Veranstaltungsverzeichnis

Lehrveranstaltungen WiSe 2022/2023

Mathematik, B.Sc./M.Sc. (Studienbeginn vor 2022)

Veranstaltungen vor dem 1. Semester

VAKTitel der VeranstaltungDozentIn
03-M-BMBrückenMathematik
Preparation Course Mathematics at the University Bremen

Blockveranstaltung

Einzeltermine:
Mo 19.09.22 - Fr 23.09.22 (Mo, Di, Mi, Do, Fr) 10:00 - 14:30
Mo 26.09.22 - Fr 30.09.22 (Mo, Di, Mi, Do, Fr) 10:00 - 14:30

Wichtig: Anmeldung über http://unihb.eu/bmath erforderlich!

Vorlesungen täglich 10:00 - 11:30 Uhr im HS 1010 (am 27.09 & 29.09 im HS 2010)
Übungen täglich 12:30 - 14:30 Uhr (Räume werde in der ersten Vorlesung bekannt gegeben)

Lars Siemer
Dr. Ingolf Schäfer
Dr. Arsen Narimanyan
03-M-OWO-Woche

Blockveranstaltung

Einzeltermine:
Mo 10.10.22 - Fr 14.10.22 (Mo, Di, Mi, Do, Fr) 08:00 - 19:00 1. Ebene im MZH Gebäude

Orientierungswoche für Erstsemesterstudierende in den mathematischen Studiengängen. Alle Details und Infos findest du unter https://math.stugen.de/wordpress/service/o-woche/

Lars Siemer

Bachelor: Pflichtveranstaltungen

Pflichtveranstaltungen für den Studiengang Mathematik B.Sc.
VAKTitel der VeranstaltungDozentIn
03-IBGP-PI1Praktische Informatik 1: Imperative Programmierung und Objektorientierung
Practical Computer Science 1

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 11:00 Übung Online
wöchentlich Mo 11:00 - 14:00 MZH 5500 Übung Präsenz
wöchentlich Mo 11:00 - 14:00 Übung Online
wöchentlich Mo 14:00 - 17:00 Übung Online
wöchentlich Mo 14:00 - 17:00 MZH 5500 Übung Präsenz
wöchentlich Mo 17:00 - 20:00 Übung Online
wöchentlich Mo 17:00 - 20:00 MZH 5500 Übung Präsenz
wöchentlich Di 14:00 - 16:00 HS 2010 (Großer Hörsaal) Vorlesung Präsenz
wöchentlich Mi 08:00 - 11:00 MZH 5500 Übung Präsenz
wöchentlich Mi 08:00 - 11:00 Übung Online
wöchentlich Mi 11:00 - 14:00 MZH 5500 Übung Präsenz
wöchentlich Mi 11:00 - 14:00 Übung Online
wöchentlich Mi 14:00 - 17:00 Übung Online
wöchentlich Mi 14:00 - 17:00 MZH 5500 Übung Präsenz
wöchentlich Mi 17:00 - 20:00 Übung Online
wöchentlich Mi 17:00 - 20:00 MZH 5500 Übung Präsenz
wöchentlich Do 08:00 - 10:00 HS 2010 (Großer Hörsaal) Vorlesung Präsenz

Für Studierende des Vollfachs Informatik, Systems Engineering und Wirtschaftinformatik. Für Studierende der Digitalen Medien und Komplementärfach Informatik gibt es die Veranstaltung Grundlagen der Programmierung.
Die Studierenden der Beruflichen Bildung - Mechatronik besuchen PI1 anstatt Grundlagen der Programmierung mit einer reduzierten CP-Anzahl, nämlich 6 CP durch reduzierten Übungsbetrieb.
Die Übungen finden online und in Präsenz statt. Der Übungsbetrieb startet in der 2. Semesterwoche.

