A unit which contains
the necessary control units for initiating the various steps of the calcula-

o

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17: 3$ Seite 55

Zur Genese des informatischen Programmbegriffs 55

tion in their proper order. The program control unit can be equipped, if
desired, with a punch-card program selector to facilitate rapid set-up of
different problems* (Mauchly, Eckert, Brainerd 1943, zit. nach Burks 1980,
S.335). Auch in den Berichten, Memoranden und Vortréigen der Jahre
1946/47, so in dem von Adele Goldstine verfassten ENIAC-Report vom
1. Juni 1946, der ersten 6ffentlichen Darstellung der Anlage durch beide
Goldstines im gleichen Jahr,den Moore-Lectures von Eckert und Mauch-
ly sowie in Mauchlys Skizze der EDVAC-Programmierung von 1947
bezieht sich der Programmbegriff fast nur auf die Hardware-gebundene
Programmabwicklung, wihrend die Programmiertitigkeiten mit ,,plan-
ning“ und,,preparation of problems® bezeichnet werden. Selbst hinter dem
~master programmer*, der auf Vorschlag der Von-Neumann-Gruppe 1944
zu der bis dahin dezentralen Kontrollstruktur hinzukam, verbirgt sich
nicht etwa der Chefprogrammierer, sondern ein ,,central control switch-
board®,an dem durch Steckverbindungen die lokalen ,,controls“ der Unter-
programme zu einem ,,single program*“ sequenziert wurden:,, We propo-
se a centralized programming device in which the program routine is
stored in coded form. “The’ crucial advantage of central programming is
that any routine, however complex, can be carried out whereas in the pre-
sent ENIAC we are limited (Brief von H. H. Goldstine an J. von Neu-
mann vom 2.9.1944, zit. nach Macrae 1992, S. 284; A. Goldstine 1946).

Der ENIAC-"Master-Pro-
grammer’; Panel 2
(www.kondo3d.com/eniac

/DSCF2453 jpg)

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17:3 Seite 56

56

2) Die von Elbourn und
Ware lebhaft beklagte
stdndige Verwechslung bzw.
Gleichsetzung von
“automatic coding” und
“automatic programming”
(1962, S. 1059 f.) war ein
Kennzeichen dieser
Fehleinschdtzung.

Zu den unterschiedlichen
Konzepten des “automatic
programming” siehe

Sammet 1969, S.4, 13.

Algorithmik - Kunst - Semiotik

Mit dem Begriff ,,program routine® deutet sich zwar die Los-
16sung des abstrakt-logischen Programms von der Hardware an, doch in
der tiberwiegenden Zahl der Belege, vor allem bei Eckert und Mauchly
selber, fielen,,program® und ,,programming” noch immer mit der Gesamt-
heit der Kontrollgerite und technischen Steuerungsprozesse zusammen.

Die Bindung an das steuerungs- und regelungstechnische bzw.
automatologische Programmierkonzept erhielt bei den ENIAC-Entwik-
klern eine folgenreiche kognitive Lenkungsfunktion. Sie bewirkte, dass
sie die Komplexitit der Programmierung unterschitzten und von einer
schnellen Automatisierung der Programmierprozesse ausgingen. Bereits
1944 formulierte Eckert in dem berithmten Memorandum ,,Disclosure
of Magnetic Calculating Machines“ (Kopie 1.2.1945; Ms. 29.1.1944), das
die wohl fritheste Formulierung des ,Programmspeicher‘-Konzepts ent-
hilt, auch das Leitziel des ,automatic programming®: Wenn ,,discs“ oder
»drums® und ,,multiple shaft systems“ zur Anwendung kdmen, ,,a great
increase in the available facilities and for allowing automatic program-
ming of the facilities and processes involved may be made, since longer
time scales are provided. This greatly extends the usefulness and attrac-
tiveness of such a machine. This programming may be of the tempora-
ry type set up on alloy discs or of the permanent type on etched discs*
(Eckert 1944, meine Hervorhebung).

Bei den Moore-Lectures propagierte auch Mauchly eine mog-
lichst weitgehende Automatisierung der verschiedenen ,steps“ von der
»preparation of problems“ bis zu,,set up“ und ,operation®, um so die,,costs
of computing® zu senken: ,If these steps can be systematized and redu-
ced to more or less routine operations, there is hope of performing them
automatically“ (Mauchly 1946, S. 33 f.). ,,Automatic programming” im
umfassenderen Sinne einer automatischen Programm-Generierung? ent-
wickelte sich sehr bald zu einem Schlagwort und Leitbild, das die Com-
puter Community lange Zeit fehlleitete, weil es die Komplexitit der Pro-
grammierung vergessen liefs. Es ist daher kein Zufall, dass die
unterschiedlichen logischen und arbeitsorganisatorischen Prozesse der
Programmerstellung nicht im Umfeld der professionellen Kultur des
»program control®, der ,,Automatologie“ und der in ihrer Tradition ste-
henden ENIAC-Entwickler herausgearbeitet wurden, sondern von Mathe-
matikern wie John von Neumann und Alan Turing, die sowohl praktisch
wie theoretisch in die Rechner- und Programmkonstruktion involviert

waren.

o

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17: 3$ Seite 57

Zur Genese des informatischen Programmbegriffs 57

4 Die Genese komplexer informatischer Programmbegriffe in der
professionellen Kultur der Mathematik und der friihen Theorie
des Computing

4.1 ,Programmieren’ als konstruktives Planen und Problemldsen
in der “Yon-Neumann-Gruppe”

John v. Neumann entwickelte mit Hermann H. Goldstine und Arthur
Burks zusammen 1945-48 ein Sechsstufenmodell der Programmiervor-
ginge, wobei klar zwischen den nicht automatisierbaren konzeptionellen,
konstruktiven und dynamisch-analytischen Aufgaben einerseits und eher
routinisierbaren statischen Codierungsprozessen andererseits unter-
schieden wurde (Aspray 1990, S.70). Mit Blick auf die Mannigfaltigkeit
der Programmiertatigkeiten verzichtete von Neumann, der ansonsten
mit einer ganzen Reihe von Analogiebildungen aus Natur-und Technik-
wissenschaften experimentierte, hier auf eine technische, biologische oder
anthropomorphe Leitmetapher. Zwar wird der Code-Begrift, der teils
fiir das Gesamtresultat der Programmerstellung, teils auch fiir deren
Umsetzung in Maschinencode steht,in der ,,Preliminary Discussion®gele- 3) Burks, Goldstine, von
gentlich mit der Sprach- und Ubersetzungsmetapher belegt: ,,[...] pro- Neumann 1946,5.34f;
blems can be coded, i.e. prepared in the language the machine can siehe auch Goldstine,
understand [...] a unit which can understand these instructions and order von Neumann 1946,
their execution.“®* Doch 1947 wandten er und Goldstine sich deutlich s30:"translate the pro-
gegen die Vorstellung einer bloffen Ubersetzung. Die Annahme, Coding blem (onceitis logically
bedeute, Translating a meaningful text [...] from one language (the lang- reformulated and made
uage of mathematics, in which the planner will have conceived the pro- explicite in allits details)
blem) into another language (that one of our code)“ sei falsch:,, Thus the into the code”
relation of the coded instruction sequence to the mathematically con-
ceived procedure of (numerical) solution is not a statical one, that of a 4 Forschungsansiitzen,
translation, but highly dynamical [...] Since coding is not a static process die auf Anthropo-
of translation, but rather the technique of providing a dynamic bak- morphismen und Mensch-
kground to control the automatic evolution of a meaning, it has to be Maschine-Hybride in der
viewed as a logical problem and one that represents a new branch of for- von-Neumann-Gruppe
mal logics® (Goldstine, von Neumann 1947, S. 82 f.). So wird in diesen fixiert sind, entgeht dieser
Schliisseltexten zwar die Sprachmetapher fiir die Programmierung ein- insgesamt sehr vorsichtige
gefithrt, doch bei der ausfiihrlichen Behandlung der einzelnen Prozesse ~ Umgang mit derartigen
wieder explizit zurtickgenommen.* Metaphern

