Veranstaltungsverzeichnis

Lehrveranstaltungen SoSe 2022

Systems Engineering, B.Sc

Veranstaltungen anzeigen: alle | in englischer Sprache | für ältere Erwachsene | mit Nachhaltigkeitszielen

Module nach empfohlenem Studienverlaufsplan

Der im Studiengang definierte Studienverlaufsplan stellt eine Empfehlung für den Ablauf des Studiums dar. Module können von den Studierenden in einer anderen Reihenfolge besucht werden.

Spezialisierungsmodule I bzw. Vertiefungsmodule

In diesem Pflichtmodul wird in jeder Spezialisierungsrichtung (BPO 2015) bzw. Vertiefungsrichtung (BPO 2022) im Umfang von 18 CP eine Auswahl an Lehrveranstaltungen mit fachlich-thematischem Bezug zur gewählten Spezialisierungs- bzw. Vetiefungsrichtung getroffen.

Automatisierungstechnik und Robotik

Bitte beachten:
Studierenden wird geraten:
anstatt "Systemanalyse und Übungen" die Lehrveranstaltung "Informationstechnische Anwendungen in Produktion und Wirtschaft"
zu wählen, da diese Lehrveranstaltung nicht mehr im Bachelorstudiengang Systems Engineering angeboten werden sollen.

"Grundlagen der Nachrichtentechnik" kann nur zusammen mit dem "Grundlagenlabor der Nachrichtentechnik" gewählt werden.
VAKTitel der VeranstaltungDozentIn
01-15-03-Rob(a)-VIntroduction to Robotics (in englischer Sprache)
previous title: Robotics I

Vorlesung
ECTS: 3 (4)

Termine:
wöchentlich Di 16:00 - 18:00 NW1 H 3 - W0040/W0050 (2 SWS)
Dr. Danijela Ristic-Durrant
03-IBAP-ML (03-BB-710.10)Grundlagen des Maschinellen Lernens (in englischer Sprache)
Fundamentals of Machine Learning

Kurs
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 3150 Übung Präsenz
wöchentlich Mi 10:00 - 12:00 MZH 1380/1400 MZH 6200 Vorlesung Präsenz
wöchentlich Mi 14:00 - 16:00 MZH 1100 Übung Präsenz

Einzeltermine:
Mi 27.07.22 10:00 - 14:00 MZH 1380/1400
Mi 27.07.22 10:00 - 14:00 MZH 1470

Schwerpunkt: AI

Tanja Schultz
Felix Putze
Mazen Salous
Darius Ivucic
Gabriel Ivucic
03-IBAP-MRCAModern Robot Control Architectures (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 Extern RH 1 (DFKI-Gebäude) Raum B0.10 Vorlesung Präsenz
wöchentlich Do 14:00 - 16:00 Extern RH 1 (DFKI-Gebäude) Raum B0.10 Übung Präsenz

Robotics is a complex field that emerged at the intersection of multiple disciplines such as physics, mathematics and computer science. New advances in hardware and software design and progress in artificial intelligence enable robotics research to pursue higher goals and achieve increased autonomy in various environments. For instance, robots can operate in disaster zones for search and rescue operations, can be employed in rehabilitation and healthcare, space and underwater exploration, etc. Given the complexity of such scenarios, it is essential to develop robust robotic systems with a high degree of autonomy, able to assist humans in difficult and tedious tasks.

This course aims to provide the fundamentals of modern robot control approaches that enable robotic agents to operate in the environment autonomously. The course introduces a basic understanding of autonomous robots, along with tools and methods to control various types of mobile robotic platforms and manipulators. Firstly, the course presents the types of sensors and actuators employed in autonomous robotic platforms. Secondly, it offers a formal understanding of the robot geometry, its kinematic and dynamic models. Finally, the course provides methods and approaches to control the robotic system from a deliberative and reactive point of view. Students will put this knowledge into practice during tutorials and exercise sheets using Python implementation and robot simulations.

Contents

  • Introduction to Robotics and AI: long term robot autonomy, artificial intelligence, deliberative vs. reactive control, robotic applications.
  • Sensing and Actuation Modalities: types of sensors and actuators, sensor fusion, actuator control.
  • Robot Geometry and Transformations: robot transformations in the 3D space, exponential and logarithmic maps, forward and inverse geometric models.
  • Kinematics: definition of twists and wrenches for rigid bodies, geometric Jacobian formulation, forward and inverse kinematics.
  • Dynamics: an introduction to Lagrangian and Newtonian mechanics, robot dynamics formulation, recursive Newton-Euler algorithm.
  • Localization: direct and probabilistic methods for robot localization, odometry, global localization, particle filter.
  • Path Planning: path vs. trajectory generation, graph-based methods for path planning (e.g. Djikstra, A\*).
  • Kinodynamic Planning: transcribing a dynamic planning problem into trajectory optimization, direct and indirect methods, costs and constraints.
  • Reinforcement Learning-based Control: mathematical foundations, discrete vs continuous methods, reinforcement learning for closed-loop robot control.
  • Dynamic Control: PD gravity compensation control, computed torque control, admittance vs impedance control.
  • Optimal Control: energy-shaping control, LQR and time-varying LQR control.