Thomas Röfer
03-M-ALG-1Algebra

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 5600 MZH 7200 Vorlesung
wöchentlich Do 08:00 - 10:00 MZH 6200 Vorlesung
wöchentlich Do 10:00 - 12:00 MZH 7200 Übung
Dr. Tim Haga
03-M-ANA-1.1Analysis 1

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 4140 Übung
wöchentlich Di 10:00 - 12:00 GW2 B1820 Vorlesung
wöchentlich Di 12:00 - 14:00 MZH 1450 Übung
wöchentlich Di 14:00 - 16:00 MZH 1110 Übung
wöchentlich Mi 16:00 - 18:00 MZH 2340 Übung
wöchentlich Fr 08:00 - 10:00 HS 1010 (Kleiner Hörsaal) Vorlesung
Prof. Dr. Marc Keßeböhmer
03-M-ANA-1.2Vertiefung zur Analysis 1 (Vollfach)
Additional Topics in Analysis 1 (Single Major Subject)

Projektplenum
ECTS: 1,5

Termine:
wöchentlich Do 16:00 - 18:00 MZH 1470 Plenum
Prof. Dr. Marc Keßeböhmer
03-M-ANA-3Analysis 3

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 1100 Übung
wöchentlich Di 14:00 - 16:00 MZH 1470 Vorlesung
wöchentlich Mi 12:00 - 14:00 MZH 6200 Vorlesung
Prof. Dr. Anke Dorothea Pohl
03-M-LAG-1.1Lineare Algebra 1
Linear Algebra 1

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 HS 1010 (Kleiner Hörsaal) Vorlesung
wöchentlich Mo 12:00 - 14:00 MZH 1110 Übung
wöchentlich Di 08:00 - 10:00 MZH 4140 Übung
wöchentlich Di 08:00 - 10:00 MZH 7200 Übung
wöchentlich Mi 10:00 - 12:00 MZH 7200 Übung
wöchentlich Fr 12:00 - 14:00 MZH 1380/1400 Vorlesung

Einzeltermine:
Do 16.02.23 10:00 - 13:00 MZH 1380/1400
Eugenia Saorin Gomez
03-M-LAG-1.2Vertiefung zur Linearen Algebra 1 (Vollfach)
Additional Topics in Linear Algebra 1 (Single Major Subject)

Projektplenum
ECTS: 1,5

Termine:
wöchentlich Mo 10:00 - 12:00 MZH 1470 Plenum
Eugenia Saorin Gomez
03-M-MCP-1Mathematisches Computerpraktikum
Computer Laboratory

Kurs
ECTS: 3

Veranstaltung findet am Ende des Wintersemesters als Blockveranstaltung statt. Zeiten und Räume werden noch bekannt gegeben.

Prof. Dr. Daniel Schmand
03-M-NUM-1Numerik 1
Numerical Analysis 1

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 6200 Vorlesung
wöchentlich Mi 10:00 - 12:00 MZH 6200 Vorlesung
wöchentlich Do 12:00 - 14:00 MZH 1470 Übung
Alfred Schmidt

Bachelor: Wahlpflichtveranstaltungen

Wahlpflichtveranstaltungen für den Studiengang Mathematik B.Sc.
VAKTitel der VeranstaltungDozentIn
03-IMAT-KRYPT (03-MB-699.09)Einführung in die Kryptographie

Kurs
ECTS: 6

Termine:
wöchentlich Mi 10:00 - 12:00 MZH 5600 Kurs Präsenz
wöchentlich Do 08:00 - 10:00 Übung Online

Profil: SQ
Schwerpunkt: IMA-SQ.
mit Zusatzleistung(en) (wird in der Veranstaltung bekannt gegeben) 9 CP für Studierende in den mathematischen Studiengängen

Dieter Hutter
Karsten Sohr
03-M-FTH-4Altes und neues über konvexe Geometrie
old and new about Convex Geometry

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 12:00 - 14:00 MZH 4140 Vorlesung
wöchentlich Mi 14:00 - 16:00 MZH 3150 Übung
wöchentlich Fr 08:00 - 10:00 MZH 7200 Übung
wöchentlich Fr 10:00 - 12:00 MZH 7200 Vorlesung
Eugenia Saorin Gomez
03-M-Gy4-1Funktionentheorie
Complex Analysis