Es findet sich nicht einmal ein einheitlicher Begriff fiir die (vgl. Eulenhsfer 1998 und
Gesamtheit der Programmiervorginge, ja von Neumann weigerte sich Stach 1998).

o

Fi nal

58

5) Siehe hierzu die Schriften
tiber Computerdesign und
Automatentheorie in: von

Neumann 1963, bes. Burks,
Goldstine, von Neumann
1946; Goldstine, von Neu-
mann 1947-48; vgl. allge-
mein Goldstine 1972 und

Aspray 1990

6) So heiSt es in der
“Preliminary discussion”:
“these operations can be

programmed by means of
others.”; “programming it
out of operations built into
the computer”; “programm-
ed as subroutines out of
orders already incorporated
in the machine” (Burks,
Goldstine, von Neumann

1946, 5. 70,74, 77).

von Nake_Buch_k1.gxd 07.11.2003 17:3

Seite 58

Algorithmik - Kunst - Semiotik

beharrlich in allen von ihm allein verfassten Texten, mit dem Pro-
grammbegriff zu arbeiten, und zwar auch noch nach 1948, als in der
Community die Bezeichnung ,,von Neumann’s programming method*
aufkam (Clippinger 1948). Aber auch in gemeinsamen Berichten mit
Burks und Goldstine sind ,,Planning“ und,,Coding® die Leitbegriffe, wih-
rend ,,Programming® nur selten erscheint.> Und wenn, dann auch nur
in der partiellen Bedeutung der Bildung von Funktionen aus im Rech-
ner gespeicherten Subroutinen fiir Addier-, Gleitkomma- und derglei-
chen Operationen.® Mit den Stufen Planung und logische Problemlésung
als iibergeordneten Titigkeiten und der Formulierung des Codes als
ausfithrende Detailarbeit wird die hierarchische Arbeitsteilung als Hinter-
grundperspektive erkennbar, die selber wiederum in eine Gesamtsicht
der am Computing beteiligten Akteursgruppen eingebettet ist. Und
diese implizite soziale Metaphorik lief3 sich offenbar mit dem damals
noch stark kontrolltechnischen Verstindnis des Programmbegriffs
nicht vereinbaren.

Von Neumanns Planungsbegriff fiir Programmierungsaufga-
ben korrespondiert auffillig mit seinem Organisationsbegriff fiir das
Rechnerdesign. Diesen hatte er zusitzlich zu seinem Organmodell der
Rechnerstrukturen und dem Neuronenmodell der dynamischen Rechen-
prozesse in die frithe ,Architectural Community* eingebracht (vgl. Hel-
lige 2003, S. 418 ff.). So wie er mit dem Organisationsbegriff auf die
Bewiltigung von Ziel- und Designkonflikten sowie auf Ressourcen- und
Dimensionierungsprobleme in der Computerkonstruktion aufmerksam
machen wollte, so sollte wohl auch der Planungsbegriff auf die Aufgaben-
komplexitat und Vielfalt des Tatigkeitsspektrums hinweisen. Soziale Meta-
phorik und Multiperspektivitat erkliren sich so nicht zuletzt aus von
Neumanns dezidierter ,,Stakeholder-Sicht“ des Computing, die man bis-
her weitgehend iibersehen hat: Er betrachtete namlich die Bauprinzipien
von ,computing machines“ sowohl aus dem Blickwinkel der konstruie-
renden Ingenieure, der Algorithmen entwerfenden Mathematiker als auch
der ,,user - bei ihm gab es 1946 bereits die Redewendung ,,the user des-
ires“ (Goldstine, von Neumann 1946, S. 22). Die ,,user” fasste er ideal-
typisch unter der Bezeichnung ,logician“ zusammen: ,a hypothetical per-
son or group of persons really fitted to plan scientific tools“ (ebenda, S. 1).

Obwohl durch und durch Mathematiker, reflektierte von Neu-
mann Computer- und Programmstrukturen als komplexes, zielkonflikt-

behaftetes Konstruktionsproblem, fiir das ihm die Planungs- und

o

Fi nal

von Nake_Buch_k1.gxd 07.11.2003 17:34k Seite 59

Zur Genese des informatischen Programmbegriffs

Organisationsmetapher addquater erschien. Eine sehr dhnliche Design-
Auffassung veranlasste um 1960 Frederick Brooks, den Computer Engi-
neering-Begriff durch die Architekturmetapher zu ersetzen (Hellige 2003,
S. 436 ff.). Mit Organisation, Planung und Architektur hat die Informatik
reflexiv-soziomorphe Metaphern ins Spiel gebracht, die sowohl auf die
Arbeitsprozesse der Konstruktion, die Stakeholder-bezogene Zielkon-
fliktstruktur und die daraus resultierende Design-Komplexitit dieser
technischen Gebilde verweisen. Der Wechsel zu sozialen Metaphern, die
nicht wie spiter die ,,Hierarchien®, ,,Pyramiden® und ,,Fabriken“ vorab
bestimmte soziale Strukturen festschreiben wollen, signalisiert hier, zumin-
dest in der Entstehungsphase der Metaphern, ein Sicheinlassen auf die
technisch-soziale Komplexitit konstruktiver Prozesse, die bei den anfing-
lich dominierenden technischen und naturwissenschaftlichen Metaphern
noch ausgeblendet war.