Learning Outcomes

At the end of the course, the student is expected to be able to:
  • Define robot autonomy and list its key aspects.
  • Describe the sensor and actuator modalities used in robotics, and explain their relevance for robot control.
  • Implement and understand the low-level actuator control methods.
  • Compute the 3D world coordinate transformations for rigid bodies.
  • Apply the robot forward and inverse geometric model.
  • Describe a robotic system based on its kinematic and dynamic properties.
  • Use probabilistic methods for robot localization.
  • Generate an optimal path for a mobile robot or manipulator using graph search methods.
  • Plan a path taking into account the robot kinodynamic properties.
  • Use reinforcement learning methods to control simple robotic systems.
  • Apply dynamical and optimal control methods on robotic systems such that they are robust against disturbances.
  • Assess the strengths and limitations of different control methods presented in the course.
  • Identify open challenges in robotics research and current trends in state-of-the-art.
  • Communicate confidently using the terminology in the field of robotics.
  • Cooperate and work in teams in order to solve tasks.

Examination

a) Submission of 6 worksheets in groups of 4 students and group interview for final grade (Übungsaufgaben und Fachgespräch).
b) Individual oral exam without worksheet submission (mündliche Prüfung).

References

  • Mechanics of Robotic Manipulation, Mathew T. Masen, MIT press, 2001.
  • Algebra and Geometry, Alan F. Beardon, Cambridge University Press, 2005.
  • Modelling and Control of Robot Manipulators, Lorenzo Sciavicco, Bruno Siciliano, Springer, 2000.
  • Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), Sebastian Thrun, Wolfram Burgard, and Dieter Fox, MIT Press, 2005.
  • Introduction to Autonomous Mobile Robots, Siegwart R., Nourbakhsh I., Scaramuzza D., MIT press, 2011.
  • Automated Planning: Theory and Practice, Malik Ghallab, Dana Nau, Paolo Traverso, Elsevier, 2004.
  • Behaviour-based robotics, R. C. Arkin, MIT press, 1998.
  • Modern Robotics: Mechanics, Planning, and Control, Kevin M. Lynch and Frank C. Park, Cambridge University Press, 2017.

Frank Kirchner
M. Sc. Mihaela Popescu (Organizer)

Spezialisierungsmodule II

In diesem Pflichtmodul wird in jeder Spezialisierungsrichtung im Umfang von 6 CP eine Auswahl an Lehrveranstaltungen mit fachlich-thematischem Bezug zu allen Spezialisierungsrichtung getroffen.

Bitte beachten:
Studierenden wird geraten:
anstatt \"Systemanalyse und Übungen\" die Lehrveranstaltung \"Informationstechnische Anwendungen in Produktion und Wirtschaft\"
anstatt \"Fabrikplanung\" die Lehrveranstaltung \"Modellierung und Simulation in Produktion und Logistik\"
zu wählen, da diese zwei Lehrveranstaltungen nicht mehr im Bachelorstudiengang Systems Engineering angeboten werden sollen.

\"Grundlagen der Nachrichtentechnik\" kann nur zusammen mit dem \"Grundlagenlabor der Nachrichtentechnik\" gewählt werden.
VAKTitel der VeranstaltungDozentIn
01-15-03-Rob(a)-VIntroduction to Robotics (in englischer Sprache)
previous title: Robotics I

Vorlesung
ECTS: 3 (4)

Termine:
wöchentlich Di 16:00 - 18:00 NW1 H 3 - W0040/W0050 (2 SWS)
Dr. Danijela Ristic-Durrant
03-IBAP-ML (03-BB-710.10)Grundlagen des Maschinellen Lernens (in englischer Sprache)
Fundamentals of Machine Learning

Kurs
ECTS: 6

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 3150 Übung Präsenz
wöchentlich Mi 10:00 - 12:00 MZH 1380/1400 MZH 6200 Vorlesung Präsenz
wöchentlich Mi 14:00 - 16:00 MZH 1100 Übung Präsenz

Einzeltermine:
Mi 27.07.22 10:00 - 14:00 MZH 1380/1400
Mi 27.07.22 10:00 - 14:00 MZH 1470

