Veranstaltungsverzeichnis

Lehrveranstaltungen SoSe 2023

Mathematik, B.Sc./M.Sc. (Studienbeginn vor 2022)

Bachelor: Pflichtveranstaltungen

Pflichtveranstaltungen für den Studiengang Mathematik B.Sc.
VAKTitel der VeranstaltungDozentIn
03-M-ANA-2.1Analysis 2

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 10:00 - 12:00 SFG 0150 Vorlesung
wöchentlich Mi 14:00 - 16:00 MZH 5600 Übung
wöchentlich Do 14:00 - 16:00 SFG 0150 Übung
wöchentlich Fr 10:00 - 12:00 SFG 0150 Vorlesung
Prof. Dr. Marc Keßeböhmer
03-M-ANA-2.2Vertiefung zur Analysis 2 für Vollfach
Additional Topics in Analysis 2

Projektplenum
ECTS: 1,5

Termine:
wöchentlich Di 12:00 - 14:00 SFG 0150 Plenum
Prof. Dr. Marc Keßeböhmer
03-M-LAG-2.1Lineare Algebra 2
Linear Algebra 2

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 6200 Vorlesung
wöchentlich Mo 14:00 - 16:00 MZH 4140 Übung
wöchentlich Mi 08:00 - 10:00 MZH 4140 Übung
wöchentlich Do 10:00 - 12:00 MZH 1470 MZH 1450 Vorlesung

Einzeltermine:
Fr 18.08.23 10:00 - 14:00 MZH 6200
Eugenia Saorin Gomez
03-M-LAG-2.2Vertiefung zur Linearen Algebra 2 für Vollfach
Additional Topics in Linear Algebra 2

Projektplenum
ECTS: 1,5

Termine:
wöchentlich Do 12:00 - 14:00 MZH 5600 Plenum
wöchentlich Do 12:00 - 14:00 MZH 1450 Plenum
Eugenia Saorin Gomez
03-M-STO-1Stochastik
Stochastics

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 10:00 - 12:00 GW2 B1410 Vorlesung
wöchentlich Di 12:00 - 14:00 MZH 4140 Übung
wöchentlich Di 16:00 - 18:00 MZH 1470 Übung
wöchentlich Do 10:00 - 12:00 GW2 B1410 Vorlesung
wöchentlich Do 14:00 - 16:00 GW1 B0100 Übung

Einzeltermine:
Di 08.08.23 09:30 - 12:30 MZH 1380/1400
Prof. Dr. Thorsten-Ingo Dickhaus

Bachelor: Wahlpflichtveranstaltungen

Wahlpflichtveranstaltungen für den Studiengang Mathematik B.Sc.
VAKTitel der VeranstaltungDozentIn
03-M-FANA-1Funktionalanalysis
Functional Analysis

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 1100 Übung
wöchentlich Di 12:00 - 14:00 MZH 1470 Vorlesung
wöchentlich Do 12:00 - 14:00 MZH 5500 Vorlesung
Prof. Dr. Andreas Rademacher
03-M-FTH-1Maß- und Wahrscheinlichkeitstheorie
Measure Theory and Probability

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 1110 Vorlesung
wöchentlich Mo 16:00 - 18:00 MZH 1110 Übung
wöchentlich Di 16:00 - 18:00 MZH 4140 Vorlesung
Prof. Dr. Marc Keßeböhmer
Prof. Dr. Maik Udo Gröger
03-M-FTH-5Graphentheorie
Graph Theory

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 12:00 - 14:00 MZH 5600 Übung
wöchentlich Mi 16:00 - 18:00 MZH 1100 Vorlesung
wöchentlich Do 14:00 - 16:00 MZH 1450 Vorlesung
Prof. Dr. Daniel Schmand
03-M-FTH-6Topologie
Topology

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 7200 Vorlesung
wöchentlich Fr 08:00 - 10:00 MZH 7200 Vorlesung
wöchentlich Fr 10:00 - 12:00 MZH 7200 Übung
Prof. Dr. Eva-Maria Feichtner
03-M-FTH-7Fundierungen der Mathematik
Foundations of Mathematics