4.2 Programmieren als Uberbriicken von Sprachdifferenzen zwischen Mensch
und Maschine bei Turing

Ein Ubergang von technisch-naturwissenschaftlichen zu sozialen Meta-
phern findet sich auch bei Alan Turing. Durch seinen Einstieg in die
Debatte tiber theoretische Fragen der Berechenbarkeit und der Struktu-
ren ,universaler Maschinen® hatte er bereits 1945/46 die Programmie-
rung im Spannungsfeld zwischen menschlicher und maschineller Intelli-
genz angesiedelt und als ein Problem der Sprachdifferenz gedeutet. Die
beivon Neumann nur angedeutete und spéter zuriickgenommene Sprach-
metapher wird bei Turing Grundlage des Verstdndnisses des Program-
mierens. Die Liicke zwischen der symbolischen Sprache der Maschinen
und der Alltagssprache des Menschen ist fiir ihn wesentlich ein Kom-
munikationsproblem: ,,It should be possible to describe to the operator
in ordinary language within the space of an ordinary novel. These instruc-
tions will be not quite the same as the instructions which are normally
given to a computer, and which give him credit for intelligence® (Turing
1946, S. 39). Das Nebeneinander verschiedener Notationen und ,lang-
uages” war nur iiber eine Kette von , translations“ und exakte Sprachen
zu iiberwinden: ,,The language in which one communicates with these
machines, i.e. the language of instruction tables, form a sort of symbo-
lic logic. The machine interprets whatever it is told in a quite definite
manner without any sense of humor or sense of proportion [...]“ (Turing
1947, S. 122). Turing entwarf daher bereits in seinem “Proposal” unter-

o

59

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17:3 Seite 60

60

7) Die “Library”-Metapher
gibt es aber schon in der
Zeit der Jacquard-
Maschinen und bei

Babbage.

“Popular form” einer
Instruktionstabelle in
Turings “Proposal” von

1945 (1946, S.75)

Algorithmik - Kunst - Semiotik

schiedliche Sprachebenen fiir die ,instruction tables‘, mit denen die ,jobs"
[sic!] abgearbeitet werden: die,,machine form®,d.h. der Maschinen-Code,
die ,,permanent form® die Lochkarten-Notation und die ,,popular form*
eine symbolische Sprache, ,,which can easily be read” Die in verschiede-
ner Form gesammelten Programme sollten nach klassischer Manier in

INTIYTTWIRIT Y

»a sort of library* aufbewahrt und geordnet werden’ (Turing 1946,S.70
ff., bes. 74).

Uber die Sprach- und Ubersetzungsmetapher erschloss sich auch ihm die
ganze Vielfalt und Komplexitét der , Kommunikationsprozesse* mit dem
Rechner. Doch im Gegensatz zu von Neumann griff er 1947 den Pro-
grammbegriff der ENIAC-Gruppe auf. Er 16ste ihn jedoch von dem engen
Hardware- und Kontrolltechnik-Bezug und gab ihm aus seiner anthro-
pomorphen Perspektive die Bedeutung eines Biindels von Tiétigkeiten
mit unterschiedlichen Intelligenzanforderungen und Sprachvermdgen.
Die Prozesse der Programmerstellung und -durchfithrung sah er dabei
bereits wie lange zuvor schon Babbage und eher implizit John von Neu-
mann als ein hierarchisch strukturiertes System der Arbeitsteilung. An
der Spitze stand als ,master der,,programmer*, unter dem er nicht mehr
ein ,,device® verstand, sondern den ,human programmer. So kehrte die

o

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 61

Zur Genese des informatischen Programmbegriffs

Metapher zum programmierenden Subjekt zuriick und 16ste sich damit
auf. Durch seine zugleich personale und soziale Sicht der Programmie-
rung wurde Turing offenbar der Schopfer des Begriffs ,, Programmierer®
im Computerbereich. Unter dem ,,programmer* sorgten die ,,librarians®
fiir die Ordnung und Pflege der Programme, Routinen und Subroutinen,
die . girls“ erfassten die Werte und Daten und die ,,servants® fiitterten den
Rechner mit Lochkarten. Das Rechenzentrum wurde so nahezu ein Abbild
der akademischen Arbeitsteilung mit Bibliothek, Sekretariat und Hilfs-
kraften. Den weniger Qualifizierten drohte er bereits mit der baldigen
Verdrangung durch Fortschritte der Computertechnik. Die Maschinen
waren zwar in dem hierarchisch organisierten Intelligenzverbund die
‘Sklaven’: ,,It is also true that the intention in constructing these machi-
nes in the first instance is to treat them as slaves, giving them only those
jobs which have been thought out in detail“ (Turing 1947, S. 122). Doch
sie waren auch gelehrige Schiiler (,,pupils), die von ihren ,,masters“ lern-
ten, wenn man ihnen nur geniigend Speicherplatz und Entfaltungsspiel-
raum gewdhrte. Wortlich heif3t es in der berihmten Passage: ,, What we
want is a machine that can learn from experience. The possibility of let-
ting the machine alter its own instructions provide the mechanism for
this, but this of course does not get us very far (ebenda, S. 123).

Turings Uberlegungen von 1945 iiber die Sprachdifferenzen
zwischen Mensch und Maschine miindeten so zwei Jahre spiter in der
»idea of a machine with intelligence®, die selber im System der Arbeits-
teilung als Konkurrent auftrat. Es ist auffillig, dass George Stibitz zur glei-
chen Zeit in dhnlicher Weise die Vorgange in einem Rechner als hierar-
chische Kette kooperierender Schichten darstellte, als eine ,,series of levels
of intelligence (Stibitz 1948, S. 96 ft.; vgl. Hellige 2003, S. 423 ff.). Auch
hier kiindigte sich bereits der Ubergang von den stirker technischen und
naturwissenschaftlichen Metaphern und Modellvorstellungen der
Anfangszeit zu soziomorphen Analogien und Modellierungen der ent-
wickelten Computer- und Programmiertechnik an. Doch die eigentliche
Zeit der Hierarchie-, Pyramiden- und Schichtenmodelle, der Produktions-
linien und Fabriken kam erst mit den 60er und 70er Jahren.

Mithilfe der Sprach- und Ubersetzungsmetapher hatte sich
Turing die Verschiedenheit des menschlichen und maschinellen Sprach-
baus (Pfliiger 1993) erschlossen und von daher die sozialen Arbeitspro-
zesse der Programmierung in den Blick bekommen. Er befreite damit die
Begriffe ,,program® und ,,programmer“ von der Hardware-Fixierung in

o

61

Fi nal

von Nake_Buch_k1.qgxd 07.11.2003 17:3 Seite 62

62

Algorithmik - Kunst - Semiotik

der professionellen Kultur des ,,program control“. Er entwickelte schon
1945,d.h.noch vor der von-Neumann-Gruppe, wohl als erster ein Sprach-
konzept der Programmierung, allerdings noch ohne den Begriff der
Programmiersprache. Dessen erstes Erscheinen ist wie das der Begriffe
Betriebssystem und Software noch immer nicht ermittelt. Mit dem Leit-
bild der ,,intelligenten Maschine® tiberfrachtete Turing zugleich das erwei-
terte Programmverstdndnis mit anthropomorphen Anspriichen, die die
Technik auf absehbare Zeit nicht einlosen konnte. So setzte Turing dem
unterkomplexen kontrolltechnischen Programmverstindnis ein hyper-
komplexes entgegen, das sich am Ende ebenfalls als eine fehlleitende
Simplifikation erweisen sollte.

