Online-Archiv

Lehrveranstaltungen WiSe 2024/2025

Fachbereich 03: Mathematik/Informatik

Veranstaltungen anzeigen: alle | in englischer Sprache | für ältere Erwachsene | mit Nachhaltigkeitszielen

Artificial Intelligence and Intelligent Systems, M.Sc.

VAK Titel der Veranstaltung DozentIn
03-AI-F-ATE AI Algorithms — Theory and Engineering (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Di 16:00 - 18:00 MZH 1090 Lecture
wöchentlich Do 08:00 - 10:00 MZH 5600 Exercise

Schwerpunkt: IMVT-AI

Nico Hochgeschwender
03-AI-S-CDF Cross-Disciplinary Foundations (in englischer Sprache)

Kurs
ECTS: 6

Termine:
wöchentlich Di 08:00 - 12:00 CART Rotunde - 0.67 Kurs

Masterstudierende der Informatik können das Modul Projektmanagement und Wissenschaftskultur auch über diese Lehrveranstaltung abdecken.

Dr. Jörn Syrbe
03-IMAP-AMAI Advanced Methods of AI (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Di 12:00 - 14:00 MZH 6200 Vorlesung
wöchentlich Mi 16:00 - 18:00 MZH 1100 Übung


Michael Beetz
Daniel Beßler
03-IMAP-AML Advanced Machine Learning (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 1090 Übung
wöchentlich Mo 16:00 - 18:00 MZH 1100 Übung
wöchentlich Di 08:00 - 10:00 MZH 1470 Übung
wöchentlich Di 14:00 - 16:00 MZH 1090 Übung
wöchentlich Mi 14:00 - 16:00 MZH 1380/1400 Vorlesung

Profil: KIKR
Schwerpunkt: IMAP-AI, IMA-VMC
https://lvb.informatik.uni-bremen.de/imap/03-imap-aml.pdf

Tanja Schultz
Felix Putze
03-IMAP-IIS Integrated Intelligent Systems (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 Übung Online

Profil: KIKR
Schwerpunkt: IMA-AI
https://lvb.informatik.uni-bremen.de/imap/03-imap-iis.pdf
Die Vorlesung findet asynchron und die Übung online statt.

Michael Beetz
Dr. Jörn Syrbe
03-IMS-SHAR Hot Topics in Sensors and Human Activity Research (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Do 16:00 - 18:00 MZH 4140 Seminar


Dr.-Ing. Hui Liu
03-IMS-SRSE Seminar on Topics in Robot Software Engineering (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Di 12:00 - 14:00 MZH 1450 Seminar

Einzeltermine:
Mi 02.04.25 16:30 - 18:00 TAB 2.57, Am Fallturm 1


Nico Hochgeschwender
03-IMVP-HRI Human Robot Interaction (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 DFKI RH1 A1.03 Vorlesung
wöchentlich Mi 14:00 - 16:00 DFKI RH1 A1.03 Übung

Profil: KIKR
Schwerpunkt: IMVP-AI
https://lvb.informatik.uni-bremen.de/imvp/03-imvp-hcir.pdf
Die Veranstaltung findet im DFKI statt.

Frank Kirchner
Dr. Lisa Gutzeit
03-IMVP-MLAR Machine Learning for autonomous Robots (in englischer Sprache)
Machine Learning for autonomous Robots

Vorlesung
ECTS: 6

Termine:
wöchentlich Di 10:00 - 12:00 DFKI RH1 B0.10 Vorlesung
wöchentlich Do 10:00 - 12:00 Übung

Profil: KIKR
Schwerpunkt:IMVP- AI
https://lvb.informatik.uni-bremen.de/imvp/03-imvp-mlar.pdf
Die Veranstaltung findet in den Räumen des DFKI statt.

Frank Kirchner
Melvin Laux

Digitale Medien, B.Sc.

3. Studienjahr

Graduiertenseminare

VAK Titel der Veranstaltung DozentIn
03-IGRAD-CoSy Graduiertenseminar Cognitive Systems (in englischer Sprache)

Seminar

Termine:
zweiwöchentlich (Startwoche: 16) Mi 14:00 - 17:00 Graduiertenseminar
Thomas Dieter Barkowsky

Digitale Medien, M.Sc.

1st academic year

Veranstaltungen von MG ( Media Design) und MT ( Media Theory) finden primär in der HfK statt.
Das Seminar Introduction to Digital Media wird von der HfK angeboten.
Courses of MG ( Media Design) and MT ( Media Theory) take place primarily at the HfK.
The seminar Introduction to Digital Media is offered by the HfK.

M-MI (Media Informatics)

VAK Titel der Veranstaltung DozentIn
03-IMAA-MAD Mobile App Development (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 14:00 MZH 1380/1400 Vorlesung

Profil: DMI
Schwerpunkt: IMA- DMI
https://lvb.informatik.uni-bremen.de/imva/03-imva-mad.pdf
Die Veranstaltung richtet sich an Student*innen der Informatik und Digitalen Medien. In Gruppenarbeit sollen die Studierenden semesterbegleitend ein App-Projekt umsetzen. In der Vorlesung werden alle relevanten Informationen der modernen Softwareentwicklung, mit Fokus auf die mobile App-Entwickung, vermittelt. Dazu gehören Themen wie mobiles Testing, Scrum, UX Design, Evaluation & Nutzertests, Design Patterns und Cross-Plattform-Entwicklung. Das Ziel dabei ist die Vermittlung von praxisrelevantem Wissen aus dem Alltag eines erfolgreichen Unternehmens.

Prof. Dr. Rainer Malaka
David Ruh
Nicolas Autzen
Marcus-Sebastian Schröder
03-IMAA-STMW Search Technology for Media & Web (in englischer Sprache)
Search Technology for Media + Web

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 08:00 - 10:00 MZH 1470 Vorlesung
wöchentlich Do 08:00 - 10:00 MZH 6200 Übung

Profil: KIKR, DMI
Schwerpunkt: IMVA-DMI, IMVA-AI
https://lvb.informatik.uni-bremen.de/imaa/03-imaa-stmw.pdf

Prof. Dr. Sebastian Maneth
M. Sc Yvonne Jenniges
03-IMAP-VRSIM Virtual Reality and Physically-Based Simulation (in englischer Sprache)
Virtuelle Realität und physikalisch-basierte Simulation

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 5600 Vorlesung
wöchentlich Do 10:00 - 12:00 MZH 1100 Übung

Profil: KIKR, DMI
Schwerpunkt: IMAP-DMI, IMAP-VMC
https://lvb.informatik.uni-bremen.de/imap/03-imap-vrsim.pdf
English or German.
Over the past two decades, VR has established itself as an important tool in several industries, such as manufacturing (e.g., automotive, airspace, ship building), architecture, and pharmaceutical industries. During the past few years, we have been witnessing the second "wave" of VR, this time in the consumer, in particular, in the entertainment markets.