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 7200 Vorlesung
wöchentlich Mi 10:00 - 12:00 Externer Ort: MZH 7200
wöchentlich Do 08:00 - 10:00 MZH 7200 Vorlesung

Wir wollen wir uns mit den Grundlagen der Mathematik
beschäftigen, die in den grundlegenden Veranstaltungen angesprochen wurden,
für deren umfassende Behandlung aber keine Zeit blieb. Wir werden dafür
wichtige Konzepte und bedeutende Sätze in den drei Bereichen Mengenlehre,
Logik und Kategorientheorie studieren. Wir werden uns mit den Axiomen der
modernen Mengenlehre beschäftigen, die Bedeutung (und die Mängel) von
Cantors Definition einer Menge untersuchen und das berühmte Auswahlaxiom
studieren. Wir werden verschiedene Zahlenräume konstruieren und Ordinal-
und Kardinalzahlen kennenlernen sowie verschiedene Stufen der Unendlichkeit
betrachten. Wir werden formale Sprachen untersuchen und uns mit der Logik
von mathematischen Beweisen beschäftigen und lernen, wie man diese formal
rechtfertigen kann.
Letztlich beschäftigen wir uns mit Kategorien. Viele Konzepte der Mathema-
tik trifft man in ähnlicher Form in verschiedenen Bereichen der Mathematik
wieder, denken Sie etwa an lineare Abbildungen, Gruppenhomomorphismen
oder stetige Abbildungen. Allen drei ist gemein, dass es sich um strukturer-
haltende Abbildungen handelt, obwohl die jeweiligen Strukturen kaum etwas
miteinander zu tun haben. Wir werden lernen, wie man solche Konzepte
unter einem Begriff subsumieren kann. Außerdem werden wir uns universelle
Konstruktionen anschauen und untersuchen, wie man Begriffe, die wir von
Mengen her kennen, in andere Gebiete der Mathematik sinnvoll übertragen
kann.

Voraussetzungen:
Keine Vorkenntnisse erforderlich, nur ein Interesse an logischen und formellen
Konzepten.
Die Vorlesung richtet sich an alle Studierenden, die ihr Verständnis der
Mathematik vertiefen und ein tieferes Verständnis der Grundlagen erlangen
möchten.

Dr. Tim Haga
03-M-NUM-2Numerik 2
Numerical Calculus 2

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 5600 Vorlesung
wöchentlich Di 14:00 - 16:00 MZH 1110 Vorlesung
wöchentlich Do 14:00 - 16:00 MZH 2340 Übung

Einzeltermine:
Di 11.04.23 14:00 - 16:00 MZH 1110
Alfred Schmidt

Bachelor: Proseminare

VAKTitel der VeranstaltungDozentIn
03-M-AC-10Homological Algebra (in englischer Sprache)
(Seminar/Proseminar)

Seminar
ECTS: 3 / 4,5 / 5 / 6

Termine:
wöchentlich Do 10:00 - 12:00 MZH 7200 Seminar
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-AC-11Geometry (in englischer Sprache)

Seminar
ECTS: 3 / 4,5 / 5 / 6

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Seminar

Einzeltermine:
Di 11.04.23 10:00 - 12:00 MZH 7200

Are you fascinated by geometric shapes and their properties?
Are you an Bachelor's or Masters's student in mathematics looking to deepen your understanding of polytopes?
Then this seminar is for you!

In this seminar, we will delve into the fascinating world of polytopes, which are geometric objects that generalize the idea of a convex polygon or a convex polyhedron.
Polytopes have a wide range of applications in various fields, such as computer graphics, physics, and optimization.

We will cover a variety of topics related to polytopes, including:
  • Basics of polytopes: We will begin by discussing the basic properties of polytopes. We will also explore the different types of polytopes, including simplices, cubes, and cross-polytopes.
  • Combinatorial properties: We will delve into the combinatorial properties of polytopes, including the Euler characteristic, face numbers, and the Dehn-Sommerville equations.
  • Algebraic properties: We will examine the algebraic properties of polytopes, including their symmetry groups and the representation of polytopes by linear inequalities.
- Applications: We will explore the different applications of polytopes in other areas of mathematics and science, such as linear programming, coding theory, and computer graphics.
  • Computational methods: We will learn about computational methods for dealing with polytopes, including convex hull algorithms, triangulation algorithms and algorithms for counting the number of faces of a polytope.