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 1470 Vorlesung
wöchentlich Mo 16:00 - 18:00 MZH 3150 Übung
wöchentlich Mo 16:00 - 18:00 MZH 4140 Übung
wöchentlich Mi 14:00 - 16:00 MZH 1470 Vorlesung
PD Dr. Hendrik Vogt
Dr. Ingolf Schäfer
03-M-MMOD-1Mathematische Modellierung
Mathematical Modelling

Kurs
ECTS: 9

Termine:
wöchentlich Di 12:00 - 14:00 MZH 2340 Vorlesung
wöchentlich Di 14:00 - 16:00 MZH 2340 Übung
wöchentlich Mi 12:00 - 14:00 MZH 2340 Vorlesung
Prof. Dr. Andreas Rademacher
03-M-SP-2Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 1100 Lecture
wöchentlich Do 08:00 - 10:00 MZH 1100 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 1450 Exercise
Prof. Dr. Werner Brannath

Bachelor: Proseminare

VAKTitel der VeranstaltungDozentIn
03-M-FEB-1Forschungserfahrungen im Bachelor
Research Experiences for Undergraduates

Proseminar
ECTS: 3 / 5

Weitere Infos unter http://www.feb.uni-bremen.de
Termine nach Vereinbarung

Prof. Dr. Marc Keßeböhmer
03-M-MKOM-1Lineare Algebra
Linear Algebra (33 Miniatures in Linear Algebra)
33 Miniaturen zur Linearen Algebra

Proseminar
ECTS: 3 / 5

Einzeltermine:
Mo 20.02.23 - Fr 24.02.23 (Mo, Di, Mi, Do, Fr) 08:00 - 14:00 MZH 4140
Eugenia Saorin Gomez
03-M-MKOM-3Fourier-Analysis
(Proseminar / Seminar)

Kurs
ECTS: 3 / 4,5 / 5 / 6

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 4140 (Pro)Seminar
Prof. Dr. Marc Keßeböhmer

Master: Wahlpflichtveranstaltungen

Vertiefungsrichtung Algebra

VAKTitel der VeranstaltungDozentIn
03-IMAT-AU (03-ME-602.99c)Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 1470 Kurs Präsenz
wöchentlich Do 14:00 - 16:00 MZH 1470 Kurs Präsenz

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI

A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
Dr. Felix Christian Hommelsheim
03-M-SP-7Commutative Algebra

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 7200 Lecture
wöchentlich Mi 14:00 - 16:00 MZH 7200 Lecture
wöchentlich Do 14:00 - 16:00 MZH 7200 Exercise
Anastasios Stefanou

Vertiefungsrichtung Analysis

VAKTitel der VeranstaltungDozentIn
03-M-SP-1Inverse Problems (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 2340 Exercise
wöchentlich Fr 10:00 - 12:00 MZH 2340 Lecture
Peter Maaß
Dr. Matthias Beckmann

Vertiefungsrichtung Numerik

VAKTitel der VeranstaltungDozentIn
03-IMAT-AU (03-ME-602.99c)Algorithms and Uncertainty (in englischer Sprache)

Kurs
ECTS: 6 (9)

Termine:
wöchentlich Di 12:00 - 14:00 MZH 1470 Kurs Präsenz
wöchentlich Do 14:00 - 16:00 MZH 1470 Kurs Präsenz

Profil: SQ
Schwerpunkt: IMA-SQ, IMA-AI

A key assumption of many powerful optimization methods is that all the data is fully accessible from the beginning.

However, from the point of view of many real-world applications (e.g., in logistics, production or project planning, cloud computing, etc.) this assumption is simply not true. Large data centers allocate resources to tasks without knowledge of exact execution times or energy requirements; transit times in networks are often uncertain; or, parameters such as bandwidth, demands or energy consumption are highly fluctuating. The current trend of data collection and data-driven applications often amplifies this phenomenon. As the amount of available data is increasing tremendously due to internet technology, cloud systems and sharing markets, modern algorithms are expected to be highly adaptive and learn and benefit from the dynamically changing mass of data.