Some of the topics to be covered (tentatively):
• Introduction, basic notions of VR, several example applications
• VR technologies: displays, tracking, input devices, scene graphs, game engines
• The human visual system and Stereo rendering
• Techniques for real-time rendering
• Fundamental immersive interaction techniques: fundamentals and principles, 3D navigation, user models, 3D selection, redirected walking, system control
• Complex immersive interaction techniques: world-in-miniature, action-at-a-distance, magic lens, etc.
• Particle systems
• Spring-mass systems
• Haptics and force feedback
• Collision detection
• Acoustic rendering
The assignments will be mostly practical ones, based on the cross-platform game engine Unreal. Participants will start developing with "visual programming", and later use C++ to solve the assignments.
You are encouraged to work on assignments in small teams.
https://cgvr.cs.uni-bremen.de/teaching/

Prof. Dr. Gabriel Zachmann

M-MT (Media Theory)

Additional courses can be found at the HfK website (http://www.hfk-bremen.de/t/digitale-medien).
VAK Titel der Veranstaltung DozentIn
09-71-A.1-1 Approaches to Digital Media (in englischer Sprache)

Seminar

Termine:
wöchentlich Mo 16:00 - 18:00 GW1 A0160 (2 SWS)


Prof. Dr. Peter Gentzel
09-71-A.1-2 Digital Life (in englischer Sprache)

Seminar

Termine:
wöchentlich Di 12:00 - 14:00 GW2 B1216 (2 SWS)


Prof. Dr. Christian Katzenbach

M-MA-2 (Special Topics in Digital Media)

All M-MI, M-MD, M-MT courses can be taken as M-MA-2
VAK Titel der Veranstaltung DozentIn
03-IMAA-ITMDS IT-Management und Data Science (in englischer Sprache)
IT Management and Data Science

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 14:00 - 18:00 MZH 1090

Profil: SQ, DMI
Schwerpunkt: IMA-SQ, IMA-AI, IMVP-DMI
https://lvb.informatik.uni-bremen.de/imaa/03-imaa-itmds.pdf

Prof. Dr. Andreas Breiter
Hannah-Marie Büttner

2nd academic year

M-MA-32 (Master Project)

VAK Titel der Veranstaltung DozentIn
03-DMM-MA-3-DEJA Projekt Dejaview (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Fr 14:00 - 16:00 MZH 1380/1400 Projekt-Plenum

Schwerpunkt: DMI, VMC, Ai

Prof. Dr. Gabriel Zachmann
Dr. Rene Weller
03-DMM-MA-3-ROBRO Projekt RoboRoomie (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Fr 14:00 - 16:00 MZH 1470 Projekt-Plenum

Schwerpunkt: DMI

Prof. Dr. Rainer Malaka
Rachel Ringe
Bastian Dänekas
Carolin Stellmacher
Nadine Wagener
03-IMPJ-SMARTB Projekt SmartBremen (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Fr 12:00 - 14:00 IW3 0390 Projekt-Plenum

Schwerpunkt: DMI

Prof. Dr. Dr. Björn Niehaves
Dr. Gerhard Klassen
Dulce Maria Villegas Nunez
Robin Fritzsche
03-IMPJ-WELFC Projekt WelfareComp (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Di 16:00 - 18:00 MZH 1470 Projekt-Plenum
wöchentlich Fr 08:00 - 10:00 MZH 5600 Projekt-Plenum
Prof. Dr. Andreas Breiter
Paola Lopez

Graduate Seminars

VAK Titel der Veranstaltung DozentIn
03-IGRAD-CoSy Graduiertenseminar Cognitive Systems (in englischer Sprache)

Seminar

Termine:
zweiwöchentlich (Startwoche: 16) Mi 14:00 - 17:00 Graduiertenseminar
Thomas Dieter Barkowsky

M-MA-2 Special Topics of Digital Media (alt: M-105)

VAK Titel der Veranstaltung DozentIn
09-71-A.1-1 Approaches to Digital Media (in englischer Sprache)

Seminar

Termine:
wöchentlich Mo 16:00 - 18:00 GW1 A0160 (2 SWS)


Prof. Dr. Peter Gentzel
09-71-A.1-2 Digital Life (in englischer Sprache)

Seminar

Termine:
wöchentlich Di 12:00 - 14:00 GW2 B1216 (2 SWS)


Prof. Dr. Christian Katzenbach

Industrial Mathematics & Data Analysis, M.Sc.

Foundations (33 CP)

Module: Mathematical Methods for Data Analysis and Image Processing (9 CP)

Compulsory module in which you must attend the following lecture(s):
VAK Titel der Veranstaltung DozentIn
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz

Module: Modeling Project (15 CP)

Compulsory module in which you must attend the following lecture this semester:
VAK Titel der Veranstaltung DozentIn
03-M-MP-2 Modeling Project (Part 2) (in englischer Sprache)

Seminar
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß

Module: Numerical Methods for Partial Differential Equations (9 CP)

Compulsory module in which you must attend the following lecture:
VAK Titel der Veranstaltung DozentIn
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt

Area of Focus: Data Analysis (45 CP)

Area of Focus (27 CP)

The modules Special Topics Data Analysis A and Special Topics Data Analysis B (9 CP each) are mandatory. In addition, EITHER the module Special Topics Data Analysis C OR the module Advanced Communications Data Analysis (9 CP each) must be studied.

Module: Advanced Communications Data Analysis (2 x 4,5 CP = 9 CP)

Compulsory module in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Modules: Special Topics Data Analysis (A, B, and C with 9 CP each)

Compulsory modules in which you must attend one lecture each. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz

Extension (18 CP)

Module: Advanced Communications Industrial Mathematics (2 x 4,5 CP = 9 CP)

Compulsory module in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Module: Special Topics Industrial Mathematics A (9 CP)

Compulsory module in which you must attend one lecture. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Area of Focus: Industrial Mathematics (45 CP)

Area of Focus (27 CP)

The modules Special Topics Industrial Mathematics A and Special Topics Industrial Mathematics B (9 CP each) are mandatory. In addition, EITHER the module Special Topics Industrial Mathematics C OR the module Advanced Communications Industrial Mathematics (9 CP each) must be studied.

Module: Advanced Communications Industrial Mathematics (2 x 4,5 CP = 9 CP)

Compulsory module in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Modules: Special Topics Industrial Mathematics (A, B, and C with 9 CP each)

Compulsory modules in which you must attend one lecture each. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Extension (18 CP)

Module: Advanced Communications Data Analysis (2 x 4,5 CP = 9 CP)

Compulsory module in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Module: Special Topics Data Analysis A (9 CP)

Compulsory module in which you must attend one lecture. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz

Industriemathematik, B.Sc.

Bachelor 4. Semester und höher

Modul: Fortgeschrittene Themen Industriemathematik (9 CP)

Pflichtmodul, welches im 5. Semester belegt werden sollte. Dazu muss EINE der zugehörigen Veranstaltungen belegt werden, wobei dieses Semester aus folgenden Veranstaltungen gewählt werden kann:
VAK Titel der Veranstaltung DozentIn
03-M-FTH-9 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Mi 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Fr 12:00 - 14:00 Externer Ort: MZH 7200 Übung

Die Veranstaltung finden zusammen statt mit 03-M-SP-26 !

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-FTH-10 Basics of mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Do 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 1100 Übung

Die Veranstaltung findet zusammen mit der 03-M-SP-2 statt

Prof. Dr. Werner Brannath

General Studies - Fachergänzende Studien

Fachergänzendes Studienangebot aus der Mathematik bzw. Industriemathematik.
VAK Titel der Veranstaltung DozentIn
03-M-GS-14 Starting Data Science in R (in englischer Sprache)
a course on R programming and data science methods with practicals and projects

Praktikum
ECTS: 3

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 2490 (Seminarraum) Lecture plus Exercise

The course provides an introductory level of programming skills in R.
Students are welcome to present own ideas, data and projects. I expect a project report or a method talk with demo on own data. Practicals in "R" will work also on synthetic data to illustrate methods features, limitations and differences.

Prof. Dr. Stephan Frickenhaus

Informatik, B.Sc./M.Sc.

