| 04-M30-MP-2458 | Studentische Experimente mit kalten Atomen für verschiedene Plattformen (SECAMP) Termine und weitere Informationen finden Sie in Stud.IP. | Dr.-Ing. Jens Große Dr. Sven Herrmann M. Sc Dennis Knoop |
| 04-M30-MP-2503 | Energetische Erfordernisse von Gasdiffusionselektroden- vs. traditionellen Elektrolysersystemen für die Produktion von Wasserstoff und Sauerstoff in Weltraumumgebung Currently, a traditional proton-membrane (PEM) electrolyser is used for the production of oxygen and hydrogen on the International Space Station (ISS) as part of the (…) Currently, a traditional proton-membrane (PEM) electrolyser is used for the production of oxygen and hydrogen on the International Space Station (ISS) as part of the greater oxygen generator assembly (OGA). Due to its numerous malfunctions, unreliability and complex maintenance, the OGA is however not suitable for oxygen production on long-term space missions. In part, this is also because the PEM electrolyser requires an additional centrifuge system to remove the produced gas as the near-absence of buoyancy complicates gas-liquid phase separation. Gas-diffusion electrode systems are currently developed for terrestrial electrolysis systems, as they circumvent gas diffusion obstacles e.g., in simultaneous CO2 reduction and oxygen producing electrolysers. The project focuses on an energetic comparison between the PEM electrolyser system used on the ISS and a gas diffusion electrode arrangement for hydrogen and oxygen production in space environments. Termine und weitere Informationen finden Sie in Stud.IP. | Prof. Dr. Katharina Brinkert |
| 04-M30-MP-2502 | Entwurf, Herstellung, Erprobung und Validierung eines kleinen Windkanals ECTS: 12 (MSc.SpaceEng), 15 (MSc.PT) The objective of this master project is the design, manufacturing, testing and validation of a small-scale wind tunnel. The purpose of this wind tunnel is to perform (…) The objective of this master project is the design, manufacturing, testing and validation of a small-scale wind tunnel. The purpose of this wind tunnel is to perform experiments of small wings: where the lift generated by different wing geometries, at different angles of attack is to be measured, and the flow visualized. Additionally you will use numerical methods to compute the theoretical lift force generated by the wings. You will use these simulations to validate your wind tunnel, and to compare the experimental and theoretical results. Thus this project is subdivided into four knowledge areas: (1) Numerical simulations using a (simple) potential flow method (2) Numerical simulations using OpenFoam (3) Measurement techniques and (4) CAD and assembly. It is therefore intended for 4 students with:
• Good Knowledge in fluid mechanics.
• Willingness to learn and/or expertise in one of the tasks listed above. In your application for the project, detail to which aspect(s) you would like to contribute and briefly explain what is your experience so far in the field. Termine und weitere Informationen finden Sie in Stud.IP. | Prof. Dr. Marc Avila Daniel Moron Montesdeoca |
| 04-M30-MP-2505 | Implementation einer Methode zur Umgebungskartierung zur Autonomen Navigation eines Mikro-Mondrovers. Ziel dieses Projekts ist die Auseinandersetzung mit Stereo-Vision Kartierungsmethoden für (semi)autonome Mondrover. Relevante Kartierungsmethoden sollen die Beschaffung (…) Ziel dieses Projekts ist die Auseinandersetzung mit Stereo-Vision Kartierungsmethoden für (semi)autonome Mondrover. Relevante Kartierungsmethoden sollen die Beschaffung des umgebenden Terrains in Echtzeit kartieren und damit die Entwicklung von autonomen Navigationsverhalten vorbereiten. Als Testplattform dient ein Mikro-Rover, der im Projekt SAMLER-KI am DFKI RIC entwickelt wird. Im Rahmen des Projekts steht der Student in allen Phasen im engen Austausch mit Projektmitgliedern von SAMLER- KI und muss seine Designentscheidungen und Designumsetzung kommunizieren und abstimmen. Termine und weitere Informationen finden Sie in Stud.IP. | Frank Kirchner |
