| 03-IBFS-TSTUD | https://lvb.informatik.uni-bremen.de/igs/03-ibfs-tstud.pdf Zu Beginn jedes Semesters findet eine Infoveranstaltung statt, wo die Scheinkriterien für Versuchspersonen erläutert werden. Außerdem werden (aufbauend auf den Inhalten von WA1) Forschungsmethoden von Studien mit Versuchspersonen vermittelt. Im weiteren Verlauf des Studiums sollen Studierende 15 Versuchspersonenstunden absolvieren (d.h. an mehreren Studien teilnehmen). Jede Studienteilnahme wird mit Versuchspersonenstunden vergütet, die in ECTS anerkannt werden können. Die Versuchspersonenstunden können über mehre Semester gesammelt werden. Die Teilnahme an den Studien soll in einer schriftlichen Ausarbeitung dokumentiert und reflektiert werden.
At the beginning of each semester, an information session is held where the certificate criteria for subjects are explained. In addition, research methods of studies with test subjects are taught (building on the contents of WA1).
Later in the program, students are expected to complete 15 subject hours (i.e., participate in different studies). Each study participation is compensated with subject hours, which can be recognized in ECTS. The subject hours may be accumulated over multiple semesters.
Participation in the studies should be documented and reflected upon in a written paper at the end. The selection of participants is made manually after registration.
Users who wish to register for this event will receive more detailed information and can then still decide against participation. You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Malaka |
| 03-IMAP-AML | Advanced Machine Learning (in English) You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze |
| 03-IMAP-AMAI | Advanced Methods of AI (in English) You can find course dates and further information in Stud.IP. | Michael Beetz Dr. Daniel Beßler Oger aus Weit Weit Weg Tom Schierenbeck, ????????? |
| 03-IMAP-ASWE | Advanced Software Engineering You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Koschke |
| 03-IMS-ALLM | Advances in Lifelong Learning Machines (in English) https://lvb.informatik.uni-bremen.de/ims/03-ims-allm.pdf
Dieser Kurs findet auf Englisch statt/The course language is English.
Prior knowledge: Basic knowledge of artificial intelligence (AI) and machine learning (ML), as acquired from one of the introductory and foundational machine learning, AI, or cognitive systems lectures. Advanced course knowledge, e.g. as acquired in "Life-long Machine Learning" or "Advanced Machine Learning", is not required, but will be beneficial to engage with more recent in-depth perspectives at the frontier of current research.
Learning Outcomes: Traditional machine learning studies the design of models and training algorithms to learn to solve tasks from data. In contrast to humans, who excel at adaptivity and benefit greatly from learning curricula, machine learners are largely tailored to stationary data and static test scenarios. Throughout the seminar, students will engage with state-of-the-art literature that advances the frontiers of lifelong learning machines. They will improve their ability to navigate scientific works, critically assess contributions and prospects, inspect the newest algorithms, and identify persisting limitations and open research questions. In the process, students will refine their scientific presentation skills and strengthen their competence in participating in advanced machine learning discourse.