5 Die Anfange von Rationalisierungsmetaphern in der
Programmierung und das Problem von metaphorischen
Prozessen mit unreflektierter Leitbildfunktion

John von Neumann und Goldstine haben beiden Tendenzen widerstan-
den, dem Glauben an eine schnelle Realisierung des ,,automatic pro-
gramming", wie an eine baldige Uberwindung der Sprachdifferenzen zwi-
schen Mensch und Maschine. Sie bewahrten sich aus ihrer gleichermaflen
theoretisch-mathematischen und nutzerbezogenen Problemsicht den
Blick fiir die Verschiedenheit der Prozesse als auch fiir den dynamisch-
konstruktiven Charakter des Programmierens. Dieses war fiir sie gerade
nicht,,a mere question of translation (of a mathematical text into a code)
but rather a question of providing a control scheme for a highly dyna-
mical process, all parts of which may undergo repeated and relevant chan-
ges in the course of this process (Goldstine, von Neumann 1947, S. 84).

Das addquate Modellierungsinstrument fiir diesen dynami-
schen Ablauf der Berechnung und die Verschachtelung der Programm-
teile war fiir die von-Neumann-Gruppe seit Sommer 1946 das graphi-
sche, Flussdiagramm®, das als ,Ablaufschema“ oder ,,Strukturdiagramm*®
traditionell in den Ingenieurwissenschaften zur Darstellung von kom-
plexen Anlagenstrukturen sowie von Stoff- und Energiefliissen verwen-
det wurde (Goldstine 1972, S. 266 ff.; Knuth, Pardo 1980, S. 208 ff.). Diese
Sflow diagrams® wurden erst im Laufe der 50er und frithen 60er Jahre
von den ,,flow charts* abgelost, die sich im Namen und in der Symbolik
an die Flowcharts der beiden Gilbreth anlehnten. Die Flowcharts dien-
ten im Computing urspriinglich nur zur Veranschaulichung von Arbeits-

o

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17:3 Seite 63

Zur Genese des informatischen Programmbegriffs 63

und Informationsfliissen, doch wurde diese Darstellungsform auch bald
auf Programmablaufe tibertragen, so dass sich am Ende die Unterschie-
de der Notationen verwischten (siehe die Klage dariiber bei Chapin 1962,
S. 97). Dieser Wandel der Darstellungsmodelle steht aber bereits im
Zusammenhang mit dem breiten Einzug industrieller Metaphern und
Modellbildungen in diesem Zeitraum. Es ging jetzt nicht mehr vorrangig

Flowdiagram von

iGN * 5
LB fli_.‘ b John von Neumann
£
5."',» 1 1 : " e Syl Pt —r 1
| B 4 Lpr | L br 1#d| : *
r | Xy —P» Xisa)
' | %y {
APVt blrht
e o B
i W iy '5-47'“(‘
o
i 7?'-"':?{-7
+ Ko [
Bt ML
— |i=0
G e
j —_—
e

um die Darstellung und Planung komplexer Strukturen, sondern um eine
Rationalisierung der Softwareproduktion.

Fi nal von Nake_Buch_k1.gxd 07.11.2003 17:3 Seite 64

64

Process Charts der Gilbreth
als Vorbild der Flowcharts

(Barnes, S.57)

Algorithmik - Kunst - Semiotik

Bolt- % x 1* Hex. Head Lock Washer Steel Washer Rubber Sheets 127 x 24~ x 14,”
Travel, Foal Symbol Description Trawel, Feel Symbol Descriplion Trawel, Feel Symbol —Descriplion Travel, Feel Symbol —Description
Unload from car Unioad from car Unboad from car Unload from car
o To stores 57 m To stores 57 ™ To stores 57 =0 T stores 57
laspect Inspect Inspect Inspact
In stores 57 In stores 57 I stores 57 In sloves 57
50 To assembly bench, 150 To assembly bench, 150 To assembly bench, 300 To purch preas,
Dept. A37 Dept. A37 Dept. AJ7 Dept. HE
Store at press
Punch out
rubber washers
Inspect a few
wasitis &l press
Slore al press
0 To sssembly
= beach, Dept. A3
Stove st bench
Assemble bolt
Summary and thres
Number of tions. s washers by hand
um opers
Number of storages and delays a Store at bench
Mumber of i i 5 T . - To finsi assemivy
Number of transportations 10 30 floor, Dept. F, fo
Totsl travel in fest 1750 be aszambled
inta cabdnat

Fig. 32. Assembly process chart—bolt and washer assembly.

Dies wird nicht zuletzt daran deutlich, dass man auch fiir die Struk-
turierung des Software-Entwicklungsprozesses ab 1962/63 ebenfalls auf
tayloristische Rationalisierungsinstrumente wie das Gannt-Diagramm
zuriickgriff. Daraus entwickelten sich spater die Phasenmodelle des Soft-
ware Engineering, insbesondere das bekannte Wasserfallmodell von Barry
Boehm. Das Vorbild der industriellen Fertigungsmethoden fiir die Pro-
grammentwicklung wurde hier kaum mehr hinterfragt. Die Modell-
importe erhielten auf diese Weise eine weitgehend unreflektierte Leit-
bildfunktion. Nachdem aber erstmal das Bewusstsein verloren gegangen
war, dass es sich um konstruierte Analogiebildungen mit begrenzter Reich-
weite handelt, konnte es leicht zu metaphorischen Zirkelschliissen kom-
men. So bereits bei einer der frithesten Analogiebildungen von Pro-
grammierung und industrieller Fertigungsplanung, der bei Alwin Walther.

Walther, der in der Tradition verketteter Maschinensysteme
1942-44 mit Hilfe von steckbaren ,, Kopplungstafeln® @ibliche elektro-
mechanische Rechenwerke, Tabulatoren bzw. Lochkartengerite zu pro-
grammgesteuerten Rechenautomaten verband, interpretierte bereits 1946,
1952 und 1955 in Vortrigen den ,,Aufbau von Rechenautomaten® als
Abbild und zugleich als Muster bzw. Kernstiick der vollautomatischen
Fabrik. Die Kopplungstafel fungiert danach als ,Befehls-Steuerwerk®,
das die ,,Einzelwerke® steuert, bzw. als ,,Gehirn®, das ,,Arbeitsbefehle“ an
die Gliedmaflen und Muskeln gibt, d.h. die Addier- und Multiplizier-
werke (Walther 1956, S. 17; vgl. auch Eulenhofer 1998, S. 260 f.). Letzte-

o

Fi nal

von Nake_Buch_k1.gxd 07.11.2003 17:35k Seite 65

Zur Genese des informatischen Programmbegriffs

re verglich er auch mit dem Fliefband, wihrend das ,,Kommandowerk®
das ,Analogon zur Betriebsleitung® darstelle (ebenda, S. 38). Auch das
noch so mithsame und langwierige Programmieren unterwarf er der
,Fabrikordnung": Die einzelnen Prozesse und Phasen wurden exakt der
Fabrikationsplanung nachgebildet.