Throughout the seminar, we will use examples and case studies to illustrate the concepts and theories discussed.
The seminar will also touch on the recent developments in the study of polytopes, including new results and open problems.

But this seminar is not just about listening and taking notes, we want you to actively participate in the class.
Each student is expected to give a talk on a specific topic related to polytopes, allowing you to not only deepen your own understanding but also share your knowledge with your peers.
This seminar is also a great opportunity for students to connect with other students with similar interests and to learn from each other.

Join us on a journey of discovery and exploration as we uncover the hidden beauty and complexity of polytopes.

Sign up now and be ready to be amazed!

Dr. Tim Haga
03-M-FEB-1FEB-Projekte
REU-Projects

Proseminar
ECTS: 3 / 5
Prof. Dr. Marc Keßeböhmer
03-M-MKOM-3Fourierreihen
Fourier Series

Proseminar
ECTS: 3/5

Termine:
wöchentlich Fr 14:00 - 18:00 MZH 4140 Proseminar
Prof. Dr. Anke Dorothea Pohl
Jan Klüver
03-M-MKOM-5Algebra

Proseminar
ECTS: 3 / 5

Termine:
wöchentlich Di 10:00 - 12:00 MZH 7200 Proseminar
Prof. Dr. Eva-Maria Feichtner

Master: Wahlpflichtveranstaltungen

Vertiefungsrichtung Algebra

VAKTitel der VeranstaltungDozentIn
03-IMAT-APX (03-ME-602.99a)Approximation Algorithms (in englischer Sprache)

Kurs
ECTS: 6

Termine:
wöchentlich Di 10:00 - 12:00 MZH 1110 Kurs
wöchentlich Do 14:00 - 16:00 MZH 1110 Kurs

Profil: SQ, KIKR.
Schwerpunkt: IMA-SQ, IMVT-AI, IMVT-VMC
weitere Studiengänge: M-M-Alg-Num, M-T

Prof. Dr. Nicole Megow
Dr. Felix Christian Hommelsheim
03-M-SP-15Analytic and Discrete Convex Geometry (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1100 Lecture
wöchentlich Di 12:00 - 14:00 MZH 7200 Lecture
wöchentlich Di 14:00 - 16:00 MZH 7200 Exercise
Eugenia Saorin Gomez

Vertiefungsrichtung Analysis

VAKTitel der VeranstaltungDozentIn
03-M-SP-11Optimal Control in Function Spaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 2340 Exercise
wöchentlich Mo 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Do 08:00 - 10:00 MZH 2340 Lecture
Prof. Dr. Andreas Rademacher
03-M-SP-13Ergodic Theory (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Mi 16:00 - 18:00 MZH 4140 Exercise
wöchentlich Do 12:00 - 14:00 MZH 4140 Lecture
Prof. Dr. Anke Dorothea Pohl
03-M-SP-16Mathematical Foundations of Machine Learning (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise
Peter Maaß
Dr. Matthias Beckmann
03-M-SP-24Evolution Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Mo 14:00 - 16:00 MZH 2340 Exercise
wöchentlich Do 10:00 - 12:00 MZH 2340 Lecture


PD Dr. Hendrik Vogt

Vertiefungsrichtung Numerik

VAKTitel der VeranstaltungDozentIn
03-IMAT-APX (03-ME-602.99a)Approximation Algorithms (in englischer Sprache)

Kurs
ECTS: 6

Termine:
wöchentlich Di 10:00 - 12:00 MZH 1110 Kurs
wöchentlich Do 14:00 - 16:00 MZH 1110 Kurs

Profil: SQ, KIKR.
Schwerpunkt: IMA-SQ, IMVT-AI, IMVT-VMC
weitere Studiengänge: M-M-Alg-Num, M-T

Prof. Dr. Nicole Megow
Dr. Felix Christian Hommelsheim
03-M-SP-11Optimal Control in Function Spaces (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 2340 Exercise
wöchentlich Mo 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Do 08:00 - 10:00 MZH 2340 Lecture
Prof. Dr. Andreas Rademacher
03-M-SP-12High-Performance Visualization (in englischer Sprache)