Content: The seminar will cover different elements required to transform static machine learners into lifelong learning machines. At the start of the seminar, students will get to select from a choice of topics spanning a variety of modern perspectives and state-of-the-art lifelong learning algorithms. In prospective in-depth engagement with the chosen literature as the starting point, presentations will be prepared and held in front of the seminar participants to fuel weekly scientific discourse. Discussed advances towards lifelong learning machines encompass, but are not limited to: * Memory: what consistutes memorable data points and episodes? How can we construct concrete algorithms to identify and extract memorable experience? What types of memories do humans possess and how do machine learning algorithms acommodate them? * Learning curricula: how can we identify suitable learning curricula for machine learning? Which modern algorithms exist to enable models to benefit from structured curricula and data streams? * Continual optimization: how can we transcend the greediness of machine learning optimizers? What algorithmic advances exist to effectively regularize past parameters, representations, and knowledge? * Adaptive and modular architectures: how can we dynamically modify opaque architectures, such as deep neural networks? Which techniques exist to modularize functions and disambiguate entangled representations? * Lifelong ML theory: what are the advances in transferring machine learning theory to lifelong machine learning? What are the insights and obstacles learned from grounded advances analyzable, linear systems? * Evaluation: How do we evaluate dimensions with inherent trade-offs, e.g. the pursuit of stability and plasticity? How do we select hyperparameters in scenarios that are constantly evolving? What techniques exist to enable fair comparisons across a plethora of metrics of interest? You can find course dates and further information in Stud.IP. | Prof. Dr. Martin Mundt |
| 03-AI-F-ATE | AI Algorithms — Theory and Engineering (in English) You can find course dates and further information in Stud.IP. | Nico Hochgeschwender Prof. Dr. Nicole Megow |
| 03-IMVP-AIR | Athletic Intelligence in Robotics You can find course dates and further information in Stud.IP. | Dennis Mronga Frank Kirchner M. Sc Jonas Haack |
| 03-IMS-APMSK | Selected Problems of Multisensory Cognition You can find course dates and further information in Stud.IP. | Kerstin Schill Christop W. Zetzsche-Schill |
| 03-IBAT-ATA | Automata Theory and its Applications You can find course dates and further information in Stud.IP. | Prof. Dr. Sebastian Siebertz |
| 03-IMAP-ASE | Automatic Speech Recognition Profil KIKR Schwerpunkt: IMA-AI Modultyp C (6 CP) im Studiengang Language Sciences M.A. https://lvb.informatik.uni-bremen.de/imap/03-imap-ase.pdf
Die Vorlesungsinhalte werden über Videos und Folien asynchron bereitgestellt ("flipped classroom"-Konzept). Darüber hinaus gibt es einen Präsenz-Termin am Dienstag. Dieser Präsenz-Termin ist als "Interaktives Repititorium" gestaltet und wird nicht aufgezeichnet. Donnerstags finden im Zwei-Wochen-Rhythmus Übungen statt.
Der Kurs "Automatische Spracherkennung" bietet eine Einführung in die automatische Spracherkennung. In diesem Kurs werden die Sprachverarbeitung beim Menschen, Signalverarbeitung, statistische Modellierung von Sprache sowie die wesentlichen praktischen Ansätze und Methoden für den Einsatz automatischer Spracherkennung behandelt. You can find course dates and further information in Stud.IP. | Tanja Schultz |
| 03-IBAP-BS | You can find course dates and further information in Stud.IP. | Dr. Bernhard Johannes Berger |
| 03-IMVP-BCOD | Coding and Data Compression You can find course dates and further information in Stud.IP. | Christop W. Zetzsche-Schill Konrad Gadzicki Joachim Clemens |
| 03-IBAP-CG | Schwerpunkt: DMI, VMC https://lvb.informatik.uni-bremen.de/ibap/03-ibap-cg.pdf Programmierkenntnisse sind Voraussetzung (ein erfolgreicher Abschluss des "Propädeutikums C" wird empfohlen), ebenso wie algorithmisches Denken, eine gewisse Vertrautheit mit mathematischer Begriffsbildung und Vorgehensweise.
Diese Vorlesung soll sowohl eine Einführung in die theoretischen und methodischen Grundlagen der Computergraphik geben, als auch die Grundlagen für die praktische Implementierung von computergraphischen Systemen legen. Der Schwerpunkt liegt auf Algorithmen und Konzepten zur Repräsentation und Visualisierung von polygonalen, 3-dimensionalen graphischen Szenen. Der Inhalt umfasst in der Regel folgende Themen: Mathematische Grundlagen; OpenGL and C ; 2D Algorithmen der Computergrafik (Scan Conversion, Visibility Computations, etc.); Theorie der Farben, Farbräume (hauptsächlich physikalische, neurologische, und technische Aspekte); 3D Computergraphik (Rendering Pipeline, Transformationen, Beleuchtung, etc.); Techniken zum Echtzeit-Rendering; Das Konzept und die Programmierung von Shadern; Texturierung (Einordnung in die Pipeline, einfache Parametrisierung, etc.).