Bachelor Informatik

Bachelor 1. Semester (Vollfach)

Grundlagen Angewandte Informatik

VAK Titel der Veranstaltung DozentIn
03-IBGA-FI-RDL Robot Design Lab (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 10:00 - 12:00 DFKI RH1 B0.10 Q & A
wöchentlich Do 10:00 - 12:00 DFKI RH1 B0.10 Übung
wöchentlich Do 14:00 - 16:00 DFKI RH1 B0.10 Übung

Die Vorlesung findet online asynchron statt.
Die Q+A und Präsenz-Übung finden im Raum RH1 B0.10 des DFKI statt.
https://lvb.informatik.uni-bremen.de/ibg/03-ibga-fi-rdl.pdf

Frank Kirchner
M. Sc. Mihaela Popescu
M. Sc Jonas Haack

Wahlbereich Bachelor-Aufbau (IBA) / Bachelor-Basis (BB)

IBAP / BB-7: Praktische und Technische Informatik

BPO 2020. mindestens ein Lehrangebot aus dieser Kategorie wählen. Auch nutzbar für IBA und IBVP (und Freie Wahl).
BPO 2010: Für ,,Bachelor - PrakTechInfWahl`` zwei Lehrangebote aus dieser Kategorie wählen: Keine Ausnahmeanträge.
IBAP-Lehrangebote auch für \'Informatik-Wahl\' (und Freie Wahl) nutzbar.
VAK Titel der Veranstaltung DozentIn
03-IBAP-RA Rechnerarchitektur und Eingebettete Systeme (in englischer Sprache)
Computer Architecture and Embedded Systems

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 1380/1400 Vorlesung
wöchentlich Di 08:00 - 10:00 MZH 1380/1400 Übung


Prof. Dr. Rolf Drechsler
Dr. Muhammad Hassan

Wahlbereich Bachelor-Vertiefung (IBV) / Bachelor-Ergänzung (BE)

BPO 2010: weitere Lehrangebote für BE unter IBFW
IBV-Lehrangebote regulär für \'Informatik-Wahl\' (und Freie Wahl) nutzbar.
VAK Titel der Veranstaltung DozentIn
03-M-GS-7 Introduction to R (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Fr 12:00 - 15:00 LINZ4 40010 Seminar

3 SWS Seminar
Die Veranstaltung kann nach BPO'10 als BE-6 angerechnet werden und nach BPO'20 nur in Freie Wahl

Homepage des KKSB und Uni-Lageplan

Prof. Dr. Werner Brannath

Master Informatik

Pflicht Master

Masterstudierende der Informatik können das Modul \'Projektmanagement und Wissenschaftskultur\' auch über diese Lehrveranstaltung abdecken.
VAK Titel der Veranstaltung DozentIn
03-AI-S-CDF Cross-Disciplinary Foundations (in englischer Sprache)

Kurs
ECTS: 6

Termine:
wöchentlich Di 08:00 - 12:00 CART Rotunde - 0.67 Kurs

Masterstudierende der Informatik können das Modul Projektmanagement und Wissenschaftskultur auch über diese Lehrveranstaltung abdecken.

Dr. Jörn Syrbe

Wahlbereich Master-Aufbau (IMA) / Master-Basis (MB)

Nach der Prüfunsordnung von 2020 heißt dieser Bereich Master-Aufbau (IMA), nach der Prüfungsordnung von 2012 Master-Basis (MB).

IMAT / MB-6 - Theoretische Informatik und Mathematik

Nach MPO 2020 und MPO 2012 mindestens ein Lehrangebot aus dieser Kategorie wählen.
Nach MPO 2012 auf Antrag auch IMVT-Lehrangebot oder fortgeschrittenes Mathematik-Lehrangebot möglich.
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-IMAT-IRQ Introduction to Reversible and Quantum Computing (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5500 MZH 3150 Vorlesung
wöchentlich Di 08:00 - 10:00 MZH 5500 Übung


Prof. Dr. Rolf Drechsler
Dr. Kamalika Datta
Dr. Abhoy Kole
03-IMAT-STMT Set Theory and Model Theory (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 3150 Vorlesung
wöchentlich Mi 12:00 - 14:00 MZH 3150 Übung

Profil: SQ
Schwerpunkt: IMVT-SQ
https://lvb.informatik.uni-bremen.de/imat/03-imat-stmt.pdf
Set theory and model theory

Intuitively, a set is a collection of all elements that satisfy a certain property. This intuition, however, is false! The following example is known as Russell's Paradox. Consider the set S whose elements are exactly those that are not members of themselves: S = { X : X is not element of X }. Is S an element of S? If S is an element of S, then S is not an element of S. On the other hand, if S is not an element of S, then S belongs to S. In either case we have a contradiction. We must revise our intuitive notion of a set. In the first part of the lecture we develop axiomatic set theory (ZFC) in the framework of first-order logic, which forms the foundation of modern mathematics. We cover the axioms of set theory, ordinal numbers and induction and recursion over well-founded relations, cardinal numbers and the axiom of choice.

In the second part of the lecture we turn to classical topics of first-order model theory. Model theory studies classes of mathematical structures, such as groups, fields, or graphs, from the point of view of mathematical logic. Many notions, such as homomorphisms, substructures, or free structures, that are commonly studied in specific fields of mathematics are unified by the general approach of model theory. We study ways to construct models with desired properties from first-order theories and the expressive power of first-order logic.

Prof. Dr. Sebastian Siebertz

IMAP / MB-7 - Praktische und technische Informatik

Nach MPO 2020 mindestens ein Lehrangebot aus dieser Kategorie wählen. Nach MPO 2012 zwei Lehrangebote aus dieser Kategorie wählen.
VAK Titel der Veranstaltung DozentIn
03-IMAP-AMAI Advanced Methods of AI (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Di 12:00 - 14:00 MZH 6200 Vorlesung
wöchentlich Mi 16:00 - 18:00 MZH 1100 Übung


Michael Beetz
Daniel Beßler
03-IMAP-AML Advanced Machine Learning (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 1090 Übung
wöchentlich Mo 16:00 - 18:00 MZH 1100 Übung
wöchentlich Di 08:00 - 10:00 MZH 1470 Übung
wöchentlich Di 14:00 - 16:00 MZH 1090 Übung
wöchentlich Mi 14:00 - 16:00 MZH 1380/1400 Vorlesung

Profil: KIKR
Schwerpunkt: IMAP-AI, IMA-VMC
https://lvb.informatik.uni-bremen.de/imap/03-imap-aml.pdf

Tanja Schultz
Felix Putze
03-IMAP-IIS Integrated Intelligent Systems (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 Übung Online

Profil: KIKR
Schwerpunkt: IMA-AI
https://lvb.informatik.uni-bremen.de/imap/03-imap-iis.pdf
Die Vorlesung findet asynchron und die Übung online statt.

Michael Beetz
Dr. Jörn Syrbe
03-IMAP-VRSIM Virtual Reality and Physically-Based Simulation (in englischer Sprache)
Virtuelle Realität und physikalisch-basierte Simulation

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 5600 Vorlesung
wöchentlich Do 10:00 - 12:00 MZH 1100 Übung

Profil: KIKR, DMI
Schwerpunkt: IMAP-DMI, IMAP-VMC
https://lvb.informatik.uni-bremen.de/imap/03-imap-vrsim.pdf
English or German.
Over the past two decades, VR has established itself as an important tool in several industries, such as manufacturing (e.g., automotive, airspace, ship building), architecture, and pharmaceutical industries. During the past few years, we have been witnessing the second "wave" of VR, this time in the consumer, in particular, in the entertainment markets.

