Skip to main content

Philipp Kenkel, M. Sc.

Office: SFG 2410
Tel.: +49 421 218 64883
E-Mail

Research associate in the KEROSyN100 project with focus on refinery concepts and system engineering

Since 11/2018:
Research Associate: Department of Resilient Energy Systems, FB 4, University of Bremen

03/2018 – 10/2018:
Student Researcher: Department of Energy Systems Analysis, Fraunhofer IFAM, Bremen

BMWi Research Project: „MuSeKo - Multi-Sektor-Kopplung zur Integration erneuerbarer Energien“

09/2017 – 02/2018:
Master project during an Erasmus + semester, Eindhoven University of Technology, Netherlands

Project title: „Techno-economic assessment of decentralized hydrogen production with membrane reactors “

09/2016 – 09/2017:
Student Researcher: Department of Energy Systems Analysis, Fraunhofer IFAM, Bremen

BMWi Research Project: „MuSeKo - Multi-Sektor-Kopplung zur Integration erneuerbarer Energien “

10/2016 – 10/2018:
Master programme: Production engineering (Specialisation: Energy Systems) (M.Sc.), University of Bremen

Master thesis: "Development of a superstructure framework for the techno-economic optimization of an integrated algae biorefinery"

03/2016 – 05/2016:
Internship in Environmental engineering, REW Regenis Regenerative Energie Wirtschaftssysteme GmbH

10/2012 – 09/2016:
Bachelor programme: Production engineering (Specialisation: Energy Systems) (M.Sc.), University of Bremen

Bachelor thesis: „Prozesscharakterisierung von Verbrennungsreaktoren zur Nanopartikelsynthese mittels optischer Messverfahren“

Multi criteria Energy Systems:

  • Analysis
  • Assessment
  • Optimization

Power-to-X Technologies


Biomass-to-X Technologies


Renewable integrated refineries

Wassermann, T., Muehlenbrock, H., Kenkel, P., & Zondervan, E. (2022). Supply chain optimization for electricity-based jet fuel: The case study Germany. Applied Energy, 307, 117683. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117683


Kenkel, P., Wassermann, T., & Zondervan, E. (2021). Biogas Reforming as a Precursor for Integrated Algae Biorefineries: Simulation and Techno-Economic Analysis. Processes, 9(8), 1348. https://doi.org/10.3390/pr9081348


Kenkel, P., Wassermann, T., Rose, C., & Zondervan, E. (2021). OUTDOOR – An open-source superstructure construction and optimization tool. Computer Aided Chemical Engineering, 50, 413–418. https://doi.org/10.1016/B978-0-323-88506-5.50065-6


Kenkel, P., Wassermann, T., Rose, C., & Zondervan, E. (2021). A generic superstructure modeling and optimization framework on the example of bi-criteria Power-to-Methanol process design. Computers & Chemical Engineering, 150, 107327. https://doi.org/10.1016/j.compchemeng.2021.107327


Kenkel, P., Wassermann, T., & Zondervan, E. (2020). Design of a Sustainable Power-to-methanol Process: a Superstructure Approach Integrated with Heat Exchanger Network Optimization. In Computer Aided Chemical Engineering (Vol. 48, pp. 1411-1416).Elsevier


Christian Schnülle, Philipp Kenkel, Timo Wassermann (2020): Multikriterielle Bewertung von Elektrolyse- und Co2-Capture Technologien für eine Power-to-Methanol Prozesskette. Artec Paper Nr. 223, ISSN 1613-4907


Timo Wassermann, Christian Schnuelle, Philipp Kenkel, Edwin Zondervan (2020): Power-to-Methanol at Refineries as a Precursor to Green Jet Fuel Production: a Simulation and Assessment Study. Computer Aided Chemical Engineering, Elsevier, Volume 48, Pages 1453-1458, https://doi.org/10.1016/B978-0-12-823377-1.50243-3


Galanopoulos, Christos, Philipp Kenkel, and Edwin Zondervan. "Superstructure optimization of an integrated algae biorefinery." Computers & Chemical Engineering (2019): 106530. https://doi.org/10.1016/j.compchemeng.2019.106530