Zum Hauptinhalt springen

Dr. Matthias Beckmann

Foto Matthias Beckmann

Dr. Matthias Beckmann

Wissenschaftlicher Mitarbeiter

Bibliothekstraße 5
28359 Bremen

Raum: MZH 2260
Telefon: +49 421 218-63810
E-Mail: matthias.beckmannprotect me ?!uni-bremenprotect me ?!.de

Forschungsgebiete

  • Approximationstheorie
  • Inverse Probleme
  • Computertomographie
  • Signalverarbeitung und Bildanalyse

Persönliche Homepage

https://www.mbeckmann.de/

 

Peer-reviewed journal articles

Matthias Beckmann, Ayush Bhandari and Felix Krahmer (2022)
The Modulo Radon Transform: Theory, Algorithms and Applications.
SIAM Journal on Imaging Sciences  15(2), 2022, 455-490.
DOI: 10.1137/21M1424615

Matthias Beckmann, Peter Maass and Judith Nickel (2021)
Error analysis for filtered back projection reconstructions in Besov spaces.
Inverse Problems 37(1), 2021, 014002.
DOI: 10.1088/1361-6420/aba5ee.

Matthias Beckmann and Armin Iske (2020)
Saturation Rates of Filtered Back Projection Approximations.
Calcolo 57(1), 2020, 12.
DOI: 10.1007/s10092-020-00360-y.

Matthias Beckmann and Armin Iske (2019)
Error Estimates and Convergence Rates for Filtered Back Projection.
Mathematics of Computation 88(316), 2019, 801-835.
DOI: 10.1090/mcom/3343.

 

Peer-reviewed proceedings

Matthias Beckmann and Ayush Bhandari (2022)
MR. TOMP: Inversion of the Modulo Radon Transform (MRT) via Orthogonal Matching Pursuit (OMP).
Accepted for publication at 2022 IEEE International Conference on Image Processing (ICIP).

Matthias Beckmann, Felix Krahmer and Ayush Bhandari (2020)
HDR Tomography via Modulo Tomography.
IEEE International Conference on Image Processing (ICIP), 2020, 3025-3029.
DOI: 10.1109/ICIP40778.2020.9190878.

Ayush Bhandari, Matthias Beckmann and Felix Krahmer (2020)
The Modulo Radon Transform and its Inversion.
European Signal Processing Conference (EUSIPCO), 2020, 770-774.
DOI: 10.23919/Eusipco47968.2020.9287586.

Matthias Beckmann and Armin Iske (2019)
Convergence Rates for Hölder-Windows in Filtered Back Projection.
IEEE International Conference on Sampling Theory and Applications (SampTA), 2019.
DOI: 10.1109/SampTA45681.2019.9030855.

Matthias Beckmann and Armin Iske (2017)
Sobolev Error Estimates for Filtered Back Projection Reconstructions.
IEEE International Conference on Sampling Theory and Applications (SampTA), 2017, 251-255.
DOI: 10.1109/SAMPTA.2017.8024439.

Matthias Beckmann and Armin Iske (2015)
Error Estimates for Filtered Back Projection.
IEEE International Conference on Sampling Theory and Applications (SampTA), 2015, 553-557.
DOI: 10.1109/SAMPTA.2015.7148952.

 

Other proceedings

Matthias Beckmann and Armin Iske (2016)
On the Error Behaviour of the Filtered Back Projection.
Proc. Appl. Math. Mech. (PAMM) 16(1), 2016, 833-834.
DOI: 10.1002/pamm.201610405.

 

Technical reports

Matthias Beckmann and Armin Iske (2017)
Approximation of Bivariate Functions from Fractional Sobolev Spaces by Filtered Back Projection.
Hamburger Beiträge zur Angewandten Mathematik (HBAM) 2017-05, 2017.

Matthias Beckmann and Armin Iske (2016)
Analysis of the Inherent Reconstruction Error in Filtered Back Projection.
Hamburger Beiträge zur Angewandten Mathematik (HBAM) 2016-01, 2016.

 

WiSe 2020/2021: Computer Tomography

WiSe 2020/2021: Approximation

SoSe 2020: Project: Machine Learning

SoSe 2020: Exercise classes in Complex Functions (TUHH)

WiSe 2019/2020: Computer Tomography (Lecture und Exercise class)

SoSe 2019: Exercise classes in Functional Analysis

SoSe 2019: Exercise classes in Complex Functions (TUHH)

WiSe 2018/2019: (Pro)Seminar on Approximation (with Prof. Dr. Armin Iske)

WiSe 2018/2019: Exercise classes in Differential Equations I (TUHH)

WiSe 2018/2019: Exercise classes in Analysis III (TUHH)

SoSe 2018: Exercise classes in Analysis II (TUHH)

WiSe 2017/2018: Exercise class in Approximation

WiSe 2017/2018: Exercise classes in Analysis I (TUHH)

SoSe 2017: Exercise classes in Complex Functions (TUHH)

WiSe 2016/2017: Exercise class in Approximation

WiSe 2016/2017: Exercise classes in Analysis I (TUHH)

SoSe 2016: Exercise classes in Complex Functions (TUHH)

WiSe 2015/2016: Exercise class in Approximation

WiSe 2015/2016: Exercise classes in Differential Equations I (TUHH)

SoSe 2015: Exercise classes in Analysis II (TUHH)

WiSe 2014/2015: Exercise class in Approximation