Some of the topics to be covered (tentatively):
• Introduction, basic notions of VR, several example applications
• VR technologies: displays, tracking, input devices, scene graphs, game engines
• The human visual system and Stereo rendering
• Techniques for real-time rendering
• Fundamental immersive interaction techniques: fundamentals and principles, 3D navigation, user models, 3D selection, redirected walking, system control
• Complex immersive interaction techniques: world-in-miniature, action-at-a-distance, magic lens, etc.
• Particle systems
• Spring-mass systems
• Haptics and force feedback
• Collision detection
• Acoustic rendering
The assignments will be mostly practical ones, based on the cross-platform game engine Unreal. Participants will start developing with "visual programming", and later use C++ to solve the assignments.
You are encouraged to work on assignments in small teams.
https://cgvr.cs.uni-bremen.de/teaching/

Prof. Dr. Gabriel Zachmann

IMAA / MB-8 - Angewandte Informatik

Nach MPO 2012 ein Lehrangebot aus dieser Kategorie wählen; auf Antrag auch IMVA-Lehrangebot möglich.
VAK Titel der Veranstaltung DozentIn
03-IMAA-ITMDS IT-Management und Data Science (in englischer Sprache)
IT Management and Data Science

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 14:00 - 18:00 MZH 1090

Profil: SQ, DMI
Schwerpunkt: IMA-SQ, IMA-AI, IMVP-DMI
https://lvb.informatik.uni-bremen.de/imaa/03-imaa-itmds.pdf

Prof. Dr. Andreas Breiter
Hannah-Marie Büttner
03-IMAA-MAD Mobile App Development (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 14:00 MZH 1380/1400 Vorlesung

Profil: DMI
Schwerpunkt: IMA- DMI
https://lvb.informatik.uni-bremen.de/imva/03-imva-mad.pdf
Die Veranstaltung richtet sich an Student*innen der Informatik und Digitalen Medien. In Gruppenarbeit sollen die Studierenden semesterbegleitend ein App-Projekt umsetzen. In der Vorlesung werden alle relevanten Informationen der modernen Softwareentwicklung, mit Fokus auf die mobile App-Entwickung, vermittelt. Dazu gehören Themen wie mobiles Testing, Scrum, UX Design, Evaluation & Nutzertests, Design Patterns und Cross-Plattform-Entwicklung. Das Ziel dabei ist die Vermittlung von praxisrelevantem Wissen aus dem Alltag eines erfolgreichen Unternehmens.

Prof. Dr. Rainer Malaka
David Ruh
Nicolas Autzen
Marcus-Sebastian Schröder
03-IMAA-STMW Search Technology for Media & Web (in englischer Sprache)
Search Technology for Media + Web

Vorlesung
ECTS: 6

Termine:
wöchentlich Mi 08:00 - 10:00 MZH 1470 Vorlesung
wöchentlich Do 08:00 - 10:00 MZH 6200 Übung

Profil: KIKR, DMI
Schwerpunkt: IMVA-DMI, IMVA-AI
https://lvb.informatik.uni-bremen.de/imaa/03-imaa-stmw.pdf

Prof. Dr. Sebastian Maneth
M. Sc Yvonne Jenniges

Wahlbereich Master-Vertiefung (IMV) / Master-Ergänzung (ME)

MPO 2012: weitere ME-Angebote unter Wahlbereich IMS/ME und unter General Studies IMGS

IMVP / ME-7 - Praktische Informatik

VAK Titel der Veranstaltung DozentIn
03-IMVP-DLS Digital Logic Synthesis (in englischer Sprache)

Kurs
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 1110 Kurs
wöchentlich Mi 10:00 - 12:00 MZH 1100 Kurs


Prof. Dr. Rolf Drechsler
Dr. Chandan Kumar Jha
03-IMVP-HRI Human Robot Interaction (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 DFKI RH1 A1.03 Vorlesung
wöchentlich Mi 14:00 - 16:00 DFKI RH1 A1.03 Übung

Profil: KIKR
Schwerpunkt: IMVP-AI
https://lvb.informatik.uni-bremen.de/imvp/03-imvp-hcir.pdf
Die Veranstaltung findet im DFKI statt.

Frank Kirchner
Dr. Lisa Gutzeit
03-IMVP-MLAR Machine Learning for autonomous Robots (in englischer Sprache)
Machine Learning for autonomous Robots

Vorlesung
ECTS: 6

Termine:
wöchentlich Di 10:00 - 12:00 DFKI RH1 B0.10 Vorlesung
wöchentlich Do 10:00 - 12:00 Übung

Profil: KIKR
Schwerpunkt:IMVP- AI
https://lvb.informatik.uni-bremen.de/imvp/03-imvp-mlar.pdf
Die Veranstaltung findet in den Räumen des DFKI statt.

Frank Kirchner
Melvin Laux

Wahlbereich IMS / ME - Master Seminare

VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-IMS-SHAR Hot Topics in Sensors and Human Activity Research (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Do 16:00 - 18:00 MZH 4140 Seminar


Dr.-Ing. Hui Liu
03-IMS-SRSE Seminar on Topics in Robot Software Engineering (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Di 12:00 - 14:00 MZH 1450 Seminar

Einzeltermine:
Mi 02.04.25 16:30 - 18:00 TAB 2.57, Am Fallturm 1


Nico Hochgeschwender

Wahlbereich IMPJ - Master-Projekte

VAK Titel der Veranstaltung DozentIn
03-DMM-MA-3-DEJA Projekt Dejaview (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Fr 14:00 - 16:00 MZH 1380/1400 Projekt-Plenum

Schwerpunkt: DMI, VMC, Ai

Prof. Dr. Gabriel Zachmann
Dr. Rene Weller
03-DMM-MA-3-ROBRO Projekt RoboRoomie (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Fr 14:00 - 16:00 MZH 1470 Projekt-Plenum

Schwerpunkt: DMI

Prof. Dr. Rainer Malaka
Rachel Ringe
Bastian Dänekas
Carolin Stellmacher
Nadine Wagener
03-IMPJ-IACMR Projekt Increasing Autonomy Capacilities of Marine Robots (in englischer Sprache)

Projektplenum
ECTS: 12

Termine:
wöchentlich Fr 14:00 - 16:00 Externer Ort: DFKI Projekt-Plenum

Schwerpunkt: AI
Das Plenum am Freitag findet im DFKI statt.

Frank Kirchner
Dr. Bilal Wehbe
03-IMPJ-SMARTB Projekt SmartBremen (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Fr 12:00 - 14:00 IW3 0390 Projekt-Plenum

Schwerpunkt: DMI

Prof. Dr. Dr. Björn Niehaves
Dr. Gerhard Klassen
Dulce Maria Villegas Nunez
Robin Fritzsche
03-IMPJ-SUT Projekt SUTURO (in englischer Sprache)
(WiSe 24/25 bis SoSe 2025)

Projektplenum
ECTS: 12

Termine:
wöchentlich Fr 12:00 - 14:00 MZH 1110 Projekt-Plenum

Schwerpunkt: AI

Michael Beetz
03-IMPJ-WELFC Projekt WelfareComp (in englischer Sprache)
(WiSe 24/25)

Projektplenum
ECTS: 30

Termine:
wöchentlich Di 16:00 - 18:00 MZH 1470 Projekt-Plenum
wöchentlich Fr 08:00 - 10:00 MZH 5600 Projekt-Plenum
Prof. Dr. Andreas Breiter
Paola Lopez

Graduiertenseminare

VAK Titel der Veranstaltung DozentIn
03-IGRAD-CoSy Graduiertenseminar Cognitive Systems (in englischer Sprache)

Seminar

Termine:
zweiwöchentlich (Startwoche: 16) Mi 14:00 - 17:00 Graduiertenseminar
Thomas Dieter Barkowsky

Sonstige Veranstaltungen ohne Kreditpunkte

VAK Titel der Veranstaltung DozentIn
03-ISONST-EJC EDM Journal Club (in englischer Sprache)

Seminar

Einzeltermine:
Mo 10.02.20 14:00 - 16:00 MZH 5300

Veranstaltung für Doktoranten, jeden 1. Montag im Monat von 14-16h in Raum 5300.

Robert Porzel
Sebastian Höffner
Dr. Nina Wenig
Prof. Dr. Rainer Malaka

Mathematics, M.Sc.