Schwerpunkt: AI

Tanja Schultz
Felix Putze
Mazen Salous
Darius Ivucic
Gabriel Ivucic
03-IBAP-MRCAModern Robot Control Architectures (in englischer Sprache)

Vorlesung
ECTS: 6

Termine:
wöchentlich Mo 10:00 - 12:00 Extern RH 1 (DFKI-Gebäude) Raum B0.10 Vorlesung Präsenz
wöchentlich Do 14:00 - 16:00 Extern RH 1 (DFKI-Gebäude) Raum B0.10 Übung Präsenz

Robotics is a complex field that emerged at the intersection of multiple disciplines such as physics, mathematics and computer science. New advances in hardware and software design and progress in artificial intelligence enable robotics research to pursue higher goals and achieve increased autonomy in various environments. For instance, robots can operate in disaster zones for search and rescue operations, can be employed in rehabilitation and healthcare, space and underwater exploration, etc. Given the complexity of such scenarios, it is essential to develop robust robotic systems with a high degree of autonomy, able to assist humans in difficult and tedious tasks.

This course aims to provide the fundamentals of modern robot control approaches that enable robotic agents to operate in the environment autonomously. The course introduces a basic understanding of autonomous robots, along with tools and methods to control various types of mobile robotic platforms and manipulators. Firstly, the course presents the types of sensors and actuators employed in autonomous robotic platforms. Secondly, it offers a formal understanding of the robot geometry, its kinematic and dynamic models. Finally, the course provides methods and approaches to control the robotic system from a deliberative and reactive point of view. Students will put this knowledge into practice during tutorials and exercise sheets using Python implementation and robot simulations.

Contents

  • Introduction to Robotics and AI: long term robot autonomy, artificial intelligence, deliberative vs. reactive control, robotic applications.
  • Sensing and Actuation Modalities: types of sensors and actuators, sensor fusion, actuator control.
  • Robot Geometry and Transformations: robot transformations in the 3D space, exponential and logarithmic maps, forward and inverse geometric models.
  • Kinematics: definition of twists and wrenches for rigid bodies, geometric Jacobian formulation, forward and inverse kinematics.
  • Dynamics: an introduction to Lagrangian and Newtonian mechanics, robot dynamics formulation, recursive Newton-Euler algorithm.
  • Localization: direct and probabilistic methods for robot localization, odometry, global localization, particle filter.
  • Path Planning: path vs. trajectory generation, graph-based methods for path planning (e.g. Djikstra, A\*).
  • Kinodynamic Planning: transcribing a dynamic planning problem into trajectory optimization, direct and indirect methods, costs and constraints.
  • Reinforcement Learning-based Control: mathematical foundations, discrete vs continuous methods, reinforcement learning for closed-loop robot control.
  • Dynamic Control: PD gravity compensation control, computed torque control, admittance vs impedance control.
  • Optimal Control: energy-shaping control, LQR and time-varying LQR control.

Learning Outcomes

At the end of the course, the student is expected to be able to:
  • Define robot autonomy and list its key aspects.
  • Describe the sensor and actuator modalities used in robotics, and explain their relevance for robot control.
  • Implement and understand the low-level actuator control methods.
  • Compute the 3D world coordinate transformations for rigid bodies.
  • Apply the robot forward and inverse geometric model.
  • Describe a robotic system based on its kinematic and dynamic properties.
  • Use probabilistic methods for robot localization.
  • Generate an optimal path for a mobile robot or manipulator using graph search methods.
  • Plan a path taking into account the robot kinodynamic properties.
  • Use reinforcement learning methods to control simple robotic systems.
  • Apply dynamical and optimal control methods on robotic systems such that they are robust against disturbances.
  • Assess the strengths and limitations of different control methods presented in the course.
  • Identify open challenges in robotics research and current trends in state-of-the-art.
  • Communicate confidently using the terminology in the field of robotics.
  • Cooperate and work in teams in order to solve tasks.

Examination

a) Submission of 6 worksheets in groups of 4 students and group interview for final grade (Übungsaufgaben und Fachgespräch).
b) Individual oral exam without worksheet submission (mündliche Prüfung).

References

  • Mechanics of Robotic Manipulation, Mathew T. Masen, MIT press, 2001.
  • Algebra and Geometry, Alan F. Beardon, Cambridge University Press, 2005.
  • Modelling and Control of Robot Manipulators, Lorenzo Sciavicco, Bruno Siciliano, Springer, 2000.
  • Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), Sebastian Thrun, Wolfram Burgard, and Dieter Fox, MIT Press, 2005.
  • Introduction to Autonomous Mobile Robots, Siegwart R., Nourbakhsh I., Scaramuzza D., MIT press, 2011.
  • Automated Planning: Theory and Practice, Malik Ghallab, Dana Nau, Paolo Traverso, Elsevier, 2004.
  • Behaviour-based robotics, R. C. Arkin, MIT press, 1998.
  • Modern Robotics: Mechanics, Planning, and Control, Kevin M. Lynch and Frank C. Park, Cambridge University Press, 2017.

