Zum Hauptinhalt springen

SPP 2289 Hetero-Aggregates

IMPORTANT INFORMATION for applicant projects!

Travel expenses are not accounted centrally in the SPP 2289 and have to be applied for in your project (overnight stays will be handled centrally)!

The following internal meetings in SPP 2289 are planned for the first term:

3 annual meetings including workshops with all members of SPP229: Recommendation 500 € travel expenses per person for 3 annual meetings
3 summer schools for graduates: Recommendation 500 € travel expenses per person for 3 summer schools


Do you plan to attend conferences etc.? Please apply for the travel expenses (incl. overnight stay) directly in your project.

 

In May 2020, the Senate of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) established the Priority Programme “Creation of Synergies in Tailor-made Mixtures of Heterogeneous Powders: Hetero Aggregations of Particulate Systems and Their Properties” (SPP 2289). The programme is designed to run for six years. A particular feature of a Priority Programme is the nationwide collaboration between its participating researchers.

Hetero-Aggregates
The present call invites proposals for the first three-year funding period
(starting app. in mid. 2021).
Find all further information on the page
"Call for Proposals".
Submission deadline is November 10, 2020

 

 

Reasearch Topic

Mixing of disperse systems (particles and powders) is a traditional unit operation of process engineering which is of central importance in various technological areas. Applications of mixed particulate systems range from processing of food, pharmaceutical and chemical substances to material processing and materials engineering. Functional mixing of different particle types (hetero-aggregation) has the potential of creating outstanding new properties of dispersed products, which depend on the mixture composition (e.g. number of components, concentration, total quantity) and on various secondary process conditions (e.g. agglomeration, coating).

In this context, a new product property can emerge from the direct contact of different particles (hetero-contact) and thus by the resulting interface between the respective particular components. Many applications have shown that these hetero-contacts are of fundamental importance for specific functional properties. In most cases the new properties result from the transfer of charges, mass, heat, forces, or moments without the need of a chemical reaction of its components. Thus, the quality of such a particulate mixture is directly linked to the contact points and interfaces of different particles and the details of the interaction between its species in contact.

The new property from the contact zone controls the material and product properties of the entire system that is named hetero-contact in the context of the Priority Programme. Direct information about hetero-contact quality (e.g. number of contacts, transport properties between different particle types) could therefore be the base for a fundamental description of the new properties of the particle mixture (quality of the mixture and material function). At the same time, the hetero-aggregation process for creating of such hetero-contacts needs to be investigated and controlled.

Goals

The technical main goals and development areas of the Priority Programme are

  • the development of sophisticated methods for the characterisation of hetero-aggregates in disperse systems,
  • the development of suitable process diagnostics that feature component-specific detection,
  • the derivation of proper process descriptions and simulations with validated models (particle, continuum and/or population based) for mixtures of < 1 µm sized particle systems, and 
  • the establishment of efficient model couplings (e.g. DEM-CFD) for the ab-initio gas phase process design.

These goals aim to a fundamental understanding of the relevant mixing phenomena on length scales in the sub-micrometre range and their modelling as well as transfer into applications of tailored hetero-aggregated particulate systems and aggregation processes.

The processes for designing hetero-aggregates are divided into the formulation (from existing particle systems) and the production (from molecules and their reaction products) of the hetero-aggregates. The solely focus of the programme is on processes in the gas phase, where both adhesion forces and specific charge distributions of particles play an important role. Gas-phase aggregation processes can be implemented with different methods and reactor concepts.