Die Übungsaufgaben werden teils theoretisch, teils praktisch sein, wobei die praktischen Aufgaben gewisse Programmierfähigkeiten in C verlangen. (Zu Beginn der Vorlesung wird deshalb nochmals ein kurzer "Refresh" Ihrer C/C-Kenntnisse gemacht.) Die Vorlesung setzt eine gewisse mathematische, algorithmische und programmiertechnische Gewandtheit voraus, fördert diese aber auch und führt sie weiter. https://cgvr.cs.uni-bremen.de/teaching/ You can find course dates and further information in Stud.IP. | Prof. Dr. Gabriel Zachmann |
| 03-IBAP-DBS | You can find course dates and further information in Stud.IP. | Prof. Dr. Sebastian Maneth |
| 03-IBAA-DS | Data Protection in Germany You can find course dates and further information in Stud.IP. | Timo Utermark Thomas Dieter Barkowsky |
| 03-IMAP-DGM | Deep Generative Models (in English) Schwerpunkt: IMA-AI https://lvb.informatik.uni-bremen.de/imap/03-imap-dgm.pdf The language of the course is English.
Learning Outcome: In many applications of AI and machine learning the goal transcends a mere decision making process. In general, decisions should be grounded in estimates of model uncertainty, understand the underlying training distribution through learned representations, or they need to rely on data imputation. Generative models aim to address these factors, while also providing the means to further synthesize data, compress it, as well as estimate density and discover structure. Upon successful completion of the course, students will have gained an understanding of why generative models are critical, independently of whether the goal is to arrive at a decision or to generate data. They will learn the different ways to design generative models, from mixture models and probabilistic circuits, to variational, adversarial and flow-based models, all the way to large-scale models that are being referred to as Gen AI. In the process they will be equipped with the necessary mathematical skills to understand the underlying technical foundations and engage with potential applications.
Course Content: * Learning and probabilistic inference * From Gaussian mixture models to probabilistic circuits * Latent variable models and variational inference * Generative adversarial networks * Flow models and change of variables * Energy-based generative models and diffusion * Autoregression, large language modeling, and GenAI * Applications of generative models You can find course dates and further information in Stud.IP. | Prof. Dr. Martin Mundt |
| 03-IMS-DLMB | Deep Learning for Medical Image Processing You can find course dates and further information in Stud.IP. | Prof. Dr.-Ing. Horst Karl Hahn Dr.-Ing. Tom Lucas Koller |
| 03-IMVP-DLS | Digital Logic Synthesis (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler Dr. Chandan Kumar Jha |
| 03-IBVA-DSG | Digitization in State and Society You can find course dates and further information in Stud.IP. | Prof. Dr. Dr. Björn Niehaves Luca Tom Bauer Jan Westermann Steffen Frederik Janas Fock Samira Krodel |
| 03-IMVA-DOMA | Domains Matter: Understanding their Influence on Natural Language Interaction (in English) Schwerpunkt: IMVA-DMI, IMVA-AI Abstract: The shift towards human-like interaction with computers through voice and text has made large language models like ChatGPT and (…) Schwerpunkt: IMVA-DMI, IMVA-AI Abstract: The shift towards human-like interaction with computers through voice and text has made large language models like ChatGPT and Gemini a part of everyday life. While these open-domain chatbots are powerful, their "one-size-fits-all" approach often leads to user frustrations, including the need for overly specific prompts, irrelevant or verbose responses, and a lack of critical context. Often, domain-specific interfaces are important for improving user experience. This offers the opportunity to build specific user interfaces or manipulate the language depending on the domain. We will explore how adapting natural language interfaces to specific fields (e.g., medical advice or creative writing) can resolve these common issues. In the seminar, students will investigate a specific research question, analyze relevant academic literature, and then design, implement, and evaluate a novel domain-specific user interface. The goal is to move beyond generic chatbots and create more intelligent, context-aware, and effective natural language tools.