| 04-M30-MP-2504 | As part of the project, a semi-autonomous robot is to be developed that masters the tasks of the European Rover Challenge, ERC (http://roverchallenge.eu). The focus lies (…) As part of the project, a semi-autonomous robot is to be developed that masters the tasks of the European Rover Challenge, ERC (http://roverchallenge.eu). The focus lies on several autonomous and remotely operated tasks like navigation and mapping in a fictitious Mars mission or soil sampling with a drilling mechanism. The robot will be tested both in simulation and in reality. Depending on the requirements of the challenge, existing hardware and software of the DFKI Robotic Innovation Center can be used or newly developed. This is the second year in which we will apply to the ERC. During the last edition we successfully completed the first phases of the project as part of a systems engineering bachelor project, but we did not pass the final selection. Currently, the rover has been mostly designed (the team can perform any modification though), and the construction is ongoing. The students will perform tasks in the field of robotics, such as intelligent obstacle avoidance or interaction through a robotic arm with a control panel. Nevertheless, for the team to be successful in the ERC, other work will be needed. An important aspect to be considered is the capacity to produce detailed technical descriptions of the work done and the rationale of the decisions taken based on the requirements of the project. The evaluations that lead to the acceptance or rejection of the team are highly dependent on this. Another important aspect is the team organization, which has to be comprehensive, resilient, sustainable, and scalable. Objectives of the project: - Understanding robotics as an interdisciplinary endeavor involving electrical engineering, mechatronics and computer science from the technical side but also with crucial connections to business, communication, and team management among others. Termine und weitere Informationen finden Sie in Stud.IP. | Frank Kirchner |
| 04-M30-MP-2501 | Post-Missions-Sensorinitialisierung und Trajektorienschätzung aus Navigationssensordaten Termine und weitere Informationen finden Sie in Stud.IP. | Dr.-Ing. Stephan Theil |
| 04-M07-FP-2515 | Studentenprojekt zur Simulation von Raumfahrt Systemen (S4) [SysEng] Anmeldung im Stud.IP bis: 15.10.2025 Projektauftakt am: 22.10.2025 max. Gruppengröße: 3 Ansprechperson: Jens Grosse, jens.grosseprotect me ?!zarm.uni-bremenprotect me ?!.de
In this project students shall implement new simulation approaches for the design of space systems. In this project phase from winter semester 2025 and summer semester 2026 the focus is on a simulation of the hypersonic ascent of a sounding rocket with CFD and potential assistance through AI. The students will work on one of the following topics: 1.) Ablative heat shield implementation on available nose cone models with atmospheric parameters investigation 2.) Training of AI algorithm / neural network on different data sets obtained from a classical CFD simulation Termine und weitere Informationen finden Sie in Stud.IP. | Dr.-Ing. Jens Große |
| 04-M07-FP-2514 | Studentenprojekt zur Untersuchung und Entwicklung von Enabling Technologies für Quantensensoren (QTech) [SysEng] Anmeldung im Stud.IP bis: 15.10.2025 Projektauftakt am: 22.10.2025 Ansprechperson: Jens Grosse, jens.grosseprotect me ?!zarm.uni-bremenprotect me ?!.de
The ZARM institute investigates multiple quantum sensor for sensing of accelerations or pressures, as well as different approaches to provide frequency references. This project will study different enabling technologies supporting the developments of these quantum sensors and frequency references. Hereby the participants will get a basic introduction into fundamentals of quantum technologies and will subsequently work on one of the following topics:.
- Design and comissioning of a teststand for Partial Pressure determination of Potassium using Spectroscopy
- Design and test of a micro valve for UHV systems
Termine und weitere Informationen finden Sie in Stud.IP. | Dr.-Ing. Jens Große |