In the above examples, our knowledge of the current data is only partial or based on historical estimates. The class ``Algorithms and Uncertainty'' will teach students about the most common models of such uncertain data and how to design and analyze efficient algorithms in these models.

Specifically, we will cover the theory of online optimization, where the input arrives without any prior information (such as network packets arriving to a router) and also needs to be processed immediately, before the next piece of input arrives. This model is best suited for analyzing critical networking and scheduling systems where devices and algorithms must perform well even in the worst-case scenario.

In the cases where previous history can be used to model the upcoming data, we often employ robust optimization or stochastic optimization. In robust optimization, the aim is to optimize the worst-case of all possible realizations of the input data. Hence, this model is rather conservative.
In stochastic optimization however, the algorithms work with the assumption that data is drawn from some probability distribution known ahead of time and typically the goal is to optimize the expected value.

Nowadays, another source of information is often available: machine learning algorithms can generate predictions which are accurate most of the time. However, there is no guarantee on the quality of the prediction, as the current instance may not be covered by the training set. This statement motivated a very recent research domain that will be covered in this course: how to use error-prone predictions in order to improve guaranteed algorithms.

Organization: The course will be taught in English in two sessions per week (4 SWS) including interactive exercise sessions.

Examination: The examination will be by individual oral exam. As admission to the oral exam it is mandatory to present solutions in the exercise session at least twice during the term.

Prerequisites: Having heard an introductory course to discrete algorithms and their mathematical analysis (e.g. Algorithmentheorie, Algorithmische Diskrete Mathematik) or graph theory is beneficial but not required.

Prof. Dr. Nicole Megow
Dr. Felix Christian Hommelsheim
03-M-MDAIP-1Mathematical Foundations of Data Analysis (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 08:00 - 10:00 MZH 4140 Lecture
wöchentlich Mo 10:00 - 12:00 MZH 4140 Exercise
wöchentlich Mi 08:00 - 10:00 MZH 1100 Lecture
Peter Maaß
03-M-NPDE-1Numerical Methods for Partial Differential Equations (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 MZH 2340 Exercise
wöchentlich Di 10:00 - 12:00 MZH 2340 Lecture
wöchentlich Do 10:00 - 12:00 MZH 2340 Lecture
Prof. Dr. Andreas Rademacher
03-M-SP-1Inverse Problems (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 2340 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 2340 Exercise
wöchentlich Fr 10:00 - 12:00 MZH 2340 Lecture
Peter Maaß
Dr. Matthias Beckmann
03-M-SP-3Mathematical Foundations of Deep Learning (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 08:00 - 12:00 MZH 2340 Lecture/Exercise
wöchentlich Mi 08:00 - 10:00 MZH 2340 Lecture / Exercise
Sören Dittmer
03-M-SP-6Algorithmic Game Theory (in englischer Sprache)

Vorlesung
ECTS: 9 (6)

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 4140 Exercise
wöchentlich Do 12:00 - 14:00 MZH 2340 Lecture
wöchentlich Fr 12:00 - 14:00 MZH 2340 Lecture

Many every-day processes can seen as a game between autonomous interacting players, where each player acts stategically in order to pursue her own objectives. This lecture is an introduction to game-theoretic concepts and techniques, mainly with connections to applications. Use-cases are distributed systems, auctions, online-markets, resource allocation, traffic routing, and sports. The goal of the lecture is to provide an overview over state-of-the-art results in the area of algorithmic game theory. Main topics that we will cover in the course are games in normal form, efficiency of equilibria, auctions, truthfulness and VCG-mechanisms, social choice, cake cutting, and cooperative games.

The lectures and homework sheets will be in English language. If all participants agree, the exercise session could be held in German. If there is an oral exam, the language can be chosen by the candidate. In case of a written exam the questions will be in English, answering them in German or English is fine.