Dabei lieflen die gleichzeitige Modellierung der Programm-
fertigung als Abbild der industriellen Fertigungsplanung und die Deklarie-
rung des Rechners und seiner Programmstruktur als Vorbild fiir die
Fabrikorganisation Ursprungs- und Zielbereich der Metaphernbildung
verschwimmen, und es kam zum metaphorischen Zirkelschluss. Wenn
aber die soziomorphe Modellierung von Technostrukturen und die
technomorphe Modellierung von Sozialstrukturen sich gegenseitig ver-
festigen, dann erhalten sie undurchschaubaren Ideologiecharakter, ein
Phidnomen, das sich spiter bei den hierarchischen Pyramiden- und
Referenzmodellen bestitigen sollte (vgl. die Kritik bei Hammacher
1996, S. 88 ff.). Man sollte deshalb immer die Ambivalenz von Meta-

Produktions- Rechen-
Aufgabe Aufgabe
i i - Numerische
Verhandene Produktions- Bibliotheks P
Teilefertic Verfahren Programme rd Verfahren
PN
S .

ll‘lafencf | Zelchnungen | Zahlen Formein

Fiufdiagramm
Fertigurgs-
planung
Pseudoprogramm
Lagerhaltung peichertabelle
l © WMaierigifiul)
Fabrikations- Rechanpro,
anwe/sungen) gramm
t Detaiizelchnungen, ‘Einzelbefehisfolge)
Termine,_Mengen)

/

Rechenautomat

Fabrik

Ergebnisse

Bild 15

Vergleich zwischen der Planung einer Fabrikation
und dem Programmieren eines Rechenablaufs

phern im Blick behalten: die Vorpragung durch Bestehendes und die
kreative Neuschopfung.

65

Alwin Walthers industrielle
Programm-Metapher von

1956 (S.41)

Fi nal

von Nake_Buch_k1.gxd 07.11.2003 17:35k Seite 66

66

Algorithmik - Kunst - Semiotik

6 Fazit: Aufgaben fiir die Metaphernforschung
in der Technikbewertung

Aus dem hermeneutischen Charakter von Ubertragungsprozessen ergibt
sich, so meine These, eine veridnderte Sicht der Rolle der Metaphernfor-
schung in der Technikbewertung. Metaphern sind weder blof3e Geistes-
blitze, die man nur konstatieren, aber nicht beeinflussen kann. Sie sind
aber auch nicht der Angelpunkt der Erkldrung und Bewertung von
Technikgeneseprozessen. Metaphern geben Auskunft iiber Vorver-
stindnisse, Absichten, Benutzerbilder usw., sagen aber wenig tiber die
systemische Problemstruktur und die Langzeitdynamik einer Technik
aus.

Eine mit historischen Vergleichen arbeitende hermeneuti-
sche Bewertung aktueller Techniken vermag zwar selbst keine direkte
Aussagen iiber falsche oder richtige Ubertragungsvorginge zu liefern.
Sie kann aber typische Problem- und Fehlerkonstellationen auffiihren.
Dazu gehoren:

« die Fixierung auf bestimmte Metaphern als Folge professioneller
Kulturen

« eine zu direkte Musteriibertragung aus der alten in die neue Technik

« die mogliche Vererbung alter Probleme und impliziter Grenzen in die
neue Technik

» metaphorische Zirkelschliisse mit unreflektierter Leitbildfunktion.

Da diese Problem- und Fehlerkonstellationen in der Informatik nicht sel-
ten auftreten und da aus inaddquaten Ubertragungen oft folgenreiche
Irrwege entstehen konnen, hat eine historisch-vergleichende Meta-
phernforschung im Rahmen einer Technikhermeneutik wichtige Aufga-
ben zu leisten. Denn die Vorurteilstruktur des Verstehens ist nicht, wie
Gadamers Hermeneutik-Auffassung es nahelegt, unausweichlich, die
Reflexion kann vielmehr, wie Habermas es ihm entgegenhielt, das
»Medium der Uberlieferung“ grundlegend wandeln: ,,Die transparent
gemachte Vorurteilsstruktur kann nicht mehr in der Art eines Vorurteils
fungieren. Die Kraft der Reflexion vermag den Anspruch der Tradition
auch abzuweisen“ (Habermas 1967, S. 175).

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 67

Zur Genese des informatischen Programmbegriffs

Literatur

Aspray, William (1990), John von Neumann, and the Origins of Modern Computing. Cam-
bridge, MA, London

Babbage, Charles (1837), On the Mathematical Powers of the Calculating Engine. In: Ran-
dell, Brian (ed.) (1973),17-52

Barnes, Ralph M. (1958), Motion and Time Study. 4. Aufl., New York

Burks, Arthur W. (1980), From ENIAC to the Stored-Program Computer: Two Revolutions
in Computers. In: Metropolis, Nicholas C.; Howlett, Jack; Rota, Gian-Carlo (eds.), A
History of Computing in the Twentieth Century. A Collection of Essays, New York,
London, 311-344

Burks, Arthur W.; Goldstine, Herman H.; Neumann, John von (1946), Prelimininary Dis-
cussion of the Logical Design of an Electronic Computing Instrument, Part I, Volume 1.
Institute for Advanced Study Princeton, N. . Juni 1946; 2. Aufl. 1947; nachgedruckt in:
Taub, Abraham H. (ed.), Complete Works of John von Neumann, 6 Bde.Oxford (UK),
New York 1961-63, Bd. 5, 34-79

Busch, Carsten (1998), Metaphern in der Informatik. Modellbildung, Formalisierung, Anwen-
dung. Wiesbaden

Ceruzzi, Paul E. (1998), A History of Modern Computing.Cambridge, MA

Chapin, Ned (1962), Einfiihrung in die elektronische Datenverarbeitung. Wien, Miinchen

Clippinger, Richard F. (1948), A Logical Coding System Applied to the ENIAC (Electronic
Numerical Integrator and Computer). Ballistic Research Laboratories Report No. 673
Project No. TB3-0007 of the Research and Development Division, Ordnance Depart-
ment 29 September 1948 Aberdeen Proving Ground, Maryland; Internet:
http://ftp.arl.army.mil/~mike/comphist/48eniac-coding/