Area of Specialization: Algebra

Modules: Specialization (A, B, and C with 9 CP each)

The modules Specialization A and Specialization B are compulsory modules (2 x 9 CP = 18 CP). The module Specialization C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov

Modules: Diversification (A, B, and C with 9 CP each)

The modules Diversification A and Diversification B are compulsory modules (2 x 9 CP = 18 CP). The module Diversification C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-37 Spectral Geometry of Hyperbolic Surfaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5410 Lecture
wöchentlich Mo 16:00 - 18:00 MZH 5410 Exercise
wöchentlich Di 12:00 - 14:00 MZH 5410 Lecture

Einzeltermine:
Mo 03.02.25 16:00 - 18:00 MZH 5410
Claudio Meneses-Torres
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Module: Advanced Communications A (2 x 4,5 CP = 9 CP)

Compulsory module in the area of specialization in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-M-AC-30 Geometry of Polynomials (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Do 12:00 - 14:00 MZH 7200 Seminar

Einzeltermine:
Mi 22.01.25 10:00 - 12:00 MZH 5410

The study of the geometry of univariate polynomials has roots in the pioneering work of Gauss in the early 19th century and has been advanced by numerous distinguished mathematicians over the years. Despite its long-standing history, this field continues to present intriguing challenges and notable conjectures.

Eugenia Saorin Gomez

Module: Advanced Communications B (2 x 4,5 CP = 9 CP)

Compulsory module in the area of diversification and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-22 Advanced Communication Analysis (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5600 Seminar

Advanced Communication Analysis is a master seminar in which advanced topics in the area of analysis are discussed. The precise topics for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer
03-M-AC-27 Exponential Families (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5500 Seminar

This is a seminar in the specialization area "Stochastics / Statistics". The seminar deals with (univariate and multivariate) exponential families, which arguably constitute the most important classes of statistical models.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Module: Reading Course A (9 CP)

Compulsory module in the area of specialization and with the following course:
VAK Titel der Veranstaltung DozentIn
03-M-RC-ALG Reading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov

Module: Reading Course B (9 CP)

Compulsory module either in the area of specialization or area of diversification and with the following courses:
VAK Titel der Veranstaltung DozentIn
03-M-RC-ALG Reading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-RC-ANA Reading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

In the Reading Course Analysis advanced topics in the area of analysis are discussed. The precise topic for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-RC-STS Reading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Area of Specialization: Analysis

Modules: Specialization (A, B, and C with 9 CP each)

The modules Specialization A and Specialization B are compulsory modules (2 x 9 CP = 18 CP). The module Specialization C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-M-SP-37 Spectral Geometry of Hyperbolic Surfaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5410 Lecture
wöchentlich Mo 16:00 - 18:00 MZH 5410 Exercise
wöchentlich Di 12:00 - 14:00 MZH 5410 Lecture

Einzeltermine:
Mo 03.02.25 16:00 - 18:00 MZH 5410
Claudio Meneses-Torres

Modules: Diversification (A, B, and C with 9 CP each)

The modules Diversification A and Diversification B are compulsory modules (2 x 9 CP = 18 CP). The module Diversification C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Module: Advanced Communications A (2 x 4,5 CP = 9 CP)

Compulsory module in the area of specialization and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-22 Advanced Communication Analysis (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5600 Seminar

Advanced Communication Analysis is a master seminar in which advanced topics in the area of analysis are discussed. The precise topics for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer

Module: Advanced Communications B (2 x 4,5 CP = 9 CP)

Compulsory module in the area of diversification and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer
03-M-AC-27 Exponential Families (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5500 Seminar

This is a seminar in the specialization area "Stochastics / Statistics". The seminar deals with (univariate and multivariate) exponential families, which arguably constitute the most important classes of statistical models.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-30 Geometry of Polynomials (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Do 12:00 - 14:00 MZH 7200 Seminar

Einzeltermine:
Mi 22.01.25 10:00 - 12:00 MZH 5410

The study of the geometry of univariate polynomials has roots in the pioneering work of Gauss in the early 19th century and has been advanced by numerous distinguished mathematicians over the years. Despite its long-standing history, this field continues to present intriguing challenges and notable conjectures.

Eugenia Saorin Gomez
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Module: Reading Course A (9 CP)

Compulsory module in the area of specialization and with the following course:
VAK Titel der Veranstaltung DozentIn
03-M-RC-ANA Reading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

In the Reading Course Analysis advanced topics in the area of analysis are discussed. The precise topic for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl

Module: Reading Course B (9 CP)

Compulsory module either in the area of specialization or area of diversification and with the following courses:
VAK Titel der Veranstaltung DozentIn
03-M-RC-ALG Reading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-RC-ANA Reading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

In the Reading Course Analysis advanced topics in the area of analysis are discussed. The precise topic for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-RC-STS Reading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Area of Specialization: Numerical Analysis

Modules: Specialization (A, B, and C with 9 CP each)

The modules Specialization A and Specialization B are compulsory modules (2 x 9 CP = 18 CP). The module Specialization C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Modules: Diversification (A, B, and C with 9 CP each)

The modules Diversification A and Diversification B are compulsory modules (2 x 9 CP = 18 CP). The module Diversification C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-37 Spectral Geometry of Hyperbolic Surfaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5410 Lecture
wöchentlich Mo 16:00 - 18:00 MZH 5410 Exercise
wöchentlich Di 12:00 - 14:00 MZH 5410 Lecture

Einzeltermine:
Mo 03.02.25 16:00 - 18:00 MZH 5410
Claudio Meneses-Torres

Module: Advanced Communications A (2 x 4,5 CP = 9 CP)

Compulsory module in the area of specialization and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Module: Advanced Communications B (2 x 4,5 CP = 9 CP)

Compulsory module in the area of diversification and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-22 Advanced Communication Analysis (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5600 Seminar

Advanced Communication Analysis is a master seminar in which advanced topics in the area of analysis are discussed. The precise topics for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer
03-M-AC-27 Exponential Families (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5500 Seminar

This is a seminar in the specialization area "Stochastics / Statistics". The seminar deals with (univariate and multivariate) exponential families, which arguably constitute the most important classes of statistical models.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-AC-30 Geometry of Polynomials (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Do 12:00 - 14:00 MZH 7200 Seminar

Einzeltermine:
Mi 22.01.25 10:00 - 12:00 MZH 5410

The study of the geometry of univariate polynomials has roots in the pioneering work of Gauss in the early 19th century and has been advanced by numerous distinguished mathematicians over the years. Despite its long-standing history, this field continues to present intriguing challenges and notable conjectures.

Eugenia Saorin Gomez

Module: Reading Course B (9 CP)

Compulsory module either in the area of specialization or area of diversification and with the following courses:
VAK Titel der Veranstaltung DozentIn
03-M-RC-ALG Reading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-RC-ANA Reading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

In the Reading Course Analysis advanced topics in the area of analysis are discussed. The precise topic for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-RC-STS Reading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Area of Specialization: Statistics/Stochastics

Modules: Specialization (A, B, and C with 9 CP each)

The modules Specialization A and Specialization B are compulsory modules (2 x 9 CP = 18 CP). The module Specialization C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus

Modules: Diversification (A, B, and C with 9 CP each)

The modules Diversification A and Diversification B are compulsory modules (2 x 9 CP = 18 CP). The module Diversification C (9 CP) is a compulsory elective module. This semester you can choose from the following lectures:
VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-37 Spectral Geometry of Hyperbolic Surfaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5410 Lecture
wöchentlich Mo 16:00 - 18:00 MZH 5410 Exercise
wöchentlich Di 12:00 - 14:00 MZH 5410 Lecture

Einzeltermine:
Mo 03.02.25 16:00 - 18:00 MZH 5410
Claudio Meneses-Torres
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Module: Advanced Communications A (2 x 4,5 CP = 9 CP)

Compulsory module in the area of specialization and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer
03-M-AC-27 Exponential Families (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5500 Seminar

This is a seminar in the specialization area "Stochastics / Statistics". The seminar deals with (univariate and multivariate) exponential families, which arguably constitute the most important classes of statistical models.