Prof. Dr. Daniel Schmand
03-M-SP-9Introduction to Nonlinear Optimization and Optimal Control (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Mo 12:00 - 14:00 Lecture
wöchentlich Di 08:00 - 10:00 Lecture
wöchentlich Di 14:00 - 16:00 Exercise

Die Veranstaltung findet im NEOS Gebäude statt.

Prof. Dr. Christof Büskens
04-M30-CP-SFT-3Trajectory Optimization (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mo 14:00 - 17:00 GW1 B0100
Matthias Knauer
Prof. Dr. Christof Büskens

Vertiefungsrichtung Stochastik & Statistik

VAKTitel der VeranstaltungDozentIn
03-M-SP-2Basics of Mathematical Statistics (Statistics I) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 08:00 - 10:00 MZH 1100 Lecture
wöchentlich Do 08:00 - 10:00 MZH 1100 Lecture
wöchentlich Fr 08:00 - 10:00 MZH 1450 Exercise
Prof. Dr. Werner Brannath
03-M-SP-5Theory of Nonparametric Tests (Statistics III) (in englischer Sprache)

Vorlesung
ECTS: 9

Termine:
wöchentlich Di 10:00 - 12:00 MZH 1100 Lecture
wöchentlich Do 10:00 - 12:00 MZH 4140 Lecture
wöchentlich Do 16:00 - 18:00 MZH 4140 Exercise
Prof. Dr. Thorsten-Ingo Dickhaus
03-M-SP-8Sampling Theory and Methods (in englischer Sprache)

Vorlesung
ECTS: 4,5

Termine:
wöchentlich Mi 08:00 - 10:00 MZH 7200 Lecture / Exercise
wöchentlich Fr 14:00 - 16:00 MZH 7200 Lecture
Maryam Movahedifar

Master: Seminare

Vertiefungsrichtung Algebra

VAKTitel der VeranstaltungDozentIn
03-M-AC-9Knots, the Universe and Everything (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Di 14:00 - 16:00 MZH 7200 Seminar
Dr. Tim Haga

Vertiefungsrichtung Analysis

VAKTitel der VeranstaltungDozentIn
03-M-AC-10Dirichlet Forms on Graphs (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Fr 12:00 - 14:00 MZH 4140 Seminar
PD Dr. Hendrik Vogt
03-M-MKOM-3Fourier-Analysis
(Proseminar / Seminar)

Kurs
ECTS: 3 / 4,5 / 5 / 6

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 4140 (Pro)Seminar
Prof. Dr. Marc Keßeböhmer

Vertiefungsrichtung Numerik

VAKTitel der VeranstaltungDozentIn
03-M-AC-1Numerical Methods for Partial Differential Equations (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mo 16:00 - 18:00 MZH 2340 Seminar
Alfred Schmidt
03-M-AC-2High-Performance-Visualisierung (in englischer Sprache)
High-Performance Visualization
Ausgewählte Publikationen aus dem Bereich der Visualisierung großer wissenschaftlicher Datensätze

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Do 14:00 - 16:00 MZH 1100 Seminar

Das Seminar beschäftigt sich mit den mathematischen Grundlagen der wissenschaftlichen Visualisierung und behandelt Methoden für das parallele Post-Processing großer wissenschaftlicher Datensätze. Solche Daten fallen in unterschiedlichsten wissenschaftlichen Anwendungen an. Sie entstehen zum einen durch Simulationen auf Hochleistungsrechnern (z.\ B. zur Unterstützung der Klimaforschung oder für die Vorhersage von Umströmung von Flugzeugflügeln). Sie können aber auch durch Messungen, wie bspw. durch Erdbeobachtungsmissionen, erzeugt werden. Um überhaupt erst aussagekräftige Informationen für die Visualisierung zu erhalten, müssen diese enorm großen Rohdaten zunächst prozessiert werden. Für eine anschließende explorative Analyse werden echtzeitfähige, interaktive Methoden benötigt, die wiederum auf hochparallele und effiziente Verfahren beruhen. Das Seminar greift daher aktuelle Trends in der wissenschaftlichen Visualisierung auf. Zur Auswahl stehen herausragende Publikationen führender Wissenschaftler, die Themen von Multi-Resolution-Extraktion von Toplologiemerkmalen bis hin zu parallelen Beschleunigungsverfahren für das Volumenrendering in virtuellen Arbeitsumgebungen behandeln.