Vorlesung
ECTS: 4,5 / 6

Termine:
wöchentlich Do 14:00 - 16:00 MZH 5500 Lecture and Exercise

Die Vorlesung beschäftigt sich mit den mathematischen Grundlagen der wissenschaftlichen Visualisierung und behandelt Methoden für das parallele Post-Processing großer wissenschaftlicher Datensätze. Anwendungsbeispiele werden anhand der Open-Source-Software ParaView erläutert.
Homepage zur Veranstaltung: https://www.uni-bremen.de/ag-high-performance-visualization

Prof. Dr. Andreas Gerndt
03-M-SP-14Scientific Programming and Advanced Numerical Methods - an Introduction with Case Studies (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Mi 16:00 - 18:00 MZH 2340 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture
Alfred Schmidt
Prof. Dr. Stephan Frickenhaus
03-M-SP-16Mathematical Foundations of Machine Learning (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 14:00 - 16:00 MZH 2340 Exercise
Peter Maaß
Dr. Matthias Beckmann
03-M-SP-17Deep Learning for Inverse Problems (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Di 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Di 14:00 - 16:00 MZH 2340 Exercise
wöchentlich Do 10:00 - 12:00 MZH 4140 Lecture

Die Veransaltungen 03-M-SP-17 "Deep Learning for Inverse Problems"und 03-M-SP-18 "Nonlinear Inverse Problems" bilden zwei einzeln belegbare Veranstaltungsblöcke im Themenbereich von inversen Problemen (Woche 1-7: Deep Learning for Inverse Problems; Woche 8-14: Nonlinear Inverse Problems), die hintereinander stattfinden. Sie können zusammen oder separat belegt belegt werden.

Tobias Kluth
Dr. Pascal Fernsel
03-M-SP-18Nonlinear Inverse Problems (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Di 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Di 14:00 - 16:00 MZH 2340 Exercise
wöchentlich Do 10:00 - 12:00 MZH 4140 Lecture

Die Veransaltungen 03-M-SP-17 "Deep Learning for Inverse Problems"und 03-M-SP-18 "Nonlinear Inverse Problems" bilden zwei einzeln belegbare Veranstaltungsblöcke im Themenbereich von inversen Problemen (Woche 1-7: Deep Learning for Inverse Problems; Woche 8-14: Nonlinear Inverse Problems), die hintereinander stattfinden. Sie können zusammen oder separat belegt belegt werden.

Dr. Pascal Fernsel
Tobias Kluth
03-M-SP-19Mathematics of Quantum Computing (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 1470 MZH 1450 Lecture
wöchentlich Di 08:00 - 10:00 MZH 1110 Lecture
wöchentlich Mi 12:00 - 14:00 MZH 1110 Exercise
Matthias Knauer
03-M-SP-20Digital Optimal Control and Optimal Feedback Control (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 Lecture (Room: NEOS Building)
wöchentlich Mo 10:00 - 12:00 Exercise (Room: NEOS Building)
wöchentlich Di 08:00 - 10:00 Lecture (Room: NEOS Building)
Prof. Dr. Christof Büskens

Vertiefungsrichtung Stochastik & Statistik

VAKTitel der VeranstaltungDozentIn
03-M-SP-21Linear Regression Analysis with R (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 7200 Lecture
wöchentlich Mo 14:00 - 16:00 MZH 7200 Lecture / Exercise
Maryam Movahedifar
03-M-SP-22Regression Models (Statistics II) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 5500 Lecture
wöchentlich Do 08:00 - 10:00 SFG 0140 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 4140 Exercise
Prof. Dr. Werner Brannath
03-M-SP-23Sequential and Adaptive Designs (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mi 12:00 - 14:00 Lecture
wöchentlich Mi 14:00 - 16:00 Lecture and Exercise
Prof. Dr. Werner Brannath

Master: Seminare

Vertiefungsrichtung Algebra

VAKTitel der VeranstaltungDozentIn
03-M-AC-10Homological Algebra (in englischer Sprache)
(Seminar/Proseminar)

Seminar
ECTS: 3 / 4,5 / 5 / 6

Termine:
wöchentlich Do 10:00 - 12:00 MZH 7200 Seminar
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-AC-11Geometry (in englischer Sprache)

Seminar
ECTS: 3 / 4,5 / 5 / 6

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 7200 Seminar

Einzeltermine:
Di 11.04.23 10:00 - 12:00 MZH 7200

Are you fascinated by geometric shapes and their properties?
Are you an Bachelor's or Masters's student in mathematics looking to deepen your understanding of polytopes?
Then this seminar is for you!

