KI für Lehre und Prüfungen

GenKI@UB - Zugang zum Portal

Im Rahmen des Projekts GENKI@UHB wird ein datenschutzkonformer Zugang zu verschiedenen LLMs (Large Language Models) über das akademische Serviceportal des Landes Niedersachsen, die Academic Cloud der GWDG (Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen), bereitgestellt. Die Academic Cloud ermöglicht die geschützte Erprobung und Nutzung moderner KI-Dienste, darunter verschiedene ChatGPT-Modelle. Zu den ChatAI-Diensten der Academic Cloud geht es hier. Weitere Informationen zum Projekt GENKI@UHB finden Sie hier.

Szenarien für die Lehre 

Textgenerierende KI kann sinnvoll eingesetzt werden, unter anderem um Digital Literacy und Data Literacy zu entwickeln, wissenschaftliche Praktiken zu reflektieren, standardisierte Schreibaufgaben zu vereinfachen, Anfangsbarrieren beim Schreiben zu überwinden oder Kreativität zu fördern und vieles mehr.

Der Einsatz kann in Übereinstimmung mit den Zielen und Inhalten des Studiengangs in Lehr- und Lernszenarien erprobt werden. Das Kompetenzniveau der Studierenden sollte beachtet werden. Es ist sinnvoll, Art und Umfang der Nutzung (oder Nichtnutzung) transparent zu kommunizieren, die Regeln guter wissenschaftlicher Praxis mit den Studierenden zu reflektieren und geeignete Dokumentation zu vereinbaren. Ein Beispiel für Regeln bei der Nutzung von ChatGPT und anderen Textgeneratoren bei schriftlichen Arbeiten hat Prof. Dr. Christian Spannagel, PH Heidelberg, erarbeitet: Rules for tools.
Die angepasste Eigenständigkeitserklärung für die Universität Bremen findet sich beim Zentralen Prüfungsamt 

Auf dieser Seite haben wir verschiedene Ideen zusammengetragen, wie KI-Tools Lehrende in ihrem beruflichen Alltag unterstützen können. Diese Zusammenstellung erhebt keinen Anspruch auf Vollständigkeit, sondern soll vielmehr als Impuls für eine vertiefte Auseinandersetzung mit dem Einsatz von KI dienen.

Wir gehen davon aus, dass die von KI generierten Ergebnisse nicht unkritisch übernommen, sondern als erste Entwürfe betrachtet und sorgfältig geprüft werden. 

Erprobte didaktische Szenarien 

Didaktische Handreichung zur praktischen Nutzung von KI in der Lehre (2025) v2 der Arbeitsgruppe Digitale Medien und Hochschuldidaktik der Deutschen Gesellschaft für Hochschuldidaktik in Kooperation mit der Gesellschaft für Medien in der Wissenschaft 

101 Creative ideas to use AI in education (2023) von Nerantzi, C., Abegglen, S., Karatsiori, M. und Martinez-Arboleda, A. koordiniert und herausgegeben, die an den Universitäten von Calgary, Leeds und Makedonien lehren und forschen

Lehre planen

  • Semesterpläne erstellen
  • Lernziele formulieren
  • Interaktive Lehr/Lernszenarien entwickeln
    • Individualisiertes Material erstellen
    • Bestehende Inhalte für neue Material-Formate nutzen
    • Standardisierte Textsorten erstellen

Lehre gestalten

  • Lernprozesse individuell unterstützen
  • Selbstlernphasen begleiten
  • Feedback geben
  • KI-Outputs kritisch hinterfragen und mit wissenschaftlich gesicherten Ergebnissen vergleichen
  • Studierende in Gruppenarbeitsphasen, komplexere Aufgaben in Teilaufgaben zerlegen lassen

Lehre evaluieren

  • Prüfungsfragen formulieren lassen, mit denen sich Studierende auf eine Prüfung vorbereiten können
  • Entwürfe für Evaluationen erstellen
  • Lehrkonzepte evaluieren
  • Programmiercode nach bestimmten Sicherheitsaspekten überprüfen lassen

Weitere Informationen 

KI in Studium und Lehre mit zahlreichen Beispielen auf e-teaching.org

Gimpel, H., Hall, K. et al.: Whitepaper: „Unlocking the Power of Generative AI Models and Systems like GPT-4 and ChatGPT for Higher Education - A Guide for Students and Lecturers“. University of Hohenheim, March 20, 2023 

Kommentierte Linksammlung des Hochschulforum Digitalisierung

https://hochschulforumdigitalisierung.de/de/blog/Hochschullehre-KI-gestuetztes-Schreiben

 

Formulare des Zentralen Prüfungsamtes

Auf der Seite Formulare des ZPA sind die folgenden Dokumente - ergänzt um Erklärungen zur Nutzung von KI - veröffentlicht:

  • Schriftliche Arbeiten - Eigenständigskeitserklärung und Einverständniserklärung zur Überprüfung mit Plagiatssoftware
  • Urheberrechtliche Erklärung, Erklärung zur Veröffentlichung von BA-/MA-Arbeiten, Erklärung zur elektronischen Überprüfung auf Plagiate
  • Beispielhafte Dokumentation der Nutzung von KI in der Lehre

Prüfungen KI-sensibel gestalten

Um in Zeiten generativer KI Prüfungen fair gestalten zu können, ist es sinnvoll, folgende Aspekte zu reflektieren:

  • Anpassung von Bewertungskriterien
  • Anpassung von Prüfungsaufträgen
  • Stärkung formativer Lernbegleitung
  • Stärkung kompetenzorientierter Prüfungen
  • Präventionsmaßnahmen gegen Betrug

Die folgende Lernzieltaxonomie für eine Welt mit ChatGPT (CC BY Hanke 2023) gibt eine Empfehlung zur Gestaltung des Lernens und Prüfens.

Weitere Vorschläge zur Gestaltung von Leistungsnachweisen

  • Formulieren des Themas oder der Frage in einer Weise, die kritisches Denken fördert
    • Persönliche Ereignisse und Anwendbarkeit auf Beispiele aus den Lehrmaterialien/Vorträgen
    • Sehr spezifische und angewandte Themen und Fragestellungen
    • Für Programmieraufgaben: eine Kombination aus codebasierten und konzeptbasierten Aufgabenstellungen
  • „authentische Beurteilungen“, bei denen Studierende Kreativität und interdisziplinäre Fähigkeiten benötigen
    • Interviews, Aussprache, Datenerfassung und -analyse
  • stärkere Konzentration auf den Prozess und nicht nur auf das Ergebnis bei Testformaten wie z.B. Aufsätzen und Hausarbeiten