We will work very hands-on and will have many sessions where we implement something. For the first session bring a laptop. You should have a GitLab account and Python (version 3.10 or later) installed on your computer. The course combines research with development, and each student has to give a presentation in the course and develop a prototype. You can find course dates and further information in Stud.IP. | Dr. Nina Wenig |
| 03-IBAA-ECA | You can find course dates and further information in Stud.IP. | Bastian Diedrich |
| 03-IMVP-ECL | Edge Computing Lab (in English) You can find course dates and further information in Stud.IP. | Thomas Dieter Barkowsky Peter Fereed Haddawy Prof. Dr. Anna Förster |
| 03-IMAT-KRYPT | Introduction to Cryptography You can find course dates and further information in Stud.IP. | PD Dr. Karsten Sohr Dieter Hutter |
| 03-IMAA-EC1 | Entertainment Computing 1 (in English) Game Design, Games User Research und Evaluation Schwerpunkt: IMK-DMI, IMA-VMC https://lvb.informatik.uni-bremen.de/imaa/03-imaa-ec1.pdf Entertainment Computing I beschäftigt sich mit theoretischen Grundlagen, psychologischen Aspekten und methodischen Verfahren rund um digitale Spiele und interaktive Unterhaltungssysteme. Im Mittelpunkt stehen die Analyse und das Verständnis von Spielkonzepten, Nutzerverhalten und Evaluationsmethoden. You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Malaka |
| 03-IMGS-EBDC | Experiencing Biosignal Data Collection for Cognitive Systems (in English) The kick-off meeting will take place on October 15h, 16:00 in room 2.43 of the Cartesium building. Time slots and locations of further sessions will be announced in (…) The kick-off meeting will take place on October 15h, 16:00 in room 2.43 of the Cartesium building. Time slots and locations of further sessions will be announced in the kick-off meeting.
In this course, you will take part in a large-scale data collection of biosignals, getting to hands-on experience scientific data collection, different sensors, and Virtual Reality scenarios. In the second half of the semester, you will be able to process and analyze your own data and reflect on your experience. You will learn about how dataset properties and experiment design decisions influence Machine Learning models. You can find course dates and further information in Stud.IP. | Felix Putze |
| 03-IBAP-FBM | You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler Christina Sophie Viola Plump |
| 03-IMVP-GME | Brain-Pattern-Recognition You can find course dates and further information in Stud.IP. | Felix Putze |
| 03-IMVA-GPMLR | Good Practice in Machine Learning Research You can find course dates and further information in Stud.IP. | Felix Putze |
| 03-IMS-SHAR | Hot Topics in Sensors and Human Activity Research (in English) You can find course dates and further information in Stud.IP. | Dr.-Ing. Hui Liu |
| 03-IBAP-ISEC | You can find course dates and further information in Stud.IP. | Prof. Dr.-Ing. Carsten Bormann PD Dr. Karsten Sohr Stefanie Gerdes |
| 03-IMAP-IIS | Integrated Intelligent Systems (in English) You can find course dates and further information in Stud.IP. | Michael Beetz Franklin Kenghagho Kenfack |
| 03-IMS-IUAG | Smart Environment for the Aging Society You can find course dates and further information in Stud.IP. | Kerstin Schill Christop W. Zetzsche-Schill |