In this seminar, we will delve into the fascinating world of polytopes, which are geometric objects that generalize the idea of a convex polygon or a convex polyhedron.
Polytopes have a wide range of applications in various fields, such as computer graphics, physics, and optimization.

We will cover a variety of topics related to polytopes, including:
  • Basics of polytopes: We will begin by discussing the basic properties of polytopes. We will also explore the different types of polytopes, including simplices, cubes, and cross-polytopes.
  • Combinatorial properties: We will delve into the combinatorial properties of polytopes, including the Euler characteristic, face numbers, and the Dehn-Sommerville equations.
  • Algebraic properties: We will examine the algebraic properties of polytopes, including their symmetry groups and the representation of polytopes by linear inequalities.
- Applications: We will explore the different applications of polytopes in other areas of mathematics and science, such as linear programming, coding theory, and computer graphics.
  • Computational methods: We will learn about computational methods for dealing with polytopes, including convex hull algorithms, triangulation algorithms and algorithms for counting the number of faces of a polytope.

Throughout the seminar, we will use examples and case studies to illustrate the concepts and theories discussed.
The seminar will also touch on the recent developments in the study of polytopes, including new results and open problems.

But this seminar is not just about listening and taking notes, we want you to actively participate in the class.
Each student is expected to give a talk on a specific topic related to polytopes, allowing you to not only deepen your own understanding but also share your knowledge with your peers.
This seminar is also a great opportunity for students to connect with other students with similar interests and to learn from each other.

Join us on a journey of discovery and exploration as we uncover the hidden beauty and complexity of polytopes.

Sign up now and be ready to be amazed!

Dr. Tim Haga

Vertiefungsrichtung Numerik

VAKTitel der VeranstaltungDozentIn
03-M-AC-6Mathematical Foundations of AI (in englischer Sprache)

Seminar
ECTS: 4,5 / 6
Sören Dittmer
Peter Maaß
03-M-AC-13Advanced Topics in Inverse Problems (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Di 16:00 - 18:00 MZH 2340 Seminar
Tobias Kluth

Vertiefungsrichtung Stochastik & Statistik

VAKTitel der VeranstaltungDozentIn
03-M-AC-12Multiple Testing Procedures (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Di 16:00 - 18:00 MZH 7200 Seminar

In real data analysis, researchers are often interested in using the same data set to make inference on multiple hypotheses. For instance, they may want to identify brain regions that are activated by a stimulus in brain imaging data, or biological pathways that are differentially expressed in genomics data. However, testing multiple hypotheses simultaneously is a non-trivial extension of the individual case.

Indeed, any hypothesis test carries the risk of making a type I error, i.e., falsely rejecting a true hypothesis; this leads to a ‘false discovery’ and so a potentially misleading scientific result. Standard methods for testing an individual hypothesis allow to bound the probability of making such an error by an ‘acceptable’ risk, usually set at 0.05. When performing multiple tests, however, each one has a probability of producing a type I error. As a result, the risk of having at least one error among the findings may become unmanageable.

In this seminar we will introduce the problem of multiple testing and explore different techniques that have been proposed to control the flood of type I errors that arise in this context. We will see that different procedures aim at controlling different generalizations of the type I error. First, we will focus on procedures that control either the familywise error rate (FWER) or the false discovery rate (FDR), a class that includes many of the most popular multiple testing methods. Subsequently, we will introduce recent proposals that estimate the false discovery proportion (FDP) or provide confidence intervals for it.

The seminar is held in English.