Prof. Dr. Andreas Gerndt
03-M-AC-4Mathematical Modelling and Scientific Computing (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 6200 Seminar
Prof. Dr. Andreas Rademacher
03-M-AC-6Mathematical Foundations of AI (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mi 11:00 - 12:00 MZH 2340 Seminar
Sören Dittmer
03-M-AC-8Combinatorial Optimization: Introduction and Algorithms (in englischer Sprache)
Application of Optimization and Optimal Control

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Mo 10:00 - 12:00 Seminar

Die Veranstaltung findet im NEOS Gebäude statt.

Prof. Dr. Christof Büskens
Dr. Amin Mallek

Vertiefungsrichtung Stochastik & Statistik

VAKTitel der VeranstaltungDozentIn
03-M-AC-3Semiparametric Statistics (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Do 14:00 - 16:00 MZH 2340 Seminar

Statistical problems are described by statistical models. This means interpreting the data as realizations of random variables whose unconditional or conditional densities are described and estimated by statistical (regression) models. These models are usually identified by a set of parameters, which can be finite but also infinite dimensional. For this purpose, there are usually three types of possible models, depending on the structure of the data and the problem at hand: parametric, nonparametric, and semiparametric. A semiparametric model is characterized by the inclusion of both finite dimensional parametric and infinite dimensional nonparametric components. The main interest is usually in the finite dimensional parametric component, with the infinite dimensional component being co-estimated for the purpose of statistical inference and efficiency. In this seminar we will study the definition, properties, and applications of semiparametric models. Examples of semiparametric models include single-index models and Cox regression models for censored survival time data. We will also consider approaches to dealing with missing information in data sets. The use of semiparametric models plays a major role for medical studies, for example.

Prerequisites for participation in the seminar are basic knowledge of mathematical statistics (e.g. from Statistics 1) and of regression models (e.g. from Statistics 2). English speaking students are welcome.

In order to gain a good insight into the extensive theory of semi-parametric models, we will use the master thesis by Karel Vermeulen as our primary literature and study the chapters that are important for us in more detail, presenting the knowledge gained through the thesis in the form of individual presentations.

A list with the name of the thesis and further literature can be found below.

  • Master thesis of Karel Vermeulen. Semiparametric Efficiency
  • A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998.
  • A. W. van der Vaart. ”On Differentiable Functionals“. In: Ann. Statist. 19.1 (März 1991), S. 178–204.
  • Tsiatis, Anastasios. Semiparametric Theory and Missing Data. Vereinigtes Königreich, Springer New York, 2010.

Prof. Dr. Werner Brannath
03-M-AC-7Advanced Topics in Statistics (in englischer Sprache)

Seminar
ECTS: 4,5 / 6

Termine:
wöchentlich Di 16:00 - 18:00 BIPS 1550 Seminar

regelmäßige Veranstaltung dienstags 14-16 im BIPS Raum 1550.

Prof. Dr. Vanessa Didelez

Master: Reading Courses

VAKTitel der VeranstaltungDozentIn
03-M-RC-ALGReading Course Algebra (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Dmitry Feichtner-Kozlov
N. N.
03-M-RC-ANAReading Course Analysis (in englischer Sprache)

Seminar
ECTS: 9

Termine:
wöchentlich Di 16:00 - 18:00 MZH 4140
Prof. Dr. Anke Dorothea Pohl
03-M-RC-NUMReading Course Numerical Analysis

Seminar
ECTS: 9
Prof. Dr. Christof Büskens
03-M-RC-STSReading Course Statistics/Stochastics (in englischer Sprache)