Coy, Wolfgang (1998), Hat das Internet ein Programm? Vortrag auf dem medienwissen-
schaftlichen Symposium der Universitit Konstanz am 30.10.98, Internet:
http://waste.informatik.hu-berlin.de/Coy/Coy_Internet_11-98.html

De Leeuw, Adolph L. (1922), Methods of Machine Tool Design. American Machinist 57
(1922) Heft 17, Oktober 1922, S. 639-642 (Schlussabschnitt: “The Program Machine
and Its Future possibilities”)

Eckert, John P. (1944), Disclosure of Magnetic Calculating Machine.29. Januar 1944, Kopie
1. Feb. 1945; gedruckt in: Lukoff, Herman From Dits to Bits: A Personal History of the
Electronic Computer, Portland, OR. 1979, 207-209

Eckert, John P. (1946), A Preview of a Digital Computing Machine, Lecture 10. In: Camp-
bell-Kelly, Martin; Williams, Michael R. (eds.), The Moore School Lectures. Theory and
Techniques for Design of Electronic Digital Computers (Charles Babbage Institute

o

67

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 68

68

Algorithmik - Kunst - Semiotik

(Hrsg), Reprint Series for the History of Computing, Bd. 9), London, Los Angeles, San
Francisco 1985, 109-126

Eckert, John Presper; Mauchly, John W. (1945), Automatic High-Speed Computing: A Pro-
gress Report on the EDVAC. Report No. W-670-ORD-4926, Supplement No. 4, Moore
School Library, University of Pennsylvania, Philadelphia, 30. September 1945, Univer-
sity of Pennsylvania, Philadelphia 1946

Eckert, John Presper; Mauchly, John W.; Goldstine, Herman H.; Brainerd, John Grist
(1945), Description on the ENIAC. Moore School of Electrical Engineering, Universi-
ty of Pennsylvania, Philadelphia

Eckert, Wallace J. (1940), Punched Card Methods in Scientific Computation. Thomas J. Wat-
son Astronomical Computing Bureau, New York; wiedergedruckt in: Charles Babba-
ge Institute, Reprint Series for the History of Computing, Bd. 5, London, Los Angeles,
San Francisco 1984

Elbourn, R. D.; Ware, W. H. (1962), The Evolution of Concepts and Languages of Compu-
ting. Proceedings of the IRE 50, 1059-1062

Engel, F. V. A ; Oldenbourg, Rudolf C. (1944), Mittelbare Regler und Regelanlagen. Grund-
lagen, Aufbau und Anwendung. Berlin

Eulenhofer, Peter (1998), Der Informatiker als "deus ex mathematica”. In: Siefkes, Dirk;
Eulenhofer, Peter; Stach, Heike; Stédtler, Klaus (Hrsg.), Sozialgeschichte der Informatik.
Kulturelle Praktiken und Orientierungen, Wiesbaden, 257-273

Gilbreth, Frank B.; Gilbreth, Lilian M. (1921), Process Charts. Transactions of the ASME
43, Paper 1818, 1029-1050

Goldstine, Adele K. (1946), Report on the ENIAC (Electronic Numerical Integrator and
Computer), Technical Report 1. 2 Bde., Philadelphia 1. Juni 1946, Internet:
http://ftp.arl.army.mil/~mike/comphist/46eniac-report

Goldstine, Herman H. (1972), The Computer from Pascal to von Neumann. Princeton, N. J.

Goldstine, Herman H.; Goldstine, Adele (1946), The Electronic Numerical Integrator and
Computer (ENIAC). Mathematical Tables and other Aids to Computation 2 (1946)
Juli, 97-110; nachgedruckt in: Randell, Brian (ed.) (1973), 333-347

Goldstine, Herman H.; Neumann, John von (1946), On the Principles of Large Scale Com-
puting Machines (Ms. 1946). gedruckt in: Taub, Abraham H. (ed.), Complete Works of
John von Neumann, 6 Bde.Oxford (UK), New York 1961-63, Bd. 5, 1-34

Goldstine, Herman H.; Neumann, John von (1947/48), Planning and Coding of Problems
for an Electronic Computing Instrument, 3 Bde. Institute for Advanced Study, Prince-
ton 1947-1948; wiedergedruckt in: Taub, Abraham. H. (ed.), Complete Works of John
von Neumann, 6 Bde. Oxford (UK), New York 1961-63,Bd. 5, Part I, Volume 1: 80-151;
Volume 2: 152-214; Volume 3: 215-235; und in: Aspray, William; Burks, Arthur W.

(eds.), Papers of John von Neumann on Computing and Computing Theory, Cam-

o

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 69

Zur Genese des informatischen Programmbegriffs

bridge/Mass., London, Los Angeles, San Francisco 1987, Volume 1: 151-222; Volume
2:223-285; Volume 3: 286-306

Grier, David A. (1996), The ENIAC, the Verb ,to program® and the Emergence of Digital
Computers. Annals of the History of Computing 18 (1), 51-55

Habermas, Jiirgen (1967), Zur Logik der Sozialwissenschaften, in: Philosophische Rund-
schau, Beiheft 5, Tiibingen

Hammacher, Bernd (1996), Referenzmodelle als Leitbilder der CIM-Gestaltung. In: Hellige,
Hans Dieter (Hrsg.), Technikleitbilder auf dem Priifstand. Das Leitbild-Assessment
aus Sicht der Informatik- und Computergeschichte, Berlin, 71-95

Hellige, Hans Dieter (1993), Von der programmatischen zur empirischen Technikgenese-
forschung: Ein technikhistorisches Analyseinstrumentarium fiir die prospektive Technik-
bewertung. In: Technikgeschichte, Bd. 60, Nr. 3, 186-223

Hellige, Hans Dieter (1996a), Technikleitbilder als Analyse-, Bewertungs- und Steuerungs-
instrumente: Eine Bestandsaufnahme aus informatik- und computerhistorischer Sicht.
In: ders. (Hrsg.), Technikleitbilder auf dem Priifstand. Das Leitbild-Assessment aus
Sicht der Informatik- und Computergeschichte, Berlin, 13-36

Hellige, Hans Dieter (1996b), Leitbilder im Time-Sharing-Lebenszyklus: Vom ,,Multi-Access
zur ,Interactive On-line Community*. In: ders. (Hrsg.), Technikleitbilder auf dem Priif-
stand. Das Leitbild-Assessment aus Sicht der Informatik- und Computergeschichte,
Berlin, 205-234

Hellige, Hans Dieter (1998), Der ‘begreifbare’ Rechner: Manuelles Programmieren in den
Anfingen des Human-Computer Interface. In: Riigge, Ingrid; Robben, Bernd; Hornek-
ker, Eva; Bruns, Willi (Hrsg.), Arbeiten und Begreifen: Neue Mensch-Maschine-Schnitt-
stellen, Miinster, Hamburg, 187-200

