Zum Hauptinhalt springen

Projekte

Chemische Gasphasenabscheidung und laserinduzierte Modifikation von Nano- und Heterostrukturen aus zweidimensionalen, atomar dünnen Schichten für photonische Anwendungen

Förderung: Zentrale Forschungsförderung ZF der Universität Bremen (Eigene Projekte für Postdocs)

Laufzeit: 01.10.2019 bis 30.09.2022

Beschreibung: Ziel des Projektvorhabens ist die präzise Manipulation der optischen Eigenschaften von Heterostrukturen aus zweidimensionalen (2D) atomar dünnen Materialien wie Graphen, Bornitrid (BN) und Übergangsmetall-Dichalkogeniden wie z.B. Molybdändisulfid (MoS2) und Wolframdiselenid (WSe2). Diese Heteroschichten sollen über van-der-Waals Epitaxie mit der Methode der chemischen Gasphasenabscheidung übereinander gewachsen werden. Über die Abscheidung von Graphen und/oder BN unter- und/oder oberhalb der Übergangsmetall-Dichalkogenid-Schicht soll die dielektrische Umgebung modifiziert werden. Die Herausforderung ist dabei die Identifikation spezifischer Wachstumsfenster, in denen diverse 2D-Materialien mit hoher Qualität und frei von Fremdmaterialverunreinigungen übereinander abgeschieden werden können. Darüber hinaus sollen Wachstumsparameter für ternäre Übergangsmetall-Dichalkogenide (MoWS2, Mo(SSe)2) entwickelt werden. Neben dem 2D-Schichtwachstum wird auch das selbst-organisierte Wachstum von quantenpunktartigen Nanostrukturen untersucht, z.B. unverspannte MoS2-Nanoinseln eingebettet in einer WS2-Matrix oder verspannte MoSe2-Nanoinseln in einer MoS2-Matrix. Dadurch soll der Effekt von Verspannung und der Ladungsträgereinschluss auf die optischen Eigenschaften untersucht werden. Ein wichtiger Fokus des Projektvorhabens ist die laserinduzierte Manipulation der Schichten. Über Laserbestrahlung sollen zur Kontrolle der optischen Eigenschaften gezielt Defekte wie z.B. S-Vakanzen in die Übergangsmetall-Dichalkogenid-Schicht erzeugt und so eine laterale Strukturierung optisch aktiver Bereiche erreicht werden. Ein über aktuelle Vorarbeiten erprobtes Verfahren zur lokalen präzisen Abdünnung von Übergangsmetall-Dichalkogenid-Schichten über Laserbestrahlung wird auf beliebige 2D-Heterostrukturen angewendet, um periodische Nanostrukturen hin zu photonischen Kristallen zu erzeugen.

Kontakt: Dr. Christian Tessarek

 

Einzelpunkt-Sensorsystem für die nicht-invasive, dynamische Messung der Herzfunktion (SINDynamik)

Förderung: Bundesministerium für Bildung und Forschung (BMBF)

Laufzeit: 01.07.2018 bis 30.06.2020

Beschreibung: Kardio-vaskuläre Erkrankungen sind in Deutschland die häufigste Todesursache. Zentrale Voraussetzung für eine Verbesserung der Therapie, ist eine effiziente Langzeitdiagnostik. Die Echtzeitmessung des zentralen Venendrucks (ZVD) im rechten Vorhof des Herzens in Bezug zum EKG-Signal stellt eines der wichtigsten Verfahren in der Herz-Lungen Diagnostik dar. Um die dynamischen ZVD-Werte im zeitlichen Verlauf exakt zu erfassen, kommen invasive und sehr kostenintensive Ansätze mit drucksensorintegriertem Herz-Katheter zum Einsatz, die nicht für eine zugängliche präventive Diagnostik eingesetzt werden können. So ist bislang insbesondere nach einem Herzinfarkt oder einer Herzoperation eine Langzeitüberwachung der Herzkammerdynamik und des Herzventilzyklus, nicht möglich.

Ziel des Verbundprojekts SINDynamik ist deshalb die Erforschung und die vorklinische Validierung einer neuartigen Diagnose-Methode zur simultanen und nicht-invasiven Bestimmung des ZVD-Echtzeitsignals und des EKG-Signals. Dabei soll eine bio-elektrodynamische Erfassung der Herzaktivität an einem einzelnen Körperpunkt (Single Point Cardio-Dynamics, SPC) erfolgen. Der Sensor detektiert die bio-elektrische Herzgewebe-Depolarisation, überlagert mit der mechanischen Bewegung des elektrisch geladenen Herzgewebes und kann damit ein vollständiges Ladungsabbild der Herz-Lungen-Wechselwirkung mit der Atemdynamik liefern. Das SPC-Messverfahren ermöglicht prinzipiell eine kontinuierliche, nicht-invasive, personifizierte Herzdiagnostik, generiert damit einen erheblichen Patientennutzen und soll zur Verringerung der Mortalitätsrate nach einem Herzinfarkt beitragen.

Die Leistungsfähigkeit des SPC-Verfahrens wird am Ende des Projekts durch den Vergleich mit Standardverfahren zu EKG- und ZVD-Messungen an einer kleinen Testgruppe von Herz-Lungen Patienten demonstriert.

Kontakt: Prof. Dr. Martin Eickhoff

mehr