Prof. Dr. Thorsten-Ingo Dickhaus

Module: Advanced Communications B (2 x 4,5 CP = 9 CP)

Compulsory module in the area of diversification and in which you must attend a total of two seminars with 4,5 CP each. This semester you can choose from the following seminars:
VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-22 Advanced Communication Analysis (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5600 Seminar

Advanced Communication Analysis is a master seminar in which advanced topics in the area of analysis are discussed. The precise topics for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-30 Geometry of Polynomials (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Do 12:00 - 14:00 MZH 7200 Seminar

Einzeltermine:
Mi 22.01.25 10:00 - 12:00 MZH 5410

The study of the geometry of univariate polynomials has roots in the pioneering work of Gauss in the early 19th century and has been advanced by numerous distinguished mathematicians over the years. Despite its long-standing history, this field continues to present intriguing challenges and notable conjectures.

Eugenia Saorin Gomez
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Module: Reading Course A (9 CP)

Compulsory module in the area of specialization and with the following course:
VAK Titel der Veranstaltung DozentIn
03-M-RC-STS Reading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Module: Reading Course B (9 CP)

Compulsory module either in the area of specialization or area of diversification and with the following courses:
VAK Titel der Veranstaltung DozentIn
03-M-RC-ALG Reading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-RC-ANA Reading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

In the Reading Course Analysis advanced topics in the area of analysis are discussed. The precise topic for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-RC-STS Reading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Mathematik, B.Sc.

Bachelor 4. Semester und höher

Module: Fortgeschrittene Themen (A, B und C mit je 9 CP)

Pflichtmodule, welche im 4. und 5. Semester belegt werden sollten. Für jedes der DREI Module (Fortgeschrittene Themen A / B / C) muss jeweils EINE der zugehörigen Veranstaltungen belegt werden, wobei dieses Semester aus folgenden Veranstaltungen gewählt werden kann:
VAK Titel der Veranstaltung DozentIn
03-M-FTH-9 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Mi 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Fr 12:00 - 14:00 Externer Ort: MZH 7200 Übung

Die Veranstaltung finden zusammen statt mit 03-M-SP-26 !

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-FTH-10 Basics of mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Do 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 1100 Übung

Die Veranstaltung findet zusammen mit der 03-M-SP-2 statt

Prof. Dr. Werner Brannath

General Studies - Fachergänzende Studien

Fachergänzendes Studienangebot aus der Mathematik bzw. Industriemathematik
VAK Titel der Veranstaltung DozentIn
03-M-GS-14 Starting Data Science in R (in englischer Sprache)
a course on R programming and data science methods with practicals and projects

Praktikum
ECTS: 3

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 2490 (Seminarraum) Lecture plus Exercise

The course provides an introductory level of programming skills in R.
Students are welcome to present own ideas, data and projects. I expect a project report or a method talk with demo on own data. Practicals in "R" will work also on synthetic data to illustrate methods features, limitations and differences.

Prof. Dr. Stephan Frickenhaus

Mathematik, B.Sc./M.Sc. (Studienbeginn vor 2022)

Bachelor: Wahlpflichtveranstaltungen

Wahlpflichtveranstaltungen für den Studiengang Mathematik B.Sc.
VAK Titel der Veranstaltung DozentIn
03-M-FTH-9 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Mi 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Fr 12:00 - 14:00 Externer Ort: MZH 7200 Übung

Die Veranstaltung finden zusammen statt mit 03-M-SP-26 !

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-FTH-10 Basics of mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Do 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 1100 Übung

Die Veranstaltung findet zusammen mit der 03-M-SP-2 statt

Prof. Dr. Werner Brannath

Master: Wahlpflichtveranstaltungen

Vertiefungsrichtung Algebra

VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov

Vertiefungsrichtung Analysis

VAK Titel der Veranstaltung DozentIn
03-M-SP-37 Spectral Geometry of Hyperbolic Surfaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5410 Lecture
wöchentlich Mo 16:00 - 18:00 MZH 5410 Exercise
wöchentlich Di 12:00 - 14:00 MZH 5410 Lecture

Einzeltermine:
Mo 03.02.25 16:00 - 18:00 MZH 5410
Claudio Meneses-Torres

Vertiefungsrichtung Numerik

VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Vertiefungsrichtung Stochastik & Statistik

VAK Titel der Veranstaltung DozentIn
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus

Master: Seminare

Vertiefungsrichtung Algebra

VAK Titel der Veranstaltung DozentIn
03-M-AC-30 Geometry of Polynomials (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Do 12:00 - 14:00 MZH 7200 Seminar

Einzeltermine:
Mi 22.01.25 10:00 - 12:00 MZH 5410

The study of the geometry of univariate polynomials has roots in the pioneering work of Gauss in the early 19th century and has been advanced by numerous distinguished mathematicians over the years. Despite its long-standing history, this field continues to present intriguing challenges and notable conjectures.

Eugenia Saorin Gomez

Vertiefungsrichtung Analysis

VAK Titel der Veranstaltung DozentIn
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-22 Advanced Communication Analysis (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5600 Seminar

Advanced Communication Analysis is a master seminar in which advanced topics in the area of analysis are discussed. The precise topics for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer

Vertiefungsrichtung Numerik

VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara

Vertiefungsrichtung Stochastik & Statistik

VAK Titel der Veranstaltung DozentIn
03-M-AC-26 Analysis/Stochastics/Statistics (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Seminar
Prof. Dr. Marc Keßeböhmer
03-M-AC-27 Exponential Families (in englischer Sprache)

Seminar
ECTS: 4,5/6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 5500 Seminar

This is a seminar in the specialization area "Stochastics / Statistics". The seminar deals with (univariate and multivariate) exponential families, which arguably constitute the most important classes of statistical models.

Prof. Dr. Thorsten-Ingo Dickhaus

Master: Reading Courses

VAK Titel der Veranstaltung DozentIn
03-M-RC-ALG Reading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-RC-ANA Reading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

In the Reading Course Analysis advanced topics in the area of analysis are discussed. The precise topic for the Winter Semester 2024/25 will be decided upon with the participants.

Prof. Dr. Anke Dorothea Pohl
03-M-RC-STS Reading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Oberseminare

VAK Titel der Veranstaltung DozentIn
Oberseminar Mathematical Parameter Identification (RTG-Seminar) (in englischer Sprache)
Research Seminar - Mathematical Parameter Identification (RTG)

Seminar

Termine:
zweiwöchentlich (Startwoche: 1) Mi 12:00 - 14:00 MZH 2490 (Seminarraum) Seminar


Dr. rer. nat. Pascal Fernsel

General Studies

VAK Titel der Veranstaltung DozentIn
03-M-GS-5 Statistical Consulting (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Mo 10:00 - 12:00 Seminar
Dr. Martin Scharpenberg
03-M-GS-7 Introduction to R (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Fr 12:00 - 15:00 LINZ4 40010 Seminar

3 SWS Seminar
Die Veranstaltung kann nach BPO'10 als BE-6 angerechnet werden und nach BPO'20 nur in Freie Wahl

Homepage des KKSB und Uni-Lageplan

Prof. Dr. Werner Brannath
03-M-GS-14 Starting Data Science in R (in englischer Sprache)
a course on R programming and data science methods with practicals and projects

Praktikum
ECTS: 3

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 2490 (Seminarraum) Lecture plus Exercise

The course provides an introductory level of programming skills in R.
Students are welcome to present own ideas, data and projects. I expect a project report or a method talk with demo on own data. Practicals in "R" will work also on synthetic data to illustrate methods features, limitations and differences.

Prof. Dr. Stephan Frickenhaus

Medical Biometry / Biostatistics, M.Sc.

Modulbereich Biometrie

VAK Titel der Veranstaltung DozentIn
03-BioStat-A-1-1 Biometrical Methods (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 15:00 LINZ4 40010 Exercise
wöchentlich Mo 15:00 - 16:00 LINZ4 40010 Exercise
wöchentlich Di 09:00 - 10:00 BIPS 1550 Lecture
wöchentlich Do 14:00 - 16:00 BIPS 1550 Lecture

Einzeltermine:
Fr 17.01.25 10:00 - 12:00 BIPS 1550
Mo 03.03.25 14:00 - 16:00 BIPS 2690

Only the lecture on Thursday 07th November 2024 will take place in Linz 4. All other lectures will take place in BIPS 1550.