Hellige, Hans Dieter (2003), Die Genese von Wissenschaftskonzepten der Computerarchi-
tektur: Vom “system of organs” zum Schichtenmodell des Designraums. In: ders. (Hrsg.),
Geschichten der Informatik. Visionen, Paradigmen und Leitmotive, Berlin, Heidelberg,
New York, 411-470

Hughes, Thomas P. (1991), Die Erfindung Amerikas. Der technologische Aufstieg der USA
seit 1870. Michen

Kistermann, Friedrich W. (2000), The DEHOMAG D11 Tabulator - A Milestone in the
History of Data Processing. In: Rojas, Ratl; Hashagen, Ulf (eds.), The First Computers
- History and Architectures, Cambridge, MA, London, 221-235

Knuth, Donald E.; Pardo, Luis Trabb (1980), The Early Development of Programming
Languages, The Early Development of Programming Languages. In: Metropolis, Nicholas
C.; Howlett, Jack; Rota, Gian-Carlo (eds.), A History of Computing in the Twentieth
Century. A Collection of Essays. New York, London, 197-273

o

69

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 70

70

Algorithmik - Kunst - Semiotik

Krock, Alwin (1991), SPS ,der Schliissel zur Automatisierung. Technische Rundschau, 47,
68-73

Ludgate, Percy E. (1909), On a Proposed Analytical Machine. Scientific Proceedings of the
Royal Dublin Society 12 No. 9, 77-91; nachgedruckt in: Randell, Brian (ed.) (1973),
71-85

Lynch, Richard K. (1993), On Analytical ‘Engines’, Data Architectures’ and Software ‘Engi-
neers’: Metaphoric Aspects of the Development of Computer Terminology“. Ph.D. The-
sis, Columbia University Teachers College

Macrae, Norman(1992), John von Neumann. New York

Mambrey, Peter; Paetau, Michael; Tepper, August, (1995), Technikentwicklung durch Leit-
bilder. Neue Steuerungs- und Bewertungsinstrumente. Frankfurt a. M., New York

Mauchly, John W. (1942), The Use of High Speed Vacuum Tube Devices for Calculating.
nachgedruckt in: Randell, Brian (ed.) (1973), 329-332

Mauchly, John W. (1946), Digital and Analogy Computing Machines, Lecture 1. In: Cam-
pbell-Kelly, Martin; Williams, Michael R. (eds.), The Moore School Lectures. Theory
and Techniques for Design of Electronic Digital Computers (Charles Babbage Insti-
tute, Reprint Series for the History of Computing, Bd. 9), London, Los Angeles, San
Francisco 1985, 25-40

Mauchly, John W. (1947), Preparation of Problems for EDVAC-Type Machines. Proceed-
ings of a Symposium on Large Scale Digital Calculating Machinery; nachgedruckt in:
Randell, Brian (ed.) (1973), 365-369

Mauchly, John W.; Eckert, John Presper; Brainerd, John Grist (1943), Report on an Elec-
tronic Diff. Analyzer. Moore School of Electrical Engineering, University of Pennsyl-
vania, Philadelphia

Meiners., Gustav (1936), Die Technik selbstttiger Steuerungen und Anlagen; neuzeitliche
schaltungstechnische Mittel und Verfahren, ihre Anwendung auf den Gebieten der Ver-
riegelungen und der selbsttitigen Steuerungen. Miinchen, Berlin

Menabrea, Luigi F. (1842), Sketch of the Analytical Engine Invented by Charles Babbage,
Esq., Bibliotheque Universelle de Geniéve, No. 82, Okt. 1842, translated into English
with editorial notes by the translator, translated into English with editorial notes by the
translator, Augusta Ada, Countess of Lovelace. In: Taylor’s Scientific Memoirs, Bd. II,
Okt. 1843, Art.29., 666-731; wiedergedruckt in: Morrison, Philip; Morrison, Emely
(eds.), Charles Babbage and His Calculating Engines. Selected Papers by Charles Bab-
bage and Others, New York 1961; Internet: http://psychclassics.yorku.ca/Lovelace/men-
abrea.htm

Merrifield, C. W. (1879), Report of the Committee ... appointed to consider the avisability
and to estimate the expense of constructing Mr. Babbage’s Analytical Machine, and of

printing tables by its means. Report of the British Association for the Advancement of

o

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 71

Zur Genese des informatischen Programmbegriffs

Science, Dublin, 92-102, London 1879; wiedergedruckt in: Randell, Brian (ed.) (1973),
53-63

Nake, Frieder (2003), The Display as a Looking-Glass. Zu Ivan E. Sutherlands friiher Vision
der grafischen Datenverarbeitung. In: Hellige, Hans Dieter, (Hrsg.), Geschichten der
Informatik. Visionen, Paradigmen und Leitmotive, Berlin, Heidelberg, New York,
339-365

Neumann, John von (1945), First Draft of a Report on the EDVAC. Moore School of Electri-
cal Engineering, University of Pennsylvania, Philadelphia 30. Juni 1945; wiedergedruckt
in: Annals of the History of Computing 15 (1993) 4, 27-67

Neumann, John von (1963), Design of Computers, Theory of Automata and Numerical Ana-
lysis.In: Taub, Abraham H. (ed.), Complete Works of John von Neumann, 6 Bde.Oxford
(UK), New York 1961-63, Bd 5

Oxford English Dictionary (1989), Artikel: program, programme, programmer, program-
ming. 2nd ed., vol. XII, Oxford, 589-592

Pfliiger, Jorg-Martin (1994), Uber die Verschiedenheit des maschinellen Sprachbaues. In:
Bolz, Norbert; Kittler, Friedrich; Tholen, Christoph (Hrsg.), Computer als Medium,
Miinchen, 161-181

Pfliiger, Jorg-Martin (2002), Language in Computing. In: Doerries, Matthias (ed.), Experi-
menting in Tongues: Studies in Science and Language, Stanford

Pfliiger, Jorg-Martin (2003a), Writing, Building, Growing: Leitvorstellungen der Program-
miergeschichte. In: Hellige, Hans Dieter, (Hrsg.), Geschichten der Informatik. Visionen,
Paradigmen und Leitmotive, Berlin, Heidelberg, New York, 275-320

Pfliiger, Jorg-Martin (2003b), Konversation, Manipulation, Delegation. Zur Ideengeschich-
te der Interaktivitdt. In: Hellige, Hans Dieter, (Hrsg.), Geschichten der Informatik. Visio-
nen, Paradigmen und Leitmotive, Berlin, Heidelberg, New York, 367-408

Randell, Brian (ed.) (1973), The Origins of Digital Computers. Selected Papers. Berlin, Hei-
delberg, New York

Reuleaux, Franz (1875), Lehrbuch der Kinematik, 1. Band: Theoretische Kinematik. Grund-
ziige einer Theorie des Maschinenwesens. Braunschweig

Sammet, Jean E. (1969), Programming Languages: History and Fundamentals. Englewood
Cliffs, N.J.