Seminar
ECTS: 9
Prof. Dr. Werner Brannath
Prof. Dr. Thorsten-Ingo Dickhaus

Oberseminare

VAKTitel der VeranstaltungDozentIn
03-M-OS-3Oberseminar Angewandte Statistik

Seminar

Homepage zur Veranstaltung: http://anstat.uni-bremen.de/node/6

Prof. Dr. Werner Brannath
03-M-OS-4Oberseminar Dynamische Systeme und Geometrie
Seminar: Dynamical Systems and Geometry

Seminar

Termine:
wöchentlich Do 14:00 - 16:00 MZH 4140 Seminar

Weitere Infos auf der Seminar-Homepage

Prof. Dr. Marc Keßeböhmer
Prof. Dr. Anke Dorothea Pohl
03-M-OS-6Oberseminar Mathematische Datenanalyse in der Bioinformatik
Mathematical data analysis in bioinformatics

Seminar

Termin nach Vereinbarung.
Studiengang: T-M

Tobias Boskamp
03-M-OS-9Oberseminar Optimierung & Optimale Steuerung
Seminar Optimisation and Optimal Control

Seminar

Termin nach Vereinbarung.
Homepage zur Veranstaltung: http://zetem.uni-bremen.de/o2c/veranstaltungen

Prof. Dr. Christof Büskens
03-M-OS-11Oberseminar Algebra und Topologie

Seminar
Prof. Dr. Dmitry Feichtner-Kozlov
03-M-OS-13Oberseminar Deep Learning

Seminar
Peter Maaß

General Studies

VAKTitel der VeranstaltungDozentIn
03-M-GS-2Modelle und Mathematik
Models and Mathematics

Seminar
ECTS: 2

Termine:
wöchentlich Mo 14:00 - 16:00 MZH 1100 Seminar
Ronald Stöver
03-M-GS-3Grundlegende Methoden der angewandten Statistik
Basic Methods of Applied Statistics

Vorlesung
ECTS: 6

Termine:
wöchentlich Fr 08:00 - 10:00 MZH 1470 Vorlesung
wöchentlich Fr 10:00 - 12:00 MZH 1470 Übung
Dr. Martin Scharpenberg
03-M-GS-5Statistical Consulting (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Fr 10:00 - 12:00 Seminar
Dr. Martin Scharpenberg
03-M-GS-6Data Science in Natural Sciences using R (in englischer Sprache)
a course on R programming and data science methods with practicals and projects

Vorlesung
ECTS: 3

Termine:
wöchentlich Mi 14:00 - 16:00 MZH 0230/0240 (P3) (2 SWS) mix of lectures and practicals

The course provides an introductory level of programming skills in R.
Students are welcome to present own ideas, data and projects. I expect a project report or a method talk with demo on own data. Practicals in "R" will work also on synthetic data to illustrate methods features, limitations and differences.

Prof. Dr. Stephan Frickenhaus
03-M-GS-7Introduction to R (in englischer Sprache)

Seminar
ECTS: 3

Termine:
wöchentlich Do 12:00 - 13:00 Seminar im KKSB
wöchentlich Fr 08:00 - 10:00 SFG 1040 Seminar Präsenz
Prof. Dr. Werner Brannath
Eike Voß
CC-02-WiSe22-23Betriebswirtschaftslehre für Ingenieurs- und Naturwissenschaftler:innen
Essentials of business studies for students and graduates of engineering and natural sciences

Blockveranstaltung
ECTS: empfohlen 1 & Zertifikat

Einzeltermine:
Mo 24.10.22 - Mi 26.10.22 (Mo, Di, Mi) 16:00 - 20:00 Online

Mitarbeitende mit technischem oder naturwissenschaftlichem Hintergrund werden im beruflichen Kontext immer auch mit betriebswirtschaftlichen Fragen konfrontiert.

In diesem Seminar lernen Sie die wichtigsten Teilgebiete der Betriebswirtschaft, sowie die dazugehörigen Zusammenhänge kennen, um diese in Ihrem beruflichen Umfeld anzuwenden. Neben den Grundzügen der BWL umfasst das Seminar u.a. die Bereiche Innovations- und Qualitätsmanagement, Supply-Chain-Management, F+E (Forschung und Entwicklung), Produktions- und Fertigungsplanung, technische Infrastruktur und IT.