Anna Vesely

Master: Reading Courses

VAKTitel der VeranstaltungDozentIn
03-M-RC-ALGReading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-RC-ANAReading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 7200

Einzeltermine:
Mi 31.05.23 12:00 - 14:00 MZH 5600
Prof. Dr. Anke Dorothea Pohl
03-M-RC-NUMReading Course Numerical Analysis (in englischer Sprache)

Seminar
ECTS: 9


Prof. Dr. Christof Büskens
03-M-RC-STSReading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Oberseminare

VAKTitel der VeranstaltungDozentIn
03-M-OS-4Oberseminar Dynamische Systeme und Geometrie
Seminar: Dynamical Systems and Geometry

Seminar

Termine:
wöchentlich Do 14:00 - 16:00 MZH 4140

Weitere Infos auf der Seminar-Homepage

Prof. Dr. Marc Keßeböhmer
Prof. Dr. Anke Dorothea Pohl
03-M-OS-7Oberseminar Parameter Identification - Analysis, Algorithms, Applications (in englischer Sprache)
Research Seminar - Mathematical Parameter Identification

Seminar

Termine:
zweiwöchentlich (Startwoche: 1) Mi 12:00 - 14:00 MZH 5600


Tobias Kluth
Daniel Otero Baguer

Kolloquien

VAKTitel der VeranstaltungDozentIn
03-M-KOL-1Mathematisches Kolloquium

Colloquium

Termine:
wöchentlich Di 16:00 - 18:00 MZH 5600 CART Rotunde - 0.67 Kolloquium
Prof. Dr. Christine Knipping
Prof. Dr. Thorsten-Ingo Dickhaus

General Studies

VAKTitel der VeranstaltungDozentIn
03-IBFW-HTO (03-BE-699.12)Hands-on Tutorial on Optimization (in englischer Sprache)

Blockveranstaltung
ECTS: 3

A large number of problems arising in practical scenarios like communication, transportation, planning, logistics etc. can be formulated as discrete linear optimization problems. This course briefly introduces the theory of such problems. We develop a toolkit to model real-world problems as (discrete) linear programs. We also explore several ways to find integer solutions such as cutting planes, branch & bound, and column generation.

Throughout the course, we learn these skills by modeling and solving, for example, scheduling, packing, matching, routing, and network-design problems. We focus on translating practical examples into mixed-integer linear programs. We learn how to use solvers (such as CPLEX and Gurobi) and tailor the solution process to certain properties of the problem.

This course consists of two phases:

  • One week Mon-Fri (full day) of lectures and practical labs in the end of September.
  • An individual project period: One project has to be modeled, implemented, and solved individually or in a group of at most two students. The topic will be either developed with or provided by the lecturers. The project including the implementation has to be presented before the beginning of the winter semester.

There are no prerequisites except some basic programming skills to participate.

Prof. Dr. Nicole Megow
03-M-GS-5Statistical Consulting (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Fr 10:00 - 12:00 Seminar
Dr. Martin Scharpenberg
03-M-GS-7Introduction to R (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Di 13:00 - 15:00 Seminar
wöchentlich Mi 16:00 - 17:00 Seminar
Prof. Dr. Werner Brannath
Eike Voß
03-M-GS-12Geschichte der Mathematik

Proseminar
ECTS: 3

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 1100
Dr. Tim Haga
Eugenia Saorin Gomez
03-M-SP-21Linear Regression Analysis with R (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 7200 Lecture
wöchentlich Mo 14:00 - 16:00 MZH 7200 Lecture / Exercise
Maryam Movahedifar
SZHB 0625ONLINE: English for Mathematicians and Industrial Mathematicians (Zertifikatskurs UNIcert II) (B2.3) (in englischer Sprache)
Eingangsniveau: B2.2

Kurs
ECTS: 3

Termine:
wöchentlich Di 16:15 - 17:45 Externer Ort: Onlinekurs (2 SWS)


Edwin Shillington

Sonstige Veranstaltungen

VAKTitel der VeranstaltungDozentIn
03-M-RMS-1Review of Mathematical Statistics (in englischer Sprache)

Kurs

Termine:
wöchentlich Do 16:00 - 18:00 MZH 7200

Dieser Kurs behandelt die Grundlagen der mathematischen Statistik für Studierende der Masterprogramme im Vollfach. Es können sich keine Credit Points für die Teilnahme angerkannt werden!

Daniel Oching Odipo