Scharf, Achim (1989), Speicherprogrammierbare Steuerungen: Mehr Leistung und Komfort.
Hard and Soft 6 (7/8), 8-15

Schmid, Wolfgang (1941), Untersuchung der Arbeitsspiele der verschiedenen selbsttitigen
Steuerungen im Fertigungswesen. Feinmechanik und Prézision 49 (6), 65-69

Schmid, Wolfgang; Olk, Friedrich (1939), Fiihlergesteuerte Maschinen. Essen

Stach, Heike (1998), Beschreiben, konstruieren, programmieren. Zur Verschmelzung von The-

orie und Gegenstand. In: Siefkes, Dirk; Eulenhofer, Peter; Stach, Heike; Stidtler, Klaus

o

71

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 72

72 Algorithmik - Kunst - Semiotik

(Hrsg.), Sozialgeschichte der Informatik. Kulturelle Praktiken und Orientierungen,
Wiesbaden, 213-229

Stibitz, George R. (1947), The Organization of Large Scale Calculating Machinery. In: Har-
vard University Computation Laboratory (ed.), Proceedings of a Symposium on Large
Scale Calculating Machinery, Sponsered by the Navy Department Bureau of Ordnan-
ce and Harvard University at the Computation Laboratory Jan. 1947, Cambridge, MA
1948; wiedergedruckt in: Charles Babbage Institute (ed.), Proceedings of a Symposium
on Large Scale Calculating Machinery. Reprint Series for the History of Computing
Bd. 7, London, Los Angeles, San Francisco, 91-100

Strauch, Helmar (1937), Selbsttiitige Steuerung mechanischer Bewegungen durch Lochkar-
ten. Maschinenbau 5 (9), 476-478

The ENIAC (1943), Vol I. A Report Covering Work until December 1943. University of Penn-
sylvania, Moore School of Electrical Engineering, Philadelphia

Torres y Quevedo, Leonardo (1914), Essais sur lautomatique. Sa définition. Etendu théo-
rique de ses applications.In: Revue de I’ Académie des Sciences de Madrid, 1914; wieder-
gedruckt in: Revue Générale des Sciences Pures et Appliquées, 15.11.1915, 601-611;
iibersetzt in: Essays on Automatics. Its Definition - Theoretical Extent of Its Applica-
tions (1914). In: Randell, Brian (ed.) (1973), 87-105

Torres y Quevedo, Leonardo (1920), Arithmomeétre electromécanique. In Bulletin de la
société dencouragement pour l'industrie nationale, Bd. 119, 588-599; englische Uber-
setzung: Electro-mechanical Calculating Machine. In: Randell, Brian (ed.), (1973),
107-118

Turing, Alan M. (1945), Proposal for Development in the Mathematics Division of an Auto-
matic Computing Engine (ACE). presented to the National Physical Laboratory,; wieder-
gedruckt in: Computer Science 57, National Physical Laboratory, Teddington 1972;
wiedergedruckt in: Carpenter, B. E.; Doran, R. W. (eds.), A. M. Turing’s ACE Report of
1946 and other Papers (Charles Babbage Institute, Reprint Series for the History of
Computing, Bd. 10), London, Los Angeles, San Francisco 1986, 20-105

Turing, Alan M. (1947), Lecture to the London Mathematical Society on 20 February 1947.
wiedergedruckt in: Carpenter, B. E.; Doran, R. W. (eds.), A. M. Turing’s ACE Report of
1946 and other Papers (Charles Babbage Institute, Reprint Series for the History of
Computing, Bd. 10), London, Los Angeles, San Francisco 1986, 106-124

Walther, Alwin (1956), Moderne Rechenanlagen als Muster und als Kernstiick einer vollauto-
matisierten Fabrik.In: Fritz Erler u. a. (Hrsg.), Revolution der Roboter, Miinchen, 7-64

Weinhart, Karl (Hrsg.) (1990), Informatik und Automatik. Fiihrer durch die Ausstellung.

Deutsches Museum, Miinchen

Fi nal von Nake_Buch_k1.qgxd 07.11.2003 17: 3% Seite 73

Zur Genese des informatischen Programmbegriffs

Wilkes, Maurice V. (1980), Early Programming Developments in Cambridge. In: Metropo-
lis, Nicholas C.; Howlett, Jack; Rota, Gian-Carlo (eds.), A History of Computing in the
Twentieth Century. A Collection of Essays, New York, London, 497-501

Zemanek, Heinz (1988), Hollerith und Schdffler: Zwei Pioniere der Lochkartentechnik.
Datenverarbeitung am Ende des 19. Jahrhunderts.In: Ausgewdhlte Beitrage zu Geschich-
te und Philosophie der Informationsverarbeitung (Schriftenreihe der Osterreichischen
Computer Gesellschaft, Bd. 43), Wien, Miinchen, 13-35

Zuse, Horst (2003), Konrad Zuses Visionen und Konzepte fiir die Anwendung seiner Rechen-
maschinen. In: Hellige, Hans Dieter, (Hrsg.), Geschichten der Informatik. Visionen,
Paradigmen und Leitmotive, Berlin, Heidelberg, New York, 61-77

Zuse, Konrad (1936), Die Rechenmaschine des Ingenieurs, Abschnitt: Die Aufstellung der
Rechenpline. Nachlasskopien-Bestand des Heinz-NixdorfForums, Paderborn, HNF
009/001; Zuse-Internet-Archiv; ZIA 0234

Zuse, Konrad (1937), Paralleloperationen bei Programmen. Tagebuchnotiz vom 16.7.1937.
Gedanken zum kiinstlichen Gehirn. HNF 025/015; ZIA 0419

Zuse, Konrad (1938), Programmspeicherung. Tagebuchnotizen iiber die Entwicklung von
starren Rechenplinen und lebenden Rechenplinen. HNF 025/011; ZIA 0417

Zuse, Konrad (1939), Plankalkiil Vorarbeiten. Tagebuchnotiz vom 25.5.1939 iiber flexible
Angabenstrukturen. Mechanisches Gehirn. HNF 025/012; ZIA 0418

Zuse, Konrad (1945), Plankalkiil (Fassung von 1945). Abschrift 1946, HNF 011/008;
ZIA 0233

Zuse, Konrad (1946), Zuse-Rechengeriite. Ms. Mai 1946, HNF 010/005; ZIA 0332

Zuse, Konrad (1947), Zuse-Rechengerite. Zuse-Ingenieurbiiro Hopferau (Hrsg.), HNF
011/008; ZIA 0743

73