Prof. Dr. Marvin Nils Ole Wright
03-BioStat-A-2-1 Statistical Modelling I (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 12:00 - 14:00 Externer Ort: BIPS 1550 Exercise
wöchentlich Di 14:00 - 16:00 BIPS 1550 Lecture
wöchentlich Mi 10:00 - 12:00 Lecture

Einzeltermine:
Mo 21.10.24 13:00 - 14:00
Di 22.10.24 14:00 - 15:00
Mi 23.10.24 11:00 - 12:00
Mo 28.10.24 13:00 - 14:00
Mi 30.10.24 11:00 - 12:00
Mo 04.11.24 13:00 - 14:00 BIPS 1.550
Di 05.11.24 14:00 - 16:00 BIPS 2.690 (second floor)
Mo 11.11.24 13:00 - 14:00
Mo 18.11.24 13:00 - 14:00
Di 03.12.24 14:00 - 16:00
Mo 09.12.24 13:00 - 14:00
Mo 16.12.24 13:00 - 14:00
Mi 18.12.24 11:00 - 12:00
Mo 06.01.25 13:00 - 14:00
Mi 08.01.25 10:00 - 12:00
Mo 13.01.25 13:00 - 14:00
Mi 15.01.25 11:00 - 12:00
Mo 20.01.25 13:00 - 14:00
Mi 22.01.25 10:00 - 12:00
Mo 27.01.25 13:00 - 14:00

Alle Studierende, denen eine Präsenzteilnahme an den Terminen nicht möglich ist, können sich über folgenden Link zu der Vorlesung sowie den Übungen zuschalten:

https://uni-bremen.zoom-x.de/j/8186343447?pwd=xmAUSaqXZop1QzXSN8ZgJavC7IPASR.1
Meeting-ID: 818 634 3447
Kenncode: 641476

-

All students who are not able to attend in person can join the lecture and the exercises via the following link:

https://uni-bremen.zoom-x.de/j/8186343447?pwd=xmAUSaqXZop1QzXSN8ZgJavC7IPASR.1
Meeting ID: 818 634 3447
Identification code: 641476

Prof. Dr. Iris Pigeot-Kübler
03-BioStat-A-3-1 Data Management (in englischer Sprache)

Praktikum
ECTS: 4

Termine:
wöchentlich Do 08:00 - 10:00 MZH 5500 Praktikum
wöchentlich Do 10:00 - 12:00 MZH 5500 Praktikum
Dr. Martin Scharpenberg

Modulbereich Anwendungsfelder und biomedizinische Grundlagen

VAK Titel der Veranstaltung DozentIn
03-BioStat-B-1-1 Clinical Trials I (in englischer Sprache)

Vorlesung
ECTS: 4

Termine:
wöchentlich Di 10:00 - 12:00 LINZ4 40010 Lecture
wöchentlich Di 13:00 - 14:00 LINZ4 40010 Exercise
wöchentlich Mi 13:00 - 14:00 LINZ4 40010 Exercise

Einzeltermine:
Mi 29.01.25 08:00 - 10:00 SFG 1010
Max Westphal
03-BioStat-B-1-3 Ethical Aspects, Laws and Guidelines (in englischer Sprache)

Vorlesung
ECTS: 3

Termine:
wöchentlich Mo 16:00 - 18:00 LINZ4 40010 Lecture

Einzeltermine:
Fr 07.02.25 10:00 - 12:00 MZH 1470
Dr. Martin Scharpenberg
03-BioStat-B-2-1 Medical Basics - Common Diseases and Molecular Medicine (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Fr 09:00 - 12:00 LINZ4 40010 Lecture

Einzeltermine:
Do 16.01.25 13:00 - 16:00 LINZ4 40010
Mo 27.01.25 09:00 - 12:00 LINZ4 40010
Fr 14.02.25 10:00 - 12:00 MZH 1090

Die Vorlesung findet im LINZ4 4010 statt.

Lecturer (DozentInnen): MedizinerInnen des Kooperationszentrums Medizin der Universität Bremen (KOM) Homepage

Nikolaos Papathanasiou
Dr. Martin Scharpenberg
Bernd Mühlbauer

Wahlbereich

VAK Titel der Veranstaltung DozentIn
03-BioStat-E-1 Mathematical Basics in Biostatistics (in englischer Sprache)

Vorlesung
ECTS: 3

Termine:
wöchentlich Mi 14:00 - 16:00 LINZ4 40010 Lecture
wöchentlich Mi 16:00 - 17:00 LINZ4 40010 Exercise
Prof. Dr. Werner Brannath

Sonstige Veranstaltungen

VAK Titel der Veranstaltung DozentIn
03-BioStat-VORKURS Schulung Statistiksoftware SAS (in englischer Sprache)

Blockveranstaltung

Einzeltermine:
Mo 07.10.24 - Do 10.10.24 (Mo, Di, Mi, Do) 09:00 - 16:00 COG0320
Nils Fabian Gesing
Alina Ludewig
03-M-GS-5 Statistical Consulting (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Mo 10:00 - 12:00 Seminar
Dr. Martin Scharpenberg
03-M-GS-7 Introduction to R (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Fr 12:00 - 15:00 LINZ4 40010 Seminar

3 SWS Seminar
Die Veranstaltung kann nach BPO'10 als BE-6 angerechnet werden und nach BPO'20 nur in Freie Wahl

Homepage des KKSB und Uni-Lageplan

Prof. Dr. Werner Brannath

Technomathematik, B.Sc./M.Sc. (Studienbeginn vor 2022)

Bachelor: Wahlpflichtveranstaltungen

VAK Titel der Veranstaltung DozentIn
03-M-FTH-9 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Mi 08:00 - 10:00 Externer Ort: MZH 7200 Vorlesung
wöchentlich Fr 12:00 - 14:00 Externer Ort: MZH 7200 Übung

Die Veranstaltung finden zusammen statt mit 03-M-SP-26 !

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-FTH-10 Basics of mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Do 08:00 - 10:00 LINZ4 40010 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 1100 Übung

Die Veranstaltung findet zusammen mit der 03-M-SP-2 statt

Prof. Dr. Werner Brannath

Master: Pflichtveranstaltungen

VAK Titel der Veranstaltung DozentIn
03-M-NPDE-1 Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 Companion Course (MZH 2490)
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Di 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture

The lecture deals with the discretisation of partial differential equations and the estimation of the error between continuous and discrete solution. The connection of theory, numerical analysis and implementation is particularly important. The numerical algorithms are to be implemented in programming tasks under guidance.

Alfred Schmidt

Master: Wahlpflichtveranstaltungen

VAK Titel der Veranstaltung DozentIn
03-IMAT-AU Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Kurs
wöchentlich Do 08:00 - 10:00 MZH 1470 Kurs

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI
https://lvb.informatik.uni-bremen.de/imat/03-imat-au.pdf


A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
03-M-MDAIP-1 Mathematical Methods for Data Analysis and Image Processing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 Lecture
wöchentlich Do 10:00 - 12:00 MZH 1470 Lecture
wöchentlich Do 14:00 - 16:00 MZH 6200 Exercise
Dirk Lorenz
03-M-SP-2 Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Do 08:00 - 10:00 Externer Ort: LINZ4 4010 Lecture
wöchentlich Fr 08:00 - 10:00 Externer Ort: MZH 1100 Exercise

Die Veranstaltung findet zusammen mit 03-M-FTH-10 statt.

Prof. Dr. Werner Brannath
03-M-SP-26 Algebraic Topology (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 7200 Exercise

Findet zusammen mit der LV 03-M-FTH-9 statt.

Prof. Dr. Dmitry Feichtner-Kozlov
03-M-SP-28 Mathematical Concepts of Risk Management (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Exercise
wöchentlich Di 10:00 - 12:00 MZH 7200 Lecture
wöchentlich Do 10:00 - 12:00 MZH 7200 Lecture

The quantitative assessment and the management of (extreme) risks are key tools for policy makers and stakeholders in many areas such as climate and environmental research, economics, or finance and insurance. In this course, we will get familiar with basic mathematical concepts of (quantitative) risk assessment and management.

Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-38 Finite Elements - Selected Chapters (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture
wöchentlich Mi 10:00 - 12:00 MZH 2340 Exercise

The finite element method is used for the discretisation of partial differential equations in many different applications. In this course we will deepen existing knowledge in finite element methods with respect to different applications and learn new techniques to increase their computational speed.

Prof. Dr. Andreas Rademacher
03-M-SP-39 Advanced Topics in Image Processing - The Beauty of Variational Calculus (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise

This course focusses on two advanced tools in modern mathematical image processing, namely the direct method of variational calculus and the iterated soft thresholding algorithm.

Peter Maaß
Dr. Matthias Beckmann
Dr. rer. nat. Pascal Fernsel
03-M-SP-40 Convex Analysis and Optimization (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 2340 Exercise
Dirk Lorenz
04-M30-CP-SFT-3 Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 18:00 FZB 0240

Einzeltermine:
Mi 05.03.25 10:00 - 13:00 SFG 0140
Prof. Dr. Christof Büskens
Matthias Knauer

Master: Seminare

VAK Titel der Veranstaltung DozentIn
03-IMS-RTAT Recent Trends in Algorithm Theory (in englischer Sprache)

Blockveranstaltung
ECTS: 3 (4,5 / 6)

Frequency: The seminar is planned as a block seminar, meaning that all talks will be at up to three days, most likely in the middle of December. We will discuss this in the first meeting. The first (organizational) meeting is planned as follows: Wednesday, October 16, at 14:00 pm in the room MZH 3150.

Learning Outcome:
Students learn how recent advances in algorithm theory can be used to improve state-of-the-art algorithms to obtain faster, better or new types of algorithms. They learn about relevant problems that are important and used in many applications. The main goals are to understand, design, and analyze algorithms for solving such problems.
Furthermore, the students will learn how to read and thoroughly understand original research papers. They learn how to prepare slides for these papers and give an oral presentation to other students who have no prior knowledge about the paper.

Contents: This seminar focuses on recent advances in algorithm theory. Most topics considered include important problems on graphs, typically related to optimization problems. These advances include faster running times of the algorithms, solutions with improved performance guarantees or new concepts in algorithm design, such as algorithms with machine-learned predictions.

Dr. Felix Christian Hommelsheim
03-M-AC-5 Mathematical Methods in Machine Learning (in englischer Sprache)

Seminar
ECTS: 4,5/ 6

Termine:
wöchentlich Fr 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß
Dr. Matthias Beckmann
03-M-AC-28 Advanced Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

This is a seminar with subjects from numerical methods for PDEs, expecially finite element methods, with applications to real world problems.

Alfred Schmidt
03-M-AC-31 Introduction to Robust Control (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 1450 Seminar

Einzeltermine:
Fr 31.01.25 14:00 - 17:00 MZH 5600
Mo 03.02.25 10:00 - 14:00 MZH 5600
Dr. Chathura Wanigasekara
03-M-MP-2 Modeling Project (Part 2) (in englischer Sprache)

Seminar
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 2340 Seminar
Peter Maaß

Oberseminare

VAK Titel der Veranstaltung DozentIn
Oberseminar Mathematical Parameter Identification (RTG-Seminar) (in englischer Sprache)
Research Seminar - Mathematical Parameter Identification (RTG)

Seminar

Termine:
zweiwöchentlich (Startwoche: 1) Mi 12:00 - 14:00 MZH 2490 (Seminarraum) Seminar


Dr. rer. nat. Pascal Fernsel

General Studies

VAK Titel der Veranstaltung DozentIn
03-M-GS-5 Statistical Consulting (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Mo 10:00 - 12:00 Seminar
Dr. Martin Scharpenberg
03-M-GS-7 Introduction to R (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Fr 12:00 - 15:00 LINZ4 40010 Seminar

3 SWS Seminar
Die Veranstaltung kann nach BPO'10 als BE-6 angerechnet werden und nach BPO'20 nur in Freie Wahl

Homepage des KKSB und Uni-Lageplan

Prof. Dr. Werner Brannath

Systems Engineering, B.Sc. / M.Sc.

VAK Titel der Veranstaltung DozentIn
03-IMAP-AML Advanced Machine Learning (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 1090 Übung
wöchentlich Mo 16:00 - 18:00 MZH 1100 Übung
wöchentlich Di 08:00 - 10:00 MZH 1470 Übung
wöchentlich Di 14:00 - 16:00 MZH 1090 Übung
wöchentlich Mi 14:00 - 16:00 MZH 1380/1400 Vorlesung

Profil: KIKR
Schwerpunkt: IMAP-AI, IMA-VMC
https://lvb.informatik.uni-bremen.de/imap/03-imap-aml.pdf

Tanja Schultz
Felix Putze

Wirtschaftsinformatik, B.Sc.

2./3. Studienjahr

Wahlmodule

Schwerpunkt "Computational Finance"

WI-CF-WP

Auflistung der WInf-Schwerpunkt-Wahlmodule siehe unter WInf-Wahlmodule
VAK Titel der Veranstaltung DozentIn
07-BA37-231-04 Behavioral Finance (in englischer Sprache)

Seminar
ECTS: 6

Termine:
wöchentlich Do 10:00 - 12:00 WiWi1 A1100

Einzeltermine:
Do 24.10.24 10:00 - 14:00 WiWi1 A1100
Dr. Marten Laudi

Schwerpunkt "Informationstechnikmanagement"

WI-IM-WP

Auflistung der WInf-Schwerpunkt-Wahlmodule siehe unter WInf-Wahlmodule
VAK Titel der Veranstaltung DozentIn
07-BA37-233-01 Strategisches Management (in englischer Sprache)
Strategic Management

Seminar
ECTS: 6

Termine:
zweiwöchentlich (Startwoche: 2) Mi 10:00 - 14:00 GW2 B3009 (Großer Studierraum) GW1-HS H0070 GW1 B0080
Dr. Julia Maria Kensbock
07-BA37-233-09 Digital Future Challenge (in englischer Sprache)
Problem Solving for a Responsible Digital Future

Seminar
ECTS: 6

Termine:
wöchentlich Do 10:00 - 12:00 WiWi2 F3290

Einzeltermine:
Di 28.01.25 08:00 - 10:00 WiWi2 F3290
Prof. Dr. Benjamin Müller, MBA

WInf-Wahlmodule

WI-W/50 International Management

Schwerpunkte: EB, IM, LO
VAK Titel der Veranstaltung DozentIn
07-BA37-162-01 International Business (in englischer Sprache)
International Business

Vorlesung
ECTS: 6

Termine:
zweiwöchentlich (Startwoche: 2) Do 10:00 - 14:00 WiWi1 A1070

Einzeltermine:
Do 17.10.24 10:00 - 14:00 WiWi1 A1070
Do 14.11.24 10:00 - 14:00 WiWi1 A1070

Bitte beachten Sie die Veranstaltungszeiten im Ablaufplan.

Prof. Dr. Peter Michael Anton Bican

WI-W/52 Strategisches Management

Schwerpunkte: EB, IM, LO
VAK Titel der Veranstaltung DozentIn
07-BA37-233-01 Strategisches Management (in englischer Sprache)
Strategic Management

Seminar
ECTS: 6

Termine:
zweiwöchentlich (Startwoche: 2) Mi 10:00 - 14:00 GW2 B3009 (Großer Studierraum) GW1-HS H0070 GW1 B0080
Dr. Julia Maria Kensbock