| 03-IMAT-IRQ | Introduction to Reversible and Quantum Computing (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler Dr. Kamalika Datta Dr. Abhoy Kole |
| 03-IMAA-ITMDS | IT-Management und Data Science (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Andreas Breiter M. Sc Jule Jensen |
| 03-IMGS-RIG | Joint lecture series of the Robotics Institute Germany (in English) You can find course dates and further information in Stud.IP. | Nico Hochgeschwender |
| 03-IMS-APKS | Cognitive Systems Seminar (in English) You can find course dates and further information in Stud.IP. | Tanja Schultz Felix Putze |
| 03-IMVP-MLAR | Machine Learning for autonomous Robots (in English) You can find course dates and further information in Stud.IP. | Frank Kirchner M. Sc Adrian Auer |
| 03-IMAA-MITR | You can find course dates and further information in Stud.IP. | Prof. Dr. Iris Kirchner-Freis, LL.M.Eur. |
| 03-IBAA-MTI | Human Computer Interaction You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Malaka Carolin Stellmacher |
| 03-IMAA-MAD | Mobile App Development (in English) Profil: DMI Schwerpunkt: IMA- DMI https://lvb.informatik.uni-bremen.de/imva/03-imva-mad.pdf Die Veranstaltung richtet sich an Student*innen der Informatik und Digitalen Medien. In Gruppenarbeit sollen die Studierenden semesterbegleitend ein App-Projekt umsetzen. In der Vorlesung werden alle relevanten Informationen der modernen Softwareentwicklung, mit Fokus auf die mobile App-Entwickung, vermittelt. Dazu gehören Themen wie mobiles Testing, Scrum, UX Design, Evaluation & Nutzertests, Design Patterns und Cross-Plattform-Entwicklung. Das Ziel dabei ist die Vermittlung von praxisrelevantem Wissen aus dem Alltag eines erfolgreichen Unternehmens. You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Malaka David Ruh Nicolas Autzen Marcus-Sebastian Schröder |
| 03-IMGS-NOG | Networks, Operating Systems, Gadgets - Software for Device in the IoT Dieser Blockkurs richtet sich in erster Linie an Studierende mit Vorkenntnissen in der hardware-nahen Programmierung von Mikrocontroller-Plattformen wie z. B. Arduino. (…) Dieser Blockkurs richtet sich in erster Linie an Studierende mit Vorkenntnissen in der hardware-nahen Programmierung von Mikrocontroller-Plattformen wie z. B. Arduino. Zur Auffrischung der Kenntnisse in der Programmiersprache C wird der vorherige Besuch des Propädeutikums C/C++ empfohlen. You can find course dates and further information in Stud.IP. | Prof. Dr.-Ing. Carsten Bormann Olaf Bergmann |
| 03-IBAT-OR | You can find course dates and further information in Stud.IP. | Prof. Dr. Nicole Megow Dr. Sarah Maria Morell |
| 03-IBAP-RA | Computer Architecture and Embedded Systems (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler Dr. Muhammad Hassan |
| 03-IMAP-RNMN | Computer Networks - Media Networking You can find course dates and further information in Stud.IP. | Olaf Bergmann |
| 03-IMAA-STMW | Search Technology for Media & Web (in English) You can find course dates and further information in Stud.IP. | Prof. Dr. Sebastian Maneth Paul Gallot |
| 03-IMVP-SPRS | Semantic 3D Perception for Robotic Systems You can find course dates and further information in Stud.IP. | Dr. Michael Suppa |
| 03-IMS-SRSE | Seminar on Topics in Robot Software Engineering (in English) You can find course dates and further information in Stud.IP. | Nico Hochgeschwender |
| 03-IBAP-SDV | Schwerpunkt: VMC https://lvb.informatik.uni-bremen.de/ibap/03-ibap-sdv.pdf
- Was macht Sensordaten anders als anderen Daten?
