Dr. Ivan Ovsyannikov

Contact Information
MZH 4110
+49 (0) 421-218-63743
E-Mail
Research Interests
Bifurcations
Dynamical chaos
Differential-algebraic equations
Mechanics
Micromagnetics
Teaching
Teaching assignments at the University of Hamburg (UHH)
Winter semester 2019/2020: | Exercises: | Optimization for Informatics students |
Seminar: | Seminar on Differential Equations and Dynamical Systems | |
Summer semester 2019: | Lectures + Exercises: | Ordinary Differential Equations and Dynamical Systems |
Winter semester 2018/2019: | Exercises: | Nonlinear Systems |
Exercises: | Advanced Topics in Fluid Dynamics |
Teaching assignments at the University of Bremen
Summer semester 2018: | Seminar: | Elements of Theory of Chaos |
Winter semester 2017/2018: | Lectures + Exercises: | Differential Equations, Dynamics and Mechanics |
Summer semester 2017: | Seminar: | Bifurcations and Chaos |
Winter semester 2016/2017: | Lectures + Exercises: | Qualitative Analysis of Ordinary Differential Equations |
Winter semester 2015/2016: | Lectures: | Advanced Dynamical Systems |
Summer semester 2015: | Exercises: | Introduction to Dynamical Systems |
Winter semester 2014/2015: | Exercises: | Analysis III |
Teaching assignments at the Jacobs University Bremen
Fall Semester 2016: | Lectures: | Programming in Python I |
Fall Semester 2015: | Lectures: | Programming in Python I |
Spring Semester 2015: | Lectures: | Engineering and Scientific Mathematics II |
Lectures: | Linear Algebra II |
Teaching handbooks
S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, I. I. Ovsyannikov, E. V. Zhuzhoma,
Elements of the mathematical theory of the rigid body motion,
Nizhny Novgorod State University, 2012, 56 pages.
Preprints
I. Ovsyannikov.
Global and local bifurcations, three-dimensional Henon maps and discrete Lorenz attractors.
Submitted to Chaos, preprint [arXiv].
Publications
I. Ovsyannikov.
On birth of discrete Lorenz attractors under bifurcations of 3D maps with nontransversal heteroclinic cycles.
Reg. and Chaot. Dyn., 27 (2022), no. 1, 217-231.
I. Ovsyannikov, H. Ruan.
Classification of Codimension-1 Singular Bifurcations in Low-dimensional DAEs.
Front. Appl. Math. Stat. (2022), 8:756699.
L. Siemer, I. Ovsyannikov, J. Rademacher.
Existence of Inhomogeneous Domain Walls in Nanomagnetic Structures.
Nonlinearity 33 (2020), 2905.
M. Gonchenko, S.V. Gonchenko, I. Ovsyannikov, A. Vieiro.
On local and global aspects of the 1:4 resonace in conservative cubic Henon maps.
Chaos 28, 043123 (2018).
M. Gonchenko, S.V. Gonchenko, I. Ovsyannikov.
Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps.
Math. Model. Nat. Phenom., 12 1 (2017) 41-61.
S. Gonchenko, I. Ovsyannikov.
Homoclinic tangencies to resonant saddles and discrete Lorenz attractors.
Discrete and Continuous Dynamical Systems S. vol. 10 (2017), Issue 2, p. 273-288.
Ovsyannikov I. I. and Turaev D. V.
Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model.
Nonlinearity 30 (2017) 115-137.
I. I. Ovsyannikov, D. Turaev, S. Zelik
Bifurcation to Chaos in the complex Ginzburg-Landau equation with large third-order dispersion.
Modeling and Analysis of Information Systems 22 (2015), p. 327-336.
Gonchenko S. V., Gordeeva O. V., Lukyanov V. I., Ovsyannikov I. I.
On bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency to a saddle-node fixed point.
Vestnik NNSU, 2 (2014), p. 198-209.
Gonchenko, S. V., Gordeeva, O. V., Lukyanov, V. I., Ovsyannikov, I. I.
On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node.
Regul. Chaotic Dyn. 19 (2014), no. 4, p. 461-473.
Gonchenko, S. V., Ovsyannikov, I. I., Tatjer, J. C.
Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points.
Regul. Chaotic Dyn. 19 (2014), no. 4, p. 495-505.
Gonchenko, S. V., Ovsyannikov, I. I.
On global bifurcations of three-dimensional diffeomorphisms leading to Lorenz-like attractors.
Math. Model. Nat. Phenom. 8 (2013), no. 5, p. 71-83.
Gonchenko, S. V., Gonchenko, A. S., Ovsyannikov, I. I., Turaev, D. V.
Examples of Lorenz-like attractors in Hénon-like maps.
Math. Model. Nat. Phenom. 8 (2013), no. 5, p. 32-54.
Ovsyannikov I. I.
On the stability of the Chaplygin ball motion on a plane with an arbitrary friction law.
Vestnik UdSU, 4 (2012), p. 140-145.
Gonchenko, S. V., Ovsyannikov, I. I., Turaev, D.
On the effect of invisibility of stable periodic orbits at homoclinic bifurcations.
Phys. D 241 (2012), no. 13, p. 1115-1122.
Gonchenko S. V., Ovsyannikov I. I.,
On bifurcations of three-dimensional diffeomorphisms having a non-transverse heteroclinic cycle with saddle-foci.
Nonlinear Dynamics, 6:1 (2010), p. 61-77.
Gonchenko, S. V., Meiss, J. D., Ovsyannikov, I. I.
Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation.
Regul. Chaotic Dyn. 11 (2006), no. 2, p. 191-212.
Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., Turaev, D.
Three-dimensional Hénon-like maps and wild Lorenz-like attractors.
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 11, p. 3493-3508.
Gonchenko, V. S., Ovsyannikov, I. I.
On bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a "neutral'' saddle fixed point.
Zapiski Nauchnyh Seminarov POMI, 300(2003), 167-172.
Conference Proceedings
Gonchenko V. S., Ovsyannikov I. I.
Bifurcations of the closed invariant curve birth in the generalized Henon map (in Russian),
Mathematics and Cybernetisc: Proceedings of the Scientific and Technical Conference of the VMK Dept. and the Inst. of Appl. Math. and Cyb., NNSU, 2003, November 28-29, p. 101-103. J. Math. Sci. (N. Y.) 128 (2005), no. 2, p. 2774-2777.