Anmeldungen für Oktober laufen vom 07. Juli bis Donnerstag, 08. September 2022 über https://elearning.uni-bremen.de/ (Veranstaltungssuche / Suche im Vorlesungsverzeichnis / Fachübergreifende Studienangebote / Career Center unter: Betriebswirtschaftliche Kompetenzen).

Sobald das Anmeldeverfahren geschlossen ist, bekommen Sie von uns eine E-Mail mit den Zugangsdaten!

Ausführliche Informationen unter:
https://www.uni-bremen.de/career-center/veranstaltungen.html
www.uni-bremen.de/career-center/veranstaltungen/uebersicht
www.uni-bremen.de/career-center/veranstaltungen/uebersicht/detailbeschreibungen
www.uni-bremen.de/career-center/veranstaltungen/kalenderuebersicht

Lars Kaletka
CC-43-WiSe22-23Handwerkszeug für den Berufseinstieg für Studierende der Naturwissenschaften und Ingenieurstudiengänge
Tools for career entry for students of natural sciences and engineering

Blockveranstaltung

Einzeltermine:
Mo 27.02.23 09:00 - 17:00 Online

Ziel:
„Warum soll ich genau Sie einstellen?“ – Es lohnt sich, sich mit dieser Frage intensiv auseinanderzusetzen.

Für angehende Absolvierende der Naturwissenschaften und Ingenieurstudiengänge ist dies wichtig, da viele Ansprechpersonen die Faszination der entsprechenden Studienfächer nicht genau kennen und aufgrund der vielseitigen Spezialisierungsmöglichkei-ten in diesen Fächern eine klare Kommunikation entscheidend ist.

Im Workshop lernen Sie Recruiting aus neuer Perspektive kennen und erarbeiten Handwerkszeug für eine selbstbewusste und chancenorientierte Strategie für Ihr „Marketing in eigener Sache“. Durch die ausführliche Beschäftigung mit Ihren Stärken, Ihrer Motivation und Ihrem Begeisterungsvermögen werden Sie Sicherheit für Ihre Präsentation beim potentiellen Arbeitgeber gewinnen und Vorstellungsgespräche souveräner angehen können.

Workshopinhalte:
• Wie funktioniert Personalauswahl heute?
• Arbeitsfelder für Absolvierende der Naturwissenschaften und Ingenieurstudiengänge.

Praxisbeispiele
• Was hebt mich von anderen Bewerbern/Bewerberinnen ab, was zeichnet mich mit einem naturwissenschaftlichen oder Ingenieurstudienabschluss besonders aus?
• Erarbeitung geeigneter Argumentationsideen und Strategien für eine optimale Selbstpräsentation mit einem naturwissenschaftlichen oder Ingenieurstudienabschluss
• Welche Möglichkeiten der Initiativbewerbung gibt es?
• Wie kann ich verschiedene Kontaktpunkte zu potentiellen Arbeitgebern nutzen?
• Tipps für die erfolgreiche Umsetzung der Kommunikationsstrategie in den Bewerbungsunterlagen und im Vorstellungsgespräch

Anmeldungen für Februar 2023 laufen vom 24. November 2022 bis Donnerstag, 19. Januar 2023 über https://elearning.uni-bremen.de/ (Veranstaltungssuche / Suche im Vorlesungsverzeichnis / Fachübergreifende Studienangebote / Career Center unter: Arbeitsmärkte

Sobald das Anmeldeverfahren geschlossen ist, bekommen Sie von uns eine E-Mail mit den Zugangsdaten!

Ausführliche Informationen unter:
www.uni-bremen.de/career-center/veranstaltungen.html
www.uni-bremen.de/career-center/veranstaltungen/uebersicht
www.uni-bremen.de/career-center/veranstaltungen/uebersicht/detailbeschreibungen
www.uni-bremen.de/career-center/veranstaltungen/kalenderuebersicht

Wolfgang Leybold