- Kamera, Mikrophon, Inertialsensor als drei wichtige Sensoren und was sie messen
- Algorithmen zur Analyse von Sensordaten (z.B. Fouriertransformation, Sprachmerkmale, farbgetriebene BV, Filte, Houghtransformation, Bewegungsmerkmale, Klassifizierungsalgorithmen)
- Entwicklungs- und Evaluationsmethoden für Systeme mit Sensordaten
- Bayesschätzer und -filter
Die Vorlesung wird als Video zur Verfügung gestellt. In den Präsenzterminen wird der Stoff wiederholt und eingeübt. Dazu gibt es unbenotete Hausaufgaben als Vorbereitung. Die Prüfungsleistung ist eine Klausur.
You can find course dates and further information in Stud.IP. | Udo Frese Tanja Schultz |
| 03-IMAP-SWRE | You can find course dates and further information in Stud.IP. | Prof. Dr. Rainer Koschke |
| 03-IBFW-SPORI | Technik hält in immer mehr Bereiche des Sports Einzug und wird unter anderem zur Leistungsdiagnostik, im Training sowie zur Analyse in der Nachbetrachtung eingesetzt. (…) Technik hält in immer mehr Bereiche des Sports Einzug und wird unter anderem zur Leistungsdiagnostik, im Training sowie zur Analyse in der Nachbetrachtung eingesetzt. Dies erstreckt sich vom Profisport mittlerweile bis hinein in den Hobby-Bereich. Dieser Kurs bietet einen Überblick über die aktuellen Teilbereiche der Sportinformatik und ihre Anwendungen. Es ist ein viertägiger Blockkurs. Die einzelnen Tage bestehen sowohl aus Vorlesungen sowie der Arbeit an einem kleinen praktischen Projekt, welches am Beispiel einer Sportübung den Prozess von der Datenaufnahme bis zur Analyse und Visualisierung nachvollzieht. You can find course dates and further information in Stud.IP. | Dr. Tim Laue Bastian Dänekas |
| 03-IMAP-TA | You can find course dates and further information in Stud.IP. | Wen-Ling Huang |
| 03-IMVP-TCRS | Trustworthy Cognitive Robots and Systems (in English) You can find course dates and further information in Stud.IP. | Nico Hochgeschwender |
| 03-DMM-MA-2-ULWC | Understanding Language with Computers Die Übung findet in den Räumen der AG statt. Die Übung findet in den Räumen der AG statt. You can find course dates and further information in Stud.IP. | Robert Porzel |
| 03-IBFW-VTI1 | In-depth Seminar Technical Computer Science 1 You can find course dates and further information in Stud.IP. | Prof. Dr. Rolf Drechsler Christina Sophie Viola Plump |
| 03-IMAP-VRSIM | Virtual Reality and Physically-Based Simulation (in English) Virtuelle Realität und physikalisch-basierte Simulation Profil: KIKR, DMI Schwerpunkt: IMAP-DMI, IMAP-VMC https://lvb.informatik.uni-bremen.de/imap/03-imap-vrsim.pdf English or German. Over the past two decades, VR has established itself as an important tool in several industries, such as manufacturing (e.g., automotive, airspace, ship building), architecture, and pharmaceutical industries. During the past few years, we have been witnessing the second "wave" of VR, this time in the consumer, in particular, in the entertainment markets.
Some of the topics to be covered (tentatively): • Introduction, basic notions of VR, several example applications • VR technologies: displays, tracking, input devices, scene graphs, game engines • The human visual system and Stereo rendering • Techniques for real-time rendering • Fundamental immersive interaction techniques: fundamentals and principles, 3D navigation, user models, 3D selection, redirected walking, system control • Complex immersive interaction techniques: world-in-miniature, action-at-a-distance, magic lens, etc. • Particle systems • Spring-mass systems • Haptics and force feedback • Collision detection • Acoustic rendering The assignments will be mostly practical ones, based on the cross-platform game engine Unreal. Participants will start developing with "visual programming", and later use C++ to solve the assignments. You are encouraged to work on assignments in small teams. https://cgvr.cs.uni-bremen.de/teaching/ You can find course dates and further information in Stud.IP. | Prof. Dr. Gabriel Zachmann |