Frank Kirchner
M. Sc. Mihaela Popescu (Organizer)

General Studies: Pool

In diesem Bereich können neben der unten genannten Vorlesung auch Vorlesungen des Bereichs "Fachergänzende Studien" der Universität Bremen besucht werden.

Zu "Fachergänzenden Studien" zählen
Studium Generale / interdisziplinäre Angebote aus den Fachbereichen / Sachkompetenzen
Schlüsselkompetenzen
Fremdsprachen
Studium und Beruf

Zu den Angeboten gelangen Sie über https://www.uni-bremen.de/de/studium/starten-studieren/veranstaltungsverzeichnis/
VAKTitel der VeranstaltungDozentIn
IO-2022-IKT-6Interkulturelles Training-Basis/Intercultural Training- basis (engl.) (in englischer Sprache)
Intercultural Training Basics
Interkulturelle Kommunikation

Seminar
ECTS: 3

Einzeltermine:
Fr 29.07.22 14:00 - 20:00 GW1 A0010
Sa 30.07.22 09:00 - 18:00 GW1 A0010

Intercultural competence is one of the most important key qualifications for moving confidently in international contexts.
In the Intercultural Training, participants learn methods, exercises and theories that facilitate intercultural communication and sensitize them to cultural conflict situations.
The seminar is open to all students and doctoral candidates (national/international) of the University of Bremen.
For submitting a reflection report in addition to attending the seminar, 3 ECTS can be awarded for General Studies. This is done in consultation with your department. Please note that we cannot award grades.

N. N.

General Studies: Schlüsselqualifikationen

In diesem Modul sind Lehrangebote mit einem Gesamtworkload von 3 CPs zu absolvieren.

Nicht alle im Katalog vorhandenen Lehrangebote werden im auch im aktuellen Semester angeboten. Es ist ein wechselndes Angeobt an Lehrangeboten vorhanden und es wird empfohlen beim Anbieter zu prüfen, ob das Angebot im akutellen Semester angeboten wird.

Der Gesamtkatalog der dem Modul General Studies: Schlüsselqualifikationen zugeteilte Lehrangebote umfasst:
Früherkennung, Abschätzung und Management, technischer und stofflicher Risiken,
Grundlagen des Managements - Instrumente und Strategien,
Gewerblicher Rechtsschutz I - Grundlagen des Patents,
Konflikt- und Verhandlungsmanagement,
Nachhaltige Entwicklung - Grundlagen und Umsetzung,
Nachhaltige Entwicklung: Konzepte und Perspektiven für Wirtschaft und Gesellschaft,
Nachhaltigkeit in Konsum und Produktion,
Nachhaltigkeit und Unternehmensführung,
Projektmanagement,
Projektmanagement und Teamarbeit für Ingenieure und Naturwissenschaftler,
Schlüsselkompetenzen - Ein Reflexionsangebot,
Technik, Gender & Diversity im gesellschaftlichen und betrieblichen Kontext,
Unternehmen Technik: soziale, gesellschaftliche und wirtschaftliche Dimensionen.
VAKTitel der VeranstaltungDozentIn
META-2022-ALL-IS14. internationale Ingenieurinnen-Sommeruni (in englischer Sprache)
Ingenieurinnen-Sommeruni - Summer University for Women in Engineering
Sommeruniversität für Frauen in den Ingenieurwissenschaften / Summer University for Women in Engineering

Blockveranstaltung
ECTS: 1-3 (je Kurs/for every course)

60 Lehrveranstaltungen in Deutsch und Englisch für Bachelor- und Masterstudentinnen aller Fächer. Als General Studies sowie teilweise als Fachstudium im Sommersemester 2022 sowie im Wintersemester 2022/23 anerkannt. Alle Einzelangaben, Zeiten und Anmeldungen jederzeit nur über die Website https://www.ingenieurinnen-sommeruni.de.
60 courses in German and English for women Bachelor and Master students from all fields of study. Courses are part of General Studies, some are accepted in Informatics; in the summer semester 2022 as well as in winter semester 2022/23. Further information, schedules and registration only on the website https://www.ingenieurinnen-sommeruni.de.

Veronika Oechtering
Henrike Illig
Isabel Marie Matthias