Nick Heilenkötter

Nick Heilenkötter

Nick Heilenkötter

Wissenschaftlicher Mitarbeiter

Doktorand Graduiertenkolleg π3
Team Deep Learning und Inverse Probleme

Bibliothekstraße 5
28359 Bremen

Raum: MZH 2170
Telefon: +49 0421 218-63815
E-Mail: nick7@uni-bremen.de

Forschungsgebiete

  • Deep Learning
  • Inverse Probleme
  • Deep Learning für Partielle Differentialgleichungen

Projekte

 

Zeitschriftenartikel

D. NganyuTanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
Deep learning methods for partial differential equations and related parameter identification problems.
Inverse Problems, 39(10), 2023.
DOI: 10.1088/1361-6420/ace9d4

J. Le’Clerc Arrastia, N. Heilenkötter, D. Otero Baguer, L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner, J. Schaller, P. Maass.
Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma. 
Journal of Imaging. 2021; 7(4):71.
DOI: 10.3390/jimaging7040071

 

Preprints

C. Arndt, A. Denker, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, P. Maaß, J. Nickel.
Invertible residual networks in the context of regularization theory for linear inverse problems.
Zur Veröffentlichung eingereicht.
online unter: https://arxiv.org/abs/2306.01335

C. Arndt, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, J. Nickel.
Bayesian view on the training of invertible residual networks for solving linear inverse problems.
Zur Veröffentlichung eingereicht.
online unter: https://www.x-mol.net/paper/article/1682514725633245184

DerickNganyuTanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas Rademacher, Uwe Iben, Peter Maass
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
online unter: arxiv.org/abs/2212.03130
DOI:  10.48550/